Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng    0, Vol. Issue () : 326-340    https://doi.org/10.1007/s11783-013-0510-7
REVIEW ARTICLE
Activated carbons and amine-modified materials for carbon dioxide capture –– a review
Zhenhe CHEN1, Shubo DENG1,2(), Haoran WEI1, Bin WANG1, Jun HUANG1, Gang YU1,2
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China; 2. Tsinghua University – Veolia Environment Joint Research Center for Advanced Technology, Tsinghua University, Beijing 100084, China
 Download: PDF(293 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Rapidly increasing concentration of CO2 in the atmosphere has drawn more and more attention in recent years, and adsorption has been considered as an effective technology for CO2 capture from the anthropogenic sources. In this paper, the attractive adsorbents including activated carbons and amine-modified materials were mainly reviewed and discussed with particular attention on progress in the adsorbent preparation and CO2 adsorption capacity. Carbon materials can be prepared from different precursors including fossil fuels, biomass and resins using the carbonization-activation or only activation process, and activated carbons prepared by KOH activation with high CO2 adsorbed amount were reviewed in the preparation, adsorption capacity as well as the relationship between the pore characteristics and CO2 adsorption. For the amine-modified materials, the physical impregnation and chemical graft of polyethylenimine (PEI) on the different porous materials were introduced in terms of preparation method and adsorption performance as well as their advantages and disadvantages for CO2 adsorption. In the last section, the issues and prospect of solid adsorbents for CO2 adsorption were summarized, and it is expected that this review will be helpful for the fundamental studies and industrial applications of activated carbons and amine-modified adsorbents for CO2 capture.

Keywords adsorption capacity      CO2 capture      activated carbon      amine-impregnated adsorbents     
Corresponding Author(s): DENG Shubo,Email:dengshubo@tsinghua.edu.cn   
Issue Date: 01 June 2013
 Cite this article:   
Zhenhe CHEN,Shubo DENG,Haoran WEI, et al. Activated carbons and amine-modified materials for carbon dioxide capture –– a review[J]. Front Envir Sci Eng, 0, (): 326-340.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-013-0510-7
https://academic.hep.com.cn/fese/EN/Y0/V/I/326
sourcescontent/(vol. %)temperature/°Cpressure/bar
CO2H2ON2O2
flue gas [2]3-146-1573-773-450-150~1
air [3,4]~0.0391-478.0820.95-20-401
Tab.1  Components and characteristics of flue gas and air
adsorbentadsorption temperature/°CCO2 pressure/barCO2 uptake/mmol·g-1CO2/N2 selectivity a)adsorbent costregenerationRef.
AC012.8-8.62-15lowEEP b)[8,9]
2511.5-4.8
MOFs250.10.1-5.953-500highEEP[10,11]
250.50.6-7.2
25≥146.8-54.5
Zeolite2510.75-4.6610-15lowEIP c)[12,13]
00.152.5-5.2
AMMs7512.0-4.95-mediumEEP[14,15]
250.1-0.150.79-14.0
254 × 10-41.05-1.77
LDH200-4000.15<1-lowEIP[16]
M2CO360-1000.1-0.152.0-3.0-lowEIP[14]
CaO650-8000.158-11-lowEIP[17]
Tab.2  Comparison of different adsorbents for CO capture
precursorspreparation methodsadsorption conditionsCO2 uptake /(mmol·g-1)Ref.
coal tar pitchcarbonization-activation(steam)30°C, 100kPa1.9[8]
coal tar pitchcarbonization25°C, 1bar~2.2[29]
petroleum pitchcarbonization-activation(KOH)0°C /25°C, 1bar8.6/4.7[30]
petroleum cokecarbonization-activation(KOH)25°C, 1bar3.5[31]
anthracitecarbonization-activation (steam)30°C, 1bar1.5[32]
carpetcarbonization-activation(KOH)25°C, 1bar1.9[33]
polypyrrolecarbonization-activation(KOH)0°C,1bar6.2[24]
polyacrylonitrilecarbonization-activation30°C, 4.1MPa11.6[34]
graphene and polypyrrolecarbonization-activation (KOH)25°C,1bar4.3[27]
eucalyptus sawdustcarbonization-activation(KOH)0°C /25°C, 1bar6.6/4.8[35]
almond shellcarbonization-activation(CO2)25°C, 1bar2.6[36]
olive stonecarbonization-activation (CO2)25°C, 1bar2.4[37]
yeastcarbonization-activation(KOH)25°C, 1bar4.8[9]
soybeancarbonization-activation(ZnCl2/CO2)30°C, 0.15bar0.93[38]
resorcinol and formaldehydecarbonization25°C, 1bar3.3[39]
resorcinol and formaldehydecarbonization25°C, 1bar3.1[25]
urea and formaldehydecarbonization-activation (K2CO3)25°C, 1bar1.8[26]
melamine and terephthalaldehydecarbonization25°C, 1bar3.2[28]
phloroglucin and formaldehydecarbonization (STM a)25°C, 800Torr1.5[40]
acetonitrilecarbonization (HTM b)25°C, 1bar4.0[41]
acetonitrilecarbonization (HTM)0°C /25°C, 1bar6.9/4.4[42]
melamine and formaldehydecarbonization (HTM)25°C, 1bar2.3[43]
carbon tetrachloride and ethylenediaminecarbonization (HTM)25°C, 1bar2.9[44]
Tab.3  CO uptake on different carbon materials prepared by different methods
porous materialsPEI molecular weightCO2 uptake/(mmol·g-1)adsorption conditionsRef.
HMS a)6004.7775°C, 1bar[53]
MHS b)4234.9175°C, 0.2bar[54]
HMS6004.9575°C, 1bar[55]
PMCM-41 c)4234.62/1.7075/25°C, 1bar[14]
MCF d)6004.570°C, 0.67bar[56]
Carbon black4233.575°C, 1bar[57]
SBA-154233.93/2.5675/25°C, 0.1bar[58]
PMMA e)4232.5025°C, 0.15bar[59]
Meso-Al2O36001.9525°C, 0.1bar[60]
Meso-Al2O36001.7425°C, 400ppm[60]
Meso-Al2O34231.1325°C, 0.15bar[61]
SBA-154232.3975°C, 0.15bar[62]
SBA-156002.9375°C, 1bar[63]
MCM-416002.5275°C, 1bar[63]
F-silica f)250001.7225°C, 0.12bar[64]
P-silica g)8003.3470°C, 1bar[65]
P-silica250002.9570°C, 1bar[65]
GF h)GF25000250004.122.0230°C, 0.24bar, humid30°C, 0.16bar, humid[66][67]
Tab.4  PEI-impregnated adsorbents for CO capture
Fig.1  Effects of PEI molecular weights and the pore characteristics of the porous materials on CO adsorption on the PEI-impregnated adsorbents
porous materialsaminespreparationmethodsCO2 uptake /(mmol·g-1)adsorption conditionsRef.
PMCM-41 a)TAP b)silane2.825°C, 1bar[80]
PMCM-41AP c)silane2.05/2.7025°C, 0.05/1bar[81]
MCM-48APsilane1.14/2.0525°C, 0.05/1bar[82]
SBA-15SBA-15SBA-15APDAP d)TAPsilanesilanesilane0.651.511.8060°C, 0.15bar, humid60°C, 0.15bar, humid60°C, 0.15bar, humid[83][83][83]
MS e)MSMSAPDAPTAPsilanesilanesilane1.251.711.7425°C, 1bar25°C, 1bar25°C, 1bar[84]
[84]
[84]
MSAPsilane1.5920°C, 0.9bar[85]
SBA-12SBA-15APAPsilanesilane1.01.525°C, 0.1bar25°C, 0.1bar[86][86]
MCM-41TAPsilane1.4125°C, 0.05bar[87]
SBA-15SBA-15SBA-15APDAPTAPsilanesilanesilane0.50.91.2160°C, 0.15bar, humid60°C, 0.15bar, humid60°C, 0.15bar, humid[88][88][88]
CNT f)DAPsilane2.5960°C, 0.5bar[89]
CNTAPsilane1.3220°C, 0.15bar[90]
NFC g)DAPsilane1.3925°C, 506ppm, humid[91]
MCM-41MCM-48TREN h)TRENcouplingcoupling1.361.5925°C, 1bar25°C, 1bar[92][92]
MSPEIcoupling0.9830°C, 1bar[93]
PPN-6 i)PPN-6PPN-6PPN-6EDA j)DTA k)TRENTETA l)couplingcouplingcouplingcoupling3.254.33.53.2522°C, 0.15bar22°C, 0.15bar22°C, 0.15bar22°C, 0.15bar[94][94][94][94]
SBA-15polyarizidinepolymerizaiton3.1125°C, 0.1bar[95]
SBA-15polyarizidinepolymerizaiton5.5525°C, 0.1bar, humid[95]
MSpolyarizidinepolymerizaiton0.4745°C, 0.1bar[96]
MCFMel m) and EDApolymerizaiton0.8920°C, 0.9bar[97]
PANF n)poly(allylamine)polymerizaiton6.2222°C, 0.15bar, humid[98]
Tab.5  CO uptake on different amine-grafted adsorbents
1 Metz B, Davidson O, de Coninck H, Loos M, Meye L. Special Report on Carbon Dioxide Capture and Storage, http://www.ipcc.ch/
2 Trachtenberg M C, Cowan R M, Smith D A. In: Proceedings of the Sixth Annual Conference on Carbon Capture & Sequestration , Pittsburgh, 2007
3 http://en.wikipedia.org/wiki/Atmosphere_of_Earth#cite_note-0
4 www.esrl.noaa.gov/gmd/ccgg/trends/
5 D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition , 2010, 49(35): 6058-6082
doi: 10.1002/anie.201000431 pmid:20652916
6 Chaffee A L, Knowles G P, Liang Z, Zhang J, Xiao P, Webley P A. CO2 capture by adsorption: materials and process development. International Journal of Greenhouse Gas Control , 2007, 1(1): 11-18
doi: 10.1016/S1750-5836(07)00031-X
7 Jassim M S, Rochelle G, Eimer D, Ramshaw C. Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed. Industrial & Engineering Chemistry Research , 2007, 46(9): 2823-2833
doi: 10.1021/ie051104r
8 Shen C Z, Grande C A, Li P, Yu J G, Rodrigues A E. Adsorption equilibria and kinetics of CO2 and N2 on activated carbon beads. Chemical Engineering Journal , 2010, 160(2): 398-407
doi: 10.1016/j.cej.2009.12.005
9 Shen W Z, He Y, Zhang S C, Li J F, Fan W B. Yeast-based microporous carbon materials for carbon dioxide capture. ChemSusChem , 2012, 5(7): 1274-1279
doi: 10.1002/cssc.201100735 pmid:22696279
10 Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angewandte Chemie International Edition , 2011, 50(49): 11586-11596
doi: 10.1002/anie.201101891 pmid:22021216
11 Liu J, Thallapally P K, McGrail B P, Brown D R, Liu J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chemical Society Reviews , 2012, 41(6): 2308-2322
doi: 10.1039/c1cs15221a pmid:22143077
12 Samanta A, Zhao A, Shimizu G H, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: a review. Industrial & Engineering Chemistry Research , 2012, 51(4): 1438-1463
doi: 10.1021/ie200686q
13 Siriwardane R V, Shen M S, Fisher E P, Losch J. Adsorption of CO2 on zeolites at moderate temperatures. Energy & Fuels , 2005, 19(3): 1153-1159
doi: 10.1021/ef040059h
14 Heydari-Gorji A, Belmabkhout Y, Sayari A. Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir , 2011, 27(20): 12411-12416
doi: 10.1021/la202972t pmid:21902260
15 Lee S, Filburn T P, Gray M, Park J W, Song H J. Screening test of solid amine sorbents for CO2 capture. Industrial & Engineering Chemistry Research , 2008, 47(19): 7419-7423
doi: 10.1021/ie8006984
16 Wang Q, Luo J Z, Zhong Z Y, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy & Environmental Science , 2011, 4(1): 42-55
doi: 10.1039/c0ee00064g
17 Koirala R, Reddy G K, Smirniotis P G. Single nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature. Energy & Fuels , 2012, 26(5): 3103-3109
doi: 10.1021/ef3004015
18 Brandani F, Ruthven D M. The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Industrial & Engineering Chemistry Research , 2004, 43(26): 8339-8344
doi: 10.1021/ie040183o
19 Li G, Xiao P, Webley P, Zhang J, Singh R, Marshall M. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption , 2008, 14(2-3): 415-422
doi: 10.1007/s10450-007-9100-y
20 Silvestre-Albero J, Wahby A, Sepúlveda-Escribano A, Martínez-Escandell M, Kaneko K, Rodríguez-Reinoso F. Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chemical Communications , 2011, 47(24): 6840-6842
doi: 10.1039/c1cc11618e pmid:21594294
21 Plaza M G, Pevida C, Arias B, Fermoso J, Rubiera F, Pis J J. A comparison of two methods for producing CO2 capture adsorbents. Energy Procedia , 2009, 1(1): 1107-1113
doi: 10.1016/j.egypro.2009.01.146
22 Siriwardane R V, Shen M S, Fisher E P, Poston J A. Adsorption of CO2 on molecular sieves and activated carbon. Energy & Fuels , 2001, 15(2): 279-284
doi: 10.1021/ef000241s
23 Drage T C, Blackman J M, Pevida C, Snape C E. Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy & Fuels , 2009, 23(5): 2790-2796
doi: 10.1021/ef8010614
24 Sevilla M, Valle-Vigon P, Fuertes A B. N-Doped polypyrrole-based porous carbons for CO2 capture. Advanced Functional Materials , 2011, 21(14): 2781-2787
doi: 10.1002/adfm.201100291
25 Hao G P, Li W C, Qian D, Lu A H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Advanced Materials , 2010, 22(7): 853-857
doi: 10.1002/adma.200903765 pmid:20217797
26 Drage T C, Arenillas A, Smith K M, Pevida C, Piippo S, Snape C E. Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins. Fuel , 2007, 86(1-2): 22-31
doi: 10.1016/j.fuel.2006.07.003
27 Chandra V, Yu S U, Kim S H, Yoon Y S, Kim D Y, Kwon A H, Meyyappan M, Kim K S. Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chemical communications , 2012, 48(5): 735-737
doi: 10.1039/c1cc15599g pmid:22117227
28 Chen C, Kim J, Ahn W S. Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure. Fuel , 2012, 95(1): 360-364
doi: 10.1016/j.fuel.2011.10.072
29 Alca?iz-Monge J, Marco-Lozar J P, Lillo-Rodenas M A. CO2 separation by carbon molecular sieve monoliths prepared from nitrated coal tar pitch. Fuel Processing Technology , 2011, 92(5): 915-919
doi: 10.1016/j.fuproc.2010.12.010
30 Wahby A, Ramos-Fernández J M, Martínez-Escandell M, Sepúlveda-Escribano A, Silvestre-Albero J, Rodríguez-Reinoso F. High-surface-area carbon molecular sieves for selective CO2 adsorption. ChemSusChem , 2010, 3(8): 974-981
doi: 10.1002/cssc.201000083 pmid:20586092
31 Hu X, Radosz M, Cychosz K A, Thommes M. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environmental Science & Technology , 2011, 45(16): 7068-7074
doi: 10.1021/es200782s pmid:21721529
32 Maroto-Valer M M, Tang Z, Zhang Y Z. CO2 capture by activated and impregnated anthracites. Fuel Processing Technology , 2005, 86(14-15): 1487-1502
doi: 10.1016/j.fuproc.2005.01.003
33 Olivares-Marín M, Maroto-Valer M M. Preparation of a highly microporous carbon from a carpet material and its application as CO2 sorbent. Fuel Processing Technology , 2011, 92(3): 322-329
doi: 10.1016/j.fuproc.2010.09.022
35 Sevilla M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science , 2011, 4(5): 1765-1771
doi: 10.1039/c0ee00784f
36 Plaza M G, Pevida C, Martín C F, FermosoJ, Pis J J, Rubiera F. Developing almond shell-derived activated carbons as CO2 adsorbents. Separation and Purification Technology , 2010, 71(1): 102-106
doi: 10.1016/j.seppur.2009.11.008
37 Plaza M G, Pevida C, Arias B, Fermoso J, Casal M D, Martín C F, Rubiera F, Pis J J. Development of low-cost biomass-based adsorbents for postcombustion CO2 capture. Fuel , 2009, 88(12): 2442-2447
doi: 10.1016/j.fuel.2009.02.025
38 Thote J A, Iyer K S, Chatti R, Labhsetwar N K, Biniwale R B, Rayalu S S. In situ nitrogen enriched carbon for carbon dioxide capture. Carbon , 2010, 48(2): 396-402
doi: 10.1016/j.carbon.2009.09.042
39 Hao G P, Li W C, Qian D, Wang G H, Zhang W P, Zhang T, Wang A Q, Schüth F, Bongard H J, Lu A H. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. Journal of the American Chemical Society , 2011, 133(29): 11378-11388
doi: 10.1021/ja203857g pmid:21692510
40 Saha D, Deng S G. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. Journal of Colloid and Interface Science , 2010, 345(2): 402-409
doi: 10.1016/j.jcis.2010.01.076 pmid:20185144
41 Wang L F, Yang R T. Significantly Increased CO2 adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping. Journal of Physical Chemistry C , 2012, 116(1): 1099-1106
doi: 10.1021/jp2100446
42 Xia Y D, Mokaya R, Walker G S, Zhu Y Q. Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Advanced Energy Materials , 2011, 1(4): 678-683
doi: 10.1002/aenm.201100061
43 Pevida C, Drage T C, Snape C E. Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture. Carbon , 2008, 46(11): 1464-1474
doi: 10.1016/j.carbon.2008.06.026
44 Li Q, Yang J P, Feng D, Wu Z X, Wu Q L, Park S S, Ha C S, Zhao D Y. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Research , 2010, 3(9): 632-642
doi: 10.1007/s12274-010-0023-7
46 Presser V, McDonough J, Yeon S H, Gogotsi Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy & Environmental Science , 2011, 4(8): 3059-3066
doi: 10.1039/c1ee01176f
47 Garrido J, Linares-Solano A, Martin-Martinez J M, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R. Use of nitrogen vs. carbon dioxide in the characterization of activated carbons. Langmuir , 1987, 3(1): 76-81
doi: 10.1021/la00073a013
48 Rios R A, Silvestre-Albero J, Sepúlveda-Escribano A, Molina-Sabio M, Rodríguez-Reinoso F. Kinetic restrictions in the characterization of narrow microporosity in carbon materials. Journal of Physical Chemistry C , 2007, 111(10): 3803-3805
doi: 10.1021/jp0701486
49 Wei H R, Deng S B, Hu B Y, Chen Z H, Wang B, Huang J, Yu G. Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores. ChemSusChem , 2012, (in press)
doi: 10.1002/cssc.201200570
50 Wang Y X, Zhou Y P, Liu C M, Zhou L. Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2008, 322(1-3): 14-18
doi: 10.1016/j.colsurfa.2008.02.014
51 Ma Z X, Kyotani T, Liu Z, Terasaki O, Tomita A. Very high surface area microporous carbon with a three-dimensional nano-array structure: synthesis and its molecular structure. Chemistry of Materials , 2001, 13(12): 4413-4415
doi: 10.1021/cm010730l
52 Xu X C, Song C S, Andresen J M, Miller B G, Scaroni A W. Novel Polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy & Fuels , 2002, 16(6): 1463-1469
doi: 10.1021/ef020058u
53 Chen C, Yang S T, Ahn W S, Ryoo R. Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chemical Communications , 2009, 45(24): 3627-3629
doi: 10.1039/b905589d pmid:19521630
54 Qi G G, Wang Y B, Estevez L, Duan X N, Anako N, Park A A, Li W, Jones C W, Giannelis E P. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy & Environmental Science , 2011, 4(2): 444-452
doi: 10.1039/c0ee00213e
55 Wang J T, Long D H, Zhou H H, Chen Q J, Liu X J, Ling L C. Surfactant promoted solid amine sorbents for CO2 capture. Energy & Environmental Science , 2012, 5(2): 5742-5749
doi: 10.1039/c2ee02272a
56 Yan W, Tang J, Bian Z J, Hu J, Liu H L. Carbon dioxide capture by amine-impregnated mesocellular-foam-containing template. Industrial & Engineering Chemistry Research , 2012, 51(9): 3653-3662
doi: 10.1021/ie202093h
57 Wang D X, Ma X L, Sentorun-Shalaby C, Song C S. Development of carbon-based “molecular basket” sorbent for CO2 capture. Industrial & Engineering Chemistry Research , 2012, 51(7): 3048-3057
doi: 10.1021/ie2022543
58 Heydari-Gorji A, Yang Y, Sayari A. Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas. Energy & Fuels , 2011, 25(9): 4206-4210
doi: 10.1021/ef200765f
59 Gray M L, Hoffman J S, Hreha D C, Fauth D J, Hedges S W, Champagne K J, Pennline H W. Parametric study of solid amine sorbents for the capture of carbon dioxide. Energy & Fuels , 2009, 23(10): 4840-4844
doi: 10.1021/ef9001204
60 Chaikittisilp W, Kim H J, Jones C W. Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air. Energy & Fuels , 2011, 25(11): 5528-5537
doi: 10.1021/ef201224v
61 Yan X L, Zhang Y, Qiao K, Li X, Zhang Z Q, Yan Z F, Komarneni S. Clover leaf-shaped Al2O3 extrudate as a support for high-capacity and cost-effective CO2 sorbent. Journal of Hazardous Materials , 2011, 192(3): 1505-1508
doi: 10.1016/j.jhazmat.2011.06.067 pmid:21775061
62 Yan X L, Zhang L, Zhang Y,Yang G D, Yan Z F. Amine-modified SBA-15: effect of pore structure on the performance for CO2 capture. Industrial & Engineering Chemistry Research , 2011, 50(6): 3220-3226
doi: 10.1021/ie101240d
63 Son W J, Choi J S, Ahn W S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous and Mesoporous Materials , 2008, 113(1-3): 31-40
doi: 10.1016/j.micromeso.2007.10.049
64 Goeppert A, Czaun M, May R B, Prakash G K, Olah G A, Narayanan S R. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. Journal of the American Chemical Society , 2011, 133(50): 20164-20167
doi: 10.1021/ja2100005 pmid:22103291
65 Goeppert A, Meth S, Prakash G S, Olah G A. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy & Environmental Science , 2010, 3(12): 1949-1960
doi: 10.1039/c0ee00136h
66 Li P Y, Ge B Q, Zhang S J, Chen S X, Zhang Q K, Zhao Y N. CO2 capture by polyethylenimine-modified fibrous adsorbent. Langmuir , 2008, 24(13): 6567-6574
doi: 10.1021/la800791s pmid:18507414
67 Li P Y, Zhang S J, Chen S X, Zhang Q K, Pan J J, Ge B Q. Preparation and adsorption properties of polyethylenimine containing fibrous adsorbent for carbon dioxide capture. Journal of Applied Polymer Science , 2008, 108(6): 3851-3858
doi: 10.1002/app.27937
68 Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science , 1998, 279(5350): 548-552
doi: 10.1126/science.279.5350.548 pmid:9438845
69 Subagyono D N, Liang Z J, Knowles G P, Chaffee A L. Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2. Chemical Engineering Research & Design , 2011, 89(9): 1647-1657
doi: 10.1016/j.cherd.2011.02.019
70 Yan X L, Zhang L, Zhang Y, Qiao K, Yan Z F, Komarneni S. Amine-modified mesocellular silica foams for CO2 capture. Chemical Engineering Journal , 2011, 168(2): 918-924
doi: 10.1016/j.cej.2011.01.066
71 Chaikittisilp W, Khunsupat R, Chen T T, Jones C W. Poly(allylamine) mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Industrial & Engineering Chemistry Research , 2011, 50(24): 14203-14210
doi: 10.1021/ie201584t
72 Li J X, Zhou L H, Han X, Hu J, Liu H L, Xu J. Direct electrochemistry of hemoglobin immobilized on siliceous mesostructured cellular foam. Sensors and Actuators. B, Chemical , 2009, 138(2): 545-549
doi: 10.1016/j.snb.2009.02.035
73 Sm?tt J H, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chemistry of Materials , 2003, 15(12): 2354-2361
doi: 10.1021/cm0213422
74 Qi G G, Wang Y B, Estevez L, Switzer A K, Duan X N, Yang X F, Giannelis E P. Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell. Chemistry of Materials , 2010, 22(9): 2693-2695
doi: 10.1021/cm100174e
75 Yue M B, Chun Y, Cao Y, Dong X, Zhu J H. CO2 capture by as-prepared SBA-15 with an occluded organic template. Advanced Functional Materials , 2006, 16(13): 1717-1722
doi: 10.1002/adfm.200600427
76 Yue M B, Sun L B, Cao Y, Wang Y, Wang Z J, Zhu J H. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine. Chemistry A European Journal, 2008, 14(11): 3442-3451
doi: 10.1002/chem.200701467 pmid:18283702
77 Li B Y, Jiang B B, Fauth D J, Gray M L, Pennline H W, Richards G A. Innovative nano-layered solid sorbents for CO2 capture. Chemical Communications , 2011, 47(6): 1719-1721
doi: 10.1039/c0cc03817b pmid:21127800
78 Sayari A, Belmabkhout Y, Da’na E. CO2 deactivation of supported amines: does the nature of amine matter? Langmuir , 2012, 28(9): 4241-4247
doi: 10.1021/la204667v pmid:22320347
79 Sayari A, Belmabkhout Y. Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. Journal of the American Chemical Society , 2010, 132(18): 6312-6314
doi: 10.1021/ja1013773 pmid:20405941
80 Serna-Guerrero R, Belmabkhout Y, Sayari A. Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: an experimental and statistical study. Chemical Engineering Science , 2010, 65(14): 4166-4172
doi: 10.1016/j.ces.2010.04.029
81 Serna-Guerrero R, Da’na E, Sayari A. New insights into the interactions of CO2 with amine-functionalized silica. Industrial & Engineering Chemistry Research , 2008, 47(23): 9406-9412
doi: 10.1021/ie801186g
82 Huang H Y, Yang R T, Chinn D, Munson C L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Industrial & Engineering Chemistry Research , 2003, 42(12): 2427-2433
doi: 10.1021/ie020440u
83 Hiyoshi N, Yogo K, Yashima T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous and Mesoporous Materials , 2005, 84(1-3): 357-365
doi: 10.1016/j.micromeso.2005.06.010
84 Kim S N, Son W J, Choi J S, Ahn W S. CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis. Microporous and Mesoporous Materials , 2008, 115(3): 497-503
doi: 10.1016/j.micromeso.2008.02.025
85 Knowles G P, Graham J V, Delaney S W, Chaffee A L. Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents. Fuel Processing Technology , 2005, 86(14-15): 1435-1448
doi: 10.1016/j.fuproc.2005.01.014
86 Zeleňák V, Badanicová M, Halamová D, ?ejka J, Zukal A, Murafa N, Goerigk G. Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. Chemical Engineering Journal , 2008, 144(2): 336-342
doi: 10.1016/j.cej.2008.07.025
87 Harlick P E, Sayari A. Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Industrial & Engineering Chemistry Research , 2006, 45(9): 3248-3255
doi: 10.1021/ie051286p
88 Hiyoshi N, Yogo K, Yashima T. Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor. Chemistry Letters , 2004, 33(5): 510-511
doi: 10.1246/cl.2004.510
89 Hsu S C, Lu C S, Su F S, Zeng W T, Chen W F. Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chemical Engineering Science , 2010, 65(4): 1354-1361
doi: 10.1016/j.ces.2009.10.005
90 Su F, Lu C, Cnen W, Bai H, Hwang J F. Capture of CO2 from flue gas via multiwalled carbon nanotubes. The Science of the total environment , 2009, 407(8): 3017-3023
doi: 10.1016/j.scitotenv.2009.01.007 pmid:19201012
91 Gebald C, Wurzbacher J A, Tingaut P, Zimmermann T, Steinfeld A. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environmental Science & Technology , 2011, 45(20): 9101-9108
doi: 10.1021/es202223p pmid:21916488
92 Bhagiyalakshmi M, Yun L J, Anuradha R, Jang H T. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. Journal of Hazardous Materials , 2010, 175(1-3): 928-938
doi: 10.1016/j.jhazmat.2009.10.097 pmid:19939554
93 Kassab H, Maksoud M, Aguado S, Pera-Titus M, Albela B, Bonneviot L. Polyethylenimine covalently grafted on mesostructured porous silica for CO2 capture. RSC Advances , 2012, 2(6): 2508-2516
doi: 10.1039/c2ra01007k
94 Lu W G, Sculley J P, Yuan D Q, Krishna R, Wei Z W, Zhou H C. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angewandte Chemie International Edition , 2012, 51(30): 7480-7484
doi: 10.1002/anie.201202176 pmid:22715127
95 Drese J H, Choi S H, Lively R P, Koros W J, Fauth D J, Gray M L, Jones C W. Synthesis-structure-property relationships for hyperbranched aminosilica CO2 adsorbents. Advanced Functional Materials , 2009, 19(23): 3821-3832
doi: 10.1002/adfm.200901461
96 Li W, Bollini P, Didas S A, Choi S H, Drese J H, Jones C W. Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam. ACS Applied Materials & Interfaces , 2010, 2(11): 3363-3372
doi: 10.1021/am100786z pmid:21062035
97 Liang Z J, Fadhel B, Schneider C J, Chaffee A L. Adsorption of CO2 on mesocellular siliceous foam iteratively functionalized with dendrimers. Adsorption , 2009, 15(5-6): 429-437
doi: 10.1007/s10450-009-9192-7
98 Yang Y, Li H C, Chen S X, Zhao Y N, Li Q H. Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber. Langmuir , 2010, 26(17): 13897-13902
doi: 10.1021/la101281v pmid:20806963
99 Liang Z J, Fadhel B, Schneider C J, Chaffee A L. Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties. Microporous and Mesoporous Materials , 2008, 111(1-3): 536-543
doi: 10.1016/j.micromeso.2007.08.030
100 Hicks J C, Drese J H, Fauth D J, Gray M L, Qi G G, Jones C W. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. Journal of the American Chemical Society , 2008, 130(10): 2902-2903
doi: 10.1021/ja077795v pmid:18281986
[1] Lijuan Gu, Hailong Lu. Semi-clathrate hydrate based carbon dioxide capture and separation techniques[J]. Front. Environ. Sci. Eng., 2023, 17(12): 144-.
[2] Zhichao Shen, Lu Zhan, Zhenming Xu. Thermal defluorination behaviors of PFOS, PFOA and PFBS during regeneration of activated carbon by molten salt[J]. Front. Environ. Sci. Eng., 2022, 16(8): 103-.
[3] Yingbin Hu, Ning Li, Jin Jiang, Yanbin Xu, Xiaonan Luo, Jie Cao. Simultaneous Feammox and anammox process facilitated by activated carbon as an electron shuttle for autotrophic biological nitrogen removal[J]. Front. Environ. Sci. Eng., 2022, 16(7): 90-.
[4] Yuqing Xu, Zedong Lu, Wenjun Sun, Xiaohui Zhang. Influence of pore structure on biologically activated carbon performance and biofilm microbial characteristics[J]. Front. Environ. Sci. Eng., 2021, 15(6): 131-.
[5] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[6] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[7] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[8] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[9] Hossein D. Atoufi, Hasti Hasheminejad, David J. Lampert. Performance of activated carbon coated graphite bipolar electrodes on capacitive deionization method for salinity reduction[J]. Front. Environ. Sci. Eng., 2020, 14(6): 99-.
[10] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[11] Wanqi Qi, Weiying Li, Junpeng Zhang, Xuan Wu, Jie Zhang, Wei Zhang. Effect of biological activated carbon filter depth and backwashing process on transformation of biofilm community[J]. Front. Environ. Sci. Eng., 2019, 13(1): 15-.
[12] Lu Ao, Wenjun Liu, Yang Qiao, Cuiping Li, Xiaomao Wang. Comparison of membrane fouling in ultrafiltration of down-flow and up-flow biological activated carbon effluents[J]. Front. Environ. Sci. Eng., 2018, 12(6): 9-.
[13] Tianyi Chen, Wancong Gu, Gen Li, Qiuying Wang, Peng Liang, Xiaoyuan Zhang, Xia Huang. Significant enhancement in catalytic ozonation efficacy: From granular to super-fine powdered activated carbon[J]. Front. Environ. Sci. Eng., 2018, 12(1): 6-.
[14] Juan QIU,Ping NING,Xueqian WANG,Kai LI,Wei LIU,Wei CHEN,Langlang WANG. Removing carbonyl sulfide with metal-modified activated carbon[J]. Front. Environ. Sci. Eng., 2016, 10(1): 11-18.
[15] Jie ZHU,Wei WANG,Xiuning HUA,Zhou XIA,Zhou DENG. Simultaneous CO2 capture and H2 generation using Fe2O3/Al2O3 and Fe2O3/CuO/Al2O3 as oxygen carriers in single packed bed reactor via chemical looping process[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1117-1129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed