Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    2014, Vol. 8 Issue (2) : 162-168    https://doi.org/10.1007/s11783-013-0507-2
RESEARCH ARTICLE
CO2 adsorption performance of ZIF-7 and its endurance in flue gas components
Jiangkun XIE, Naiqiang YAN(), Fei LIU, Zan QU, Shijian YANG, Ping LIU
School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
 Download: PDF(295 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Porous ZIF-7 with the sodalite (SOD) cage structure (ZIF, Zeolitic imidazolate framework) were synthesized by the solvothermal method. Synthesized material was characterized by powder X-ray diffraction (PXRD), thermal gravity (TG), scanning electron microscopy (SEM) and N2 adsorption analysis. ZIF-8 with the SOD structure and a little larger pore window was synthesized in a similar way and was characterized for comparisons. Thermal stability and structural stability of ZIF-7 were tested through PXRD analysis, and the capability of the material for CO2 capture from simulated flue gas was investigated through physical adsorption method. The results showed that CO2 adsorption capacity on ZIF-7 was about 48 mL·g-1 while the capacity on ZIF-8 was about 18 mg·g-1 (at 12°C and 0.98 P/P0 relative pressure). Furthermore, the impact of flue gas components on adsorption capacity of ZIF-7 and the selectivity of CO2 against N2 on ZIF-7 was also investigated in this work.

Keywords ZIF-7      structural stability      CO2 capture      thermal stability     
Corresponding Author(s): YAN Naiqiang,Email:nqyan@sjtu.edu.cn   
Issue Date: 01 April 2014
 Cite this article:   
Jiangkun XIE,Shijian YANG,Ping LIU, et al. CO2 adsorption performance of ZIF-7 and its endurance in flue gas components[J]. Front Envir Sci Eng, 2014, 8(2): 162-168.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0507-2
https://academic.hep.com.cn/fese/EN/Y2014/V8/I2/162
Fig.1  PXRD patterns of ZIF-7 (a) and ZIF-8 (b)
Fig.2  SEM images of ZIF-7 (a) and ZIF-8 (b)
Fig.3  TG curves of ZIF-7 and ZIF-8
Fig.4  XRD patterns of ZIF-7 before and after treatment in moist air at room temperature for 1, 3 and 5 d
Fig.5  XRD patterns of ZIF-7 before and after treatment in SO/N mixture at room temperature for 1, 3 and 5 d
Fig.6  XRD patterns of ZIF-7 before and after treatment in NO/N mixture at room temperature for 1, 3 and 5 d
Fig.7  XRD patterns of ZIF-7 before and after treatment in moist air/NO/SO mixture at room temperature for 5 d
Fig.8  Adsorption and desorption curve of N (a) and CO (b) on ZIF-7 and ZIF-8 at 12°C
Fig.9  Adsorption and desorption curves of CO on ZIF-7 after treatment in moist air (a), SO (b) and NO (c) at 12°C for 5 d
Fig.10  CO and N concentration in gaseous effluent passing through ZIF-7 packed bed at room temperature
(The abscissa 0 denotes the initial gaseous mixture, abscissa 1-7 denote the 1-7th gaseous effluent)
1 Stewart C, Hessami M A. A study of methods of carbon dioxide capture and sequestration-the sustainability of a photosynthetic bioreactor approach. Energy Conversion and Management , 2005, 46(3): 403–420
doi: 10.1016/j.enconman.2004.03.009
2 D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition , 2010, 49(35): 6058–6082
doi: 10.1002/anie.201000431
3 Gray M L, Soong Y, Champagne K J, Pennline H, Baltrus J P, Stevens R W Jr, Khatri R, Chuang S S C, Filburn T. Improved immobilized carbon dioxide capture sorbents. Fuel Processing Technology , 2005, 86(14–15): 1449–1455
doi: 10.1016/j.fuproc.2005.01.005
4 Hart A, Gnanendran N. Cryogenic CO2 capture in natural gas. Energy Procedia , 2009, 1(1): 697–706
doi: 10.1016/j.egypro.2009.01.092
5 Zhang J, Webley P A, Xiao P. Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas. Energy Conversion and Management , 2008, 49(2): 346–356
doi: 10.1016/j.enconman.2007.06.007
6 Britt D, Furukawa H, Wang B, Glover T G, Yaghi O M. Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites. Proceedings of the National Academy of Sciences of the United States of America , 2009, 106(49): 20637–20640
doi: 10.1073/pnas.0909718106
7 Britt D, Tranchemontagne D, Yaghi O M. Metal-organic frameworks with high capacity and selectivity for harmful gases. Proceedings of the National Academy of Sciences of the United States of America , 2008, 105(33): 11623–11627
doi: 10.1073/pnas.0804900105
8 Millward A R, Yaghi O M. Metal-organic frameworks with exceptionally high capacity for storage of carbon dioxide at room temperature. Journal of the American Chemical Society , 2005, 127(51): 17998–17999
doi: 10.1021/ja0570032
9 Sudik A C, Millward A R, Ockwig N W, Cote A P, Kim J, Yaghi O M. Design, synthesis, structure, and gas (N2, Ar, CO2, CH4, and H2) sorption properties of porous metal-organic tetrahedral and heterocuboidal polyhedra. Journal of the American Chemical Society , 2005, 127(19): 7110–7118
doi: 10.1021/ja042802q
10 Caskey S R, Wong-Foy A G, Matzger A J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. Journal of the American Chemical Society , 2008, 130(33): 10870–10871
doi: 10.1021/ja8036096
11 Liang Z J, Marshall M, Chaffee A L. CO2 Adsorption-based separation by metal organic framework (Cu-BTC) versus zeolite (13X). Energy & Fuels , 2009, 23(5): 2785–2789
doi: 10.1021/ef800938e
12 Yazayd?n A ?, Benin A I, Faheem S A, Jakubczak P, Low J J, Willis R R, Snurr R Q. Enhanced CO2 adsorption in metal-organic frameworks via occupation of open-metal sites by coordinated water molecules. Chemistry of Materials , 2009, 21(8): 1425–1430
doi: 10.1021/cm900049x
13 Phan A, Doonan C J, Uribe-Romo F J, Knobler C B, O’Keeffe M, Yaghi O M. Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. Accounts of Chemical Research , 2010, 43(1): 58–67
doi: 10.1021/ar900116g
14 Yazayd?n A ?, Snurr R Q, Park T, Koh K, Liu J, LeVan M D, Benin A I, Jakubczak P, Lanuza M, Galloway D B, Low J J, Willis R R. Screening of metal-organic frameworks for carbon dioxide capture from flue gas using a combined experimental and modeling approach. Journal of the American Chemical Society , 2009, 131(51): 18198–18199
doi: 10.1021/ja9057234
15 Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O’Keeffe M, Yaghi O M. High-throughput synthesis of zeolitic imidazolate frameworks and application to CO2 capture. Science , 2008, 319(5865): 939–943
doi: 10.1126/science.1152516
16 Chang N, Gu Z Y, Yan X P. Zeolitic imidazolate framework-8 nanocrystal coated capillary for molecular sieving of branched alkanes from linear alkanes along with high-resolution chromatographic separation of linear alkanes. Journal of the American Chemical Society , 2010, 132(39): 13645–13647
doi: 10.1021/ja1058229
17 Li Y S, Bux H, Feldhoff A, Li G L, Yang W S, Caro J. Controllable synthesis of metal-organic frameworks: from MOF nanorods to oriented MOF membranes. Advanced Materials (Deerfield Beach, Fla.) , 2010, 22(30): 3322–3326
doi: 10.1002/adma.201000857
18 Li Y S, Liang F Y, Bux H G, Yang W S, Caro J. Zeolitic imidazolate framework ZIF-7 based molecular sieve membrane for hydrogen separation. Journal of Membrane Science , 2010, 354(1–2): 48–54
doi: 10.1016/j.memsci.2010.02.074
19 Gücüyener C, van den Bergh J, Gascon J, Kapteijn F. Ethane/Ethene separation turned on its head: selective ethane adsorption on the metal-organic framework ZIF-7 through a gate-opening mechanism. Journal of the American Chemical Society , 2010, 132(50): 17704–17706
doi: 10.1021/ja1089765
20 van den Bergh J, Gücüyener C, Pidko E A, Hensen E J M, Gascon J, Kapteijn F. Understanding the anomalous alkane selectivity of ZIF-7 in the separation of light alkane/alkene mixtures. Chemistry (Weinheim an der Bergstrasse, Germany) , 2011, 17(32): 8832–8840
doi: 10.1002/chem.201100958
21 Aguado S, Bergeret G, Titus M P, Moizan V, Nieto-Draghi C, Bats N, Farrusseng D. Guest-induced gate-opening of a zeolite imidazolate framework. New Journal of Chemistry , 2011, 35(3): 546–550
doi: 10.1039/c0nj00836b
22 Kaye S S, Dailly A, Yaghi O M, Long J R. Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). Journal of the American Chemical Society , 2007, 129(46): 14176–14177
doi: 10.1021/ja076877g
23 Park K S, Ni Z, Cote A P, Choi J Y, Huang R D, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America , 2006, 103(27): 10186–10191
doi: 10.1073/pnas.0602439103
24 Li J R, Kuppler R J, Zhou H C. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews , 2009, 38(5): 1477–1504
doi: 10.1039/b802426j
[1] Chen Wang, Jun Wang, Jianqiang Wang, Meiqing Shen. Promotional effect of ion-exchanged K on the low-temperature hydrothermal stability of Cu/SAPO-34 and its synergic application with Fe/Beta catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(2): 30-.
[2] Jie ZHU,Wei WANG,Xiuning HUA,Zhou XIA,Zhou DENG. Simultaneous CO2 capture and H2 generation using Fe2O3/Al2O3 and Fe2O3/CuO/Al2O3 as oxygen carriers in single packed bed reactor via chemical looping process[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1117-1129.
[3] Zhenhe CHEN, Shubo DENG, Haoran WEI, Bin WANG, Jun HUANG, Gang YU. Activated carbons and amine-modified materials for carbon dioxide capture –– a review[J]. Front Envir Sci Eng, 2013, 7(3): 326-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed