|
|
Activated carbons and amine-modified materials for carbon dioxide capture –– a review |
Zhenhe CHEN1, Shubo DENG1,2( ), Haoran WEI1, Bin WANG1, Jun HUANG1, Gang YU1,2 |
1. State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, POPs Research Center, Tsinghua University, Beijing 100084, China; 2. Tsinghua University – Veolia Environment Joint Research Center for Advanced Technology, Tsinghua University, Beijing 100084, China |
|
|
Abstract Rapidly increasing concentration of CO2 in the atmosphere has drawn more and more attention in recent years, and adsorption has been considered as an effective technology for CO2 capture from the anthropogenic sources. In this paper, the attractive adsorbents including activated carbons and amine-modified materials were mainly reviewed and discussed with particular attention on progress in the adsorbent preparation and CO2 adsorption capacity. Carbon materials can be prepared from different precursors including fossil fuels, biomass and resins using the carbonization-activation or only activation process, and activated carbons prepared by KOH activation with high CO2 adsorbed amount were reviewed in the preparation, adsorption capacity as well as the relationship between the pore characteristics and CO2 adsorption. For the amine-modified materials, the physical impregnation and chemical graft of polyethylenimine (PEI) on the different porous materials were introduced in terms of preparation method and adsorption performance as well as their advantages and disadvantages for CO2 adsorption. In the last section, the issues and prospect of solid adsorbents for CO2 adsorption were summarized, and it is expected that this review will be helpful for the fundamental studies and industrial applications of activated carbons and amine-modified adsorbents for CO2 capture.
|
Keywords
adsorption capacity
CO2 capture
activated carbon
amine-impregnated adsorbents
|
Corresponding Author(s):
DENG Shubo,Email:dengshubo@tsinghua.edu.cn
|
Issue Date: 01 June 2013
|
|
1 |
Metz B, Davidson O, de Coninck H, Loos M, Meye L. Special Report on Carbon Dioxide Capture and Storage, http://www.ipcc.ch/
|
2 |
Trachtenberg M C, Cowan R M, Smith D A. In: Proceedings of the Sixth Annual Conference on Carbon Capture & Sequestration , Pittsburgh, 2007
|
3 |
http://en.wikipedia.org/wiki/Atmosphere_of_Earth#cite_note-0
|
4 |
www.esrl.noaa.gov/gmd/ccgg/trends/
|
5 |
D’Alessandro D M, Smit B, Long J R. Carbon dioxide capture: prospects for new materials. Angewandte Chemie International Edition , 2010, 49(35): 6058-6082 doi: 10.1002/anie.201000431 pmid:20652916
|
6 |
Chaffee A L, Knowles G P, Liang Z, Zhang J, Xiao P, Webley P A. CO2 capture by adsorption: materials and process development. International Journal of Greenhouse Gas Control , 2007, 1(1): 11-18 doi: 10.1016/S1750-5836(07)00031-X
|
7 |
Jassim M S, Rochelle G, Eimer D, Ramshaw C. Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed. Industrial & Engineering Chemistry Research , 2007, 46(9): 2823-2833 doi: 10.1021/ie051104r
|
8 |
Shen C Z, Grande C A, Li P, Yu J G, Rodrigues A E. Adsorption equilibria and kinetics of CO2 and N2 on activated carbon beads. Chemical Engineering Journal , 2010, 160(2): 398-407 doi: 10.1016/j.cej.2009.12.005
|
9 |
Shen W Z, He Y, Zhang S C, Li J F, Fan W B. Yeast-based microporous carbon materials for carbon dioxide capture. ChemSusChem , 2012, 5(7): 1274-1279 doi: 10.1002/cssc.201100735 pmid:22696279
|
10 |
Bae Y S, Snurr R Q. Development and evaluation of porous materials for carbon dioxide separation and capture. Angewandte Chemie International Edition , 2011, 50(49): 11586-11596 doi: 10.1002/anie.201101891 pmid:22021216
|
11 |
Liu J, Thallapally P K, McGrail B P, Brown D R, Liu J. Progress in adsorption-based CO2 capture by metal-organic frameworks. Chemical Society Reviews , 2012, 41(6): 2308-2322 doi: 10.1039/c1cs15221a pmid:22143077
|
12 |
Samanta A, Zhao A, Shimizu G H, Sarkar P, Gupta R. Post-combustion CO2 capture using solid sorbents: a review. Industrial & Engineering Chemistry Research , 2012, 51(4): 1438-1463 doi: 10.1021/ie200686q
|
13 |
Siriwardane R V, Shen M S, Fisher E P, Losch J. Adsorption of CO2 on zeolites at moderate temperatures. Energy & Fuels , 2005, 19(3): 1153-1159 doi: 10.1021/ef040059h
|
14 |
Heydari-Gorji A, Belmabkhout Y, Sayari A. Polyethylenimine-impregnated mesoporous silica: effect of amine loading and surface alkyl chains on CO2 adsorption. Langmuir , 2011, 27(20): 12411-12416 doi: 10.1021/la202972t pmid:21902260
|
15 |
Lee S, Filburn T P, Gray M, Park J W, Song H J. Screening test of solid amine sorbents for CO2 capture. Industrial & Engineering Chemistry Research , 2008, 47(19): 7419-7423 doi: 10.1021/ie8006984
|
16 |
Wang Q, Luo J Z, Zhong Z Y, Borgna A. CO2 capture by solid adsorbents and their applications: current status and new trends. Energy & Environmental Science , 2011, 4(1): 42-55 doi: 10.1039/c0ee00064g
|
17 |
Koirala R, Reddy G K, Smirniotis P G. Single nozzle flame-made highly durable metal doped Ca-based sorbents for CO2 capture at high temperature. Energy & Fuels , 2012, 26(5): 3103-3109 doi: 10.1021/ef3004015
|
18 |
Brandani F, Ruthven D M. The effect of water on the adsorption of CO2 and C3H8 on type X zeolites. Industrial & Engineering Chemistry Research , 2004, 43(26): 8339-8344 doi: 10.1021/ie040183o
|
19 |
Li G, Xiao P, Webley P, Zhang J, Singh R, Marshall M. Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X. Adsorption , 2008, 14(2-3): 415-422 doi: 10.1007/s10450-007-9100-y
|
20 |
Silvestre-Albero J, Wahby A, Sepúlveda-Escribano A, Martínez-Escandell M, Kaneko K, Rodríguez-Reinoso F. Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature. Chemical Communications , 2011, 47(24): 6840-6842 doi: 10.1039/c1cc11618e pmid:21594294
|
21 |
Plaza M G, Pevida C, Arias B, Fermoso J, Rubiera F, Pis J J. A comparison of two methods for producing CO2 capture adsorbents. Energy Procedia , 2009, 1(1): 1107-1113 doi: 10.1016/j.egypro.2009.01.146
|
22 |
Siriwardane R V, Shen M S, Fisher E P, Poston J A. Adsorption of CO2 on molecular sieves and activated carbon. Energy & Fuels , 2001, 15(2): 279-284 doi: 10.1021/ef000241s
|
23 |
Drage T C, Blackman J M, Pevida C, Snape C E. Evaluation of activated carbon adsorbents for CO2 capture in gasification. Energy & Fuels , 2009, 23(5): 2790-2796 doi: 10.1021/ef8010614
|
24 |
Sevilla M, Valle-Vigon P, Fuertes A B. N-Doped polypyrrole-based porous carbons for CO2 capture. Advanced Functional Materials , 2011, 21(14): 2781-2787 doi: 10.1002/adfm.201100291
|
25 |
Hao G P, Li W C, Qian D, Lu A H. Rapid synthesis of nitrogen-doped porous carbon monolith for CO2 capture. Advanced Materials , 2010, 22(7): 853-857 doi: 10.1002/adma.200903765 pmid:20217797
|
26 |
Drage T C, Arenillas A, Smith K M, Pevida C, Piippo S, Snape C E. Preparation of carbon dioxide adsorbents from the chemical activation of urea-formaldehyde and melamine-formaldehyde resins. Fuel , 2007, 86(1-2): 22-31 doi: 10.1016/j.fuel.2006.07.003
|
27 |
Chandra V, Yu S U, Kim S H, Yoon Y S, Kim D Y, Kwon A H, Meyyappan M, Kim K S. Highly selective CO2 capture on N-doped carbon produced by chemical activation of polypyrrole functionalized graphene sheets. Chemical communications , 2012, 48(5): 735-737 doi: 10.1039/c1cc15599g pmid:22117227
|
28 |
Chen C, Kim J, Ahn W S. Efficient carbon dioxide capture over a nitrogen-rich carbon having a hierarchical micro-mesopore structure. Fuel , 2012, 95(1): 360-364 doi: 10.1016/j.fuel.2011.10.072
|
29 |
Alca?iz-Monge J, Marco-Lozar J P, Lillo-Rodenas M A. CO2 separation by carbon molecular sieve monoliths prepared from nitrated coal tar pitch. Fuel Processing Technology , 2011, 92(5): 915-919 doi: 10.1016/j.fuproc.2010.12.010
|
30 |
Wahby A, Ramos-Fernández J M, Martínez-Escandell M, Sepúlveda-Escribano A, Silvestre-Albero J, Rodríguez-Reinoso F. High-surface-area carbon molecular sieves for selective CO2 adsorption. ChemSusChem , 2010, 3(8): 974-981 doi: 10.1002/cssc.201000083 pmid:20586092
|
31 |
Hu X, Radosz M, Cychosz K A, Thommes M. CO2-filling capacity and selectivity of carbon nanopores: synthesis, texture, and pore-size distribution from quenched-solid density functional theory (QSDFT). Environmental Science & Technology , 2011, 45(16): 7068-7074 doi: 10.1021/es200782s pmid:21721529
|
32 |
Maroto-Valer M M, Tang Z, Zhang Y Z. CO2 capture by activated and impregnated anthracites. Fuel Processing Technology , 2005, 86(14-15): 1487-1502 doi: 10.1016/j.fuproc.2005.01.003
|
33 |
Olivares-Marín M, Maroto-Valer M M. Preparation of a highly microporous carbon from a carpet material and its application as CO2 sorbent. Fuel Processing Technology , 2011, 92(3): 322-329 doi: 10.1016/j.fuproc.2010.09.022
|
35 |
Sevilla M, Fuertes A B. Sustainable porous carbons with a superior performance for CO2 capture. Energy & Environmental Science , 2011, 4(5): 1765-1771 doi: 10.1039/c0ee00784f
|
36 |
Plaza M G, Pevida C, Martín C F, FermosoJ, Pis J J, Rubiera F. Developing almond shell-derived activated carbons as CO2 adsorbents. Separation and Purification Technology , 2010, 71(1): 102-106 doi: 10.1016/j.seppur.2009.11.008
|
37 |
Plaza M G, Pevida C, Arias B, Fermoso J, Casal M D, Martín C F, Rubiera F, Pis J J. Development of low-cost biomass-based adsorbents for postcombustion CO2 capture. Fuel , 2009, 88(12): 2442-2447 doi: 10.1016/j.fuel.2009.02.025
|
38 |
Thote J A, Iyer K S, Chatti R, Labhsetwar N K, Biniwale R B, Rayalu S S. In situ nitrogen enriched carbon for carbon dioxide capture. Carbon , 2010, 48(2): 396-402 doi: 10.1016/j.carbon.2009.09.042
|
39 |
Hao G P, Li W C, Qian D, Wang G H, Zhang W P, Zhang T, Wang A Q, Schüth F, Bongard H J, Lu A H. Structurally designed synthesis of mechanically stable poly(benzoxazine-co-resol)-based porous carbon monoliths and their application as high-performance CO2 capture sorbents. Journal of the American Chemical Society , 2011, 133(29): 11378-11388 doi: 10.1021/ja203857g pmid:21692510
|
40 |
Saha D, Deng S G. Adsorption equilibrium and kinetics of CO2, CH4, N2O, and NH3 on ordered mesoporous carbon. Journal of Colloid and Interface Science , 2010, 345(2): 402-409 doi: 10.1016/j.jcis.2010.01.076 pmid:20185144
|
41 |
Wang L F, Yang R T. Significantly Increased CO2 adsorption performance of nanostructured templated carbon by tuning surface area and nitrogen doping. Journal of Physical Chemistry C , 2012, 116(1): 1099-1106 doi: 10.1021/jp2100446
|
42 |
Xia Y D, Mokaya R, Walker G S, Zhu Y Q. Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite. Advanced Energy Materials , 2011, 1(4): 678-683 doi: 10.1002/aenm.201100061
|
43 |
Pevida C, Drage T C, Snape C E. Silica-templated melamine-formaldehyde resin derived adsorbents for CO2 capture. Carbon , 2008, 46(11): 1464-1474 doi: 10.1016/j.carbon.2008.06.026
|
44 |
Li Q, Yang J P, Feng D, Wu Z X, Wu Q L, Park S S, Ha C S, Zhao D Y. Facile synthesis of porous carbon nitride spheres with hierarchical three-dimensional mesostructures for CO2 capture. Nano Research , 2010, 3(9): 632-642 doi: 10.1007/s12274-010-0023-7
|
46 |
Presser V, McDonough J, Yeon S H, Gogotsi Y. Effect of pore size on carbon dioxide sorption by carbide derived carbon. Energy & Environmental Science , 2011, 4(8): 3059-3066 doi: 10.1039/c1ee01176f
|
47 |
Garrido J, Linares-Solano A, Martin-Martinez J M, Molina-Sabio M, Rodriguez-Reinoso F, Torregrosa R. Use of nitrogen vs. carbon dioxide in the characterization of activated carbons. Langmuir , 1987, 3(1): 76-81 doi: 10.1021/la00073a013
|
48 |
Rios R A, Silvestre-Albero J, Sepúlveda-Escribano A, Molina-Sabio M, Rodríguez-Reinoso F. Kinetic restrictions in the characterization of narrow microporosity in carbon materials. Journal of Physical Chemistry C , 2007, 111(10): 3803-3805 doi: 10.1021/jp0701486
|
49 |
Wei H R, Deng S B, Hu B Y, Chen Z H, Wang B, Huang J, Yu G. Granular bamboo-derived activated carbon for high CO2 adsorption: the dominant role of narrow micropores. ChemSusChem , 2012, (in press) doi: 10.1002/cssc.201200570
|
50 |
Wang Y X, Zhou Y P, Liu C M, Zhou L. Comparative studies of CO2 and CH4 sorption on activated carbon in presence of water. Colloids and Surfaces A: Physicochemical and Engineering Aspects , 2008, 322(1-3): 14-18 doi: 10.1016/j.colsurfa.2008.02.014
|
51 |
Ma Z X, Kyotani T, Liu Z, Terasaki O, Tomita A. Very high surface area microporous carbon with a three-dimensional nano-array structure: synthesis and its molecular structure. Chemistry of Materials , 2001, 13(12): 4413-4415 doi: 10.1021/cm010730l
|
52 |
Xu X C, Song C S, Andresen J M, Miller B G, Scaroni A W. Novel Polyethylenimine-modified mesoporous molecular sieve of MCM-41 type as high-capacity adsorbent for CO2 capture. Energy & Fuels , 2002, 16(6): 1463-1469 doi: 10.1021/ef020058u
|
53 |
Chen C, Yang S T, Ahn W S, Ryoo R. Amine-impregnated silica monolith with a hierarchical pore structure: enhancement of CO2 capture capacity. Chemical Communications , 2009, 45(24): 3627-3629 doi: 10.1039/b905589d pmid:19521630
|
54 |
Qi G G, Wang Y B, Estevez L, Duan X N, Anako N, Park A A, Li W, Jones C W, Giannelis E P. High efficiency nanocomposite sorbents for CO2 capture based on amine-functionalized mesoporous capsules. Energy & Environmental Science , 2011, 4(2): 444-452 doi: 10.1039/c0ee00213e
|
55 |
Wang J T, Long D H, Zhou H H, Chen Q J, Liu X J, Ling L C. Surfactant promoted solid amine sorbents for CO2 capture. Energy & Environmental Science , 2012, 5(2): 5742-5749 doi: 10.1039/c2ee02272a
|
56 |
Yan W, Tang J, Bian Z J, Hu J, Liu H L. Carbon dioxide capture by amine-impregnated mesocellular-foam-containing template. Industrial & Engineering Chemistry Research , 2012, 51(9): 3653-3662 doi: 10.1021/ie202093h
|
57 |
Wang D X, Ma X L, Sentorun-Shalaby C, Song C S. Development of carbon-based “molecular basket” sorbent for CO2 capture. Industrial & Engineering Chemistry Research , 2012, 51(7): 3048-3057 doi: 10.1021/ie2022543
|
58 |
Heydari-Gorji A, Yang Y, Sayari A. Effect of the pore length on CO2 adsorption over amine-modified mesoporous silicas. Energy & Fuels , 2011, 25(9): 4206-4210 doi: 10.1021/ef200765f
|
59 |
Gray M L, Hoffman J S, Hreha D C, Fauth D J, Hedges S W, Champagne K J, Pennline H W. Parametric study of solid amine sorbents for the capture of carbon dioxide. Energy & Fuels , 2009, 23(10): 4840-4844 doi: 10.1021/ef9001204
|
60 |
Chaikittisilp W, Kim H J, Jones C W. Mesoporous alumina-supported amines as potential steam-stable adsorbents for capturing CO2 from simulated flue gas and ambient air. Energy & Fuels , 2011, 25(11): 5528-5537 doi: 10.1021/ef201224v
|
61 |
Yan X L, Zhang Y, Qiao K, Li X, Zhang Z Q, Yan Z F, Komarneni S. Clover leaf-shaped Al2O3 extrudate as a support for high-capacity and cost-effective CO2 sorbent. Journal of Hazardous Materials , 2011, 192(3): 1505-1508 doi: 10.1016/j.jhazmat.2011.06.067 pmid:21775061
|
62 |
Yan X L, Zhang L, Zhang Y,Yang G D, Yan Z F. Amine-modified SBA-15: effect of pore structure on the performance for CO2 capture. Industrial & Engineering Chemistry Research , 2011, 50(6): 3220-3226 doi: 10.1021/ie101240d
|
63 |
Son W J, Choi J S, Ahn W S. Adsorptive removal of carbon dioxide using polyethyleneimine-loaded mesoporous silica materials. Microporous and Mesoporous Materials , 2008, 113(1-3): 31-40 doi: 10.1016/j.micromeso.2007.10.049
|
64 |
Goeppert A, Czaun M, May R B, Prakash G K, Olah G A, Narayanan S R. Carbon dioxide capture from the air using a polyamine based regenerable solid adsorbent. Journal of the American Chemical Society , 2011, 133(50): 20164-20167 doi: 10.1021/ja2100005 pmid:22103291
|
65 |
Goeppert A, Meth S, Prakash G S, Olah G A. Nanostructured silica as a support for regenerable high-capacity organoamine-based CO2 sorbents. Energy & Environmental Science , 2010, 3(12): 1949-1960 doi: 10.1039/c0ee00136h
|
66 |
Li P Y, Ge B Q, Zhang S J, Chen S X, Zhang Q K, Zhao Y N. CO2 capture by polyethylenimine-modified fibrous adsorbent. Langmuir , 2008, 24(13): 6567-6574 doi: 10.1021/la800791s pmid:18507414
|
67 |
Li P Y, Zhang S J, Chen S X, Zhang Q K, Pan J J, Ge B Q. Preparation and adsorption properties of polyethylenimine containing fibrous adsorbent for carbon dioxide capture. Journal of Applied Polymer Science , 2008, 108(6): 3851-3858 doi: 10.1002/app.27937
|
68 |
Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science , 1998, 279(5350): 548-552 doi: 10.1126/science.279.5350.548 pmid:9438845
|
69 |
Subagyono D N, Liang Z J, Knowles G P, Chaffee A L. Amine modified mesocellular siliceous foam (MCF) as a sorbent for CO2. Chemical Engineering Research & Design , 2011, 89(9): 1647-1657 doi: 10.1016/j.cherd.2011.02.019
|
70 |
Yan X L, Zhang L, Zhang Y, Qiao K, Yan Z F, Komarneni S. Amine-modified mesocellular silica foams for CO2 capture. Chemical Engineering Journal , 2011, 168(2): 918-924 doi: 10.1016/j.cej.2011.01.066
|
71 |
Chaikittisilp W, Khunsupat R, Chen T T, Jones C W. Poly(allylamine) mesoporous silica composite materials for CO2 capture from simulated flue gas or ambient air. Industrial & Engineering Chemistry Research , 2011, 50(24): 14203-14210 doi: 10.1021/ie201584t
|
72 |
Li J X, Zhou L H, Han X, Hu J, Liu H L, Xu J. Direct electrochemistry of hemoglobin immobilized on siliceous mesostructured cellular foam. Sensors and Actuators. B, Chemical , 2009, 138(2): 545-549 doi: 10.1016/j.snb.2009.02.035
|
73 |
Sm?tt J H, Schunk S, Lindén M. Versatile double-templating synthesis route to silica monoliths exhibiting a multimodal hierarchical porosity. Chemistry of Materials , 2003, 15(12): 2354-2361 doi: 10.1021/cm0213422
|
74 |
Qi G G, Wang Y B, Estevez L, Switzer A K, Duan X N, Yang X F, Giannelis E P. Facile and scalable synthesis of monodispersed spherical capsules with a mesoporous shell. Chemistry of Materials , 2010, 22(9): 2693-2695 doi: 10.1021/cm100174e
|
75 |
Yue M B, Chun Y, Cao Y, Dong X, Zhu J H. CO2 capture by as-prepared SBA-15 with an occluded organic template. Advanced Functional Materials , 2006, 16(13): 1717-1722 doi: 10.1002/adfm.200600427
|
76 |
Yue M B, Sun L B, Cao Y, Wang Y, Wang Z J, Zhu J H. Efficient CO2 capturer derived from as-synthesized MCM-41 modified with amine. Chemistry A European Journal, 2008, 14(11): 3442-3451 doi: 10.1002/chem.200701467 pmid:18283702
|
77 |
Li B Y, Jiang B B, Fauth D J, Gray M L, Pennline H W, Richards G A. Innovative nano-layered solid sorbents for CO2 capture. Chemical Communications , 2011, 47(6): 1719-1721 doi: 10.1039/c0cc03817b pmid:21127800
|
78 |
Sayari A, Belmabkhout Y, Da’na E. CO2 deactivation of supported amines: does the nature of amine matter? Langmuir , 2012, 28(9): 4241-4247 doi: 10.1021/la204667v pmid:22320347
|
79 |
Sayari A, Belmabkhout Y. Stabilization of amine-containing CO2 adsorbents: dramatic effect of water vapor. Journal of the American Chemical Society , 2010, 132(18): 6312-6314 doi: 10.1021/ja1013773 pmid:20405941
|
80 |
Serna-Guerrero R, Belmabkhout Y, Sayari A. Influence of regeneration conditions on the cyclic performance of amine-grafted mesoporous silica for CO2 capture: an experimental and statistical study. Chemical Engineering Science , 2010, 65(14): 4166-4172 doi: 10.1016/j.ces.2010.04.029
|
81 |
Serna-Guerrero R, Da’na E, Sayari A. New insights into the interactions of CO2 with amine-functionalized silica. Industrial & Engineering Chemistry Research , 2008, 47(23): 9406-9412 doi: 10.1021/ie801186g
|
82 |
Huang H Y, Yang R T, Chinn D, Munson C L. Amine-grafted MCM-48 and silica xerogel as superior sorbents for acidic gas removal from natural gas. Industrial & Engineering Chemistry Research , 2003, 42(12): 2427-2433 doi: 10.1021/ie020440u
|
83 |
Hiyoshi N, Yogo K, Yashima T. Adsorption characteristics of carbon dioxide on organically functionalized SBA-15. Microporous and Mesoporous Materials , 2005, 84(1-3): 357-365 doi: 10.1016/j.micromeso.2005.06.010
|
84 |
Kim S N, Son W J, Choi J S, Ahn W S. CO2 adsorption using amine-functionalized mesoporous silica prepared via anionic surfactant-mediated synthesis. Microporous and Mesoporous Materials , 2008, 115(3): 497-503 doi: 10.1016/j.micromeso.2008.02.025
|
85 |
Knowles G P, Graham J V, Delaney S W, Chaffee A L. Aminopropyl-functionalized mesoporous silicas as CO2 adsorbents. Fuel Processing Technology , 2005, 86(14-15): 1435-1448 doi: 10.1016/j.fuproc.2005.01.014
|
86 |
Zeleňák V, Badanicová M, Halamová D, ?ejka J, Zukal A, Murafa N, Goerigk G. Amine-modified ordered mesoporous silica: effect of pore size on carbon dioxide capture. Chemical Engineering Journal , 2008, 144(2): 336-342 doi: 10.1016/j.cej.2008.07.025
|
87 |
Harlick P E, Sayari A. Applications of pore-expanded mesoporous silicas. 3. Triamine silane grafting for enhanced CO2 adsorption. Industrial & Engineering Chemistry Research , 2006, 45(9): 3248-3255 doi: 10.1021/ie051286p
|
88 |
Hiyoshi N, Yogo K, Yashima T. Adsorption of carbon dioxide on amine modified SBA-15 in the presence of water vapor. Chemistry Letters , 2004, 33(5): 510-511 doi: 10.1246/cl.2004.510
|
89 |
Hsu S C, Lu C S, Su F S, Zeng W T, Chen W F. Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chemical Engineering Science , 2010, 65(4): 1354-1361 doi: 10.1016/j.ces.2009.10.005
|
90 |
Su F, Lu C, Cnen W, Bai H, Hwang J F. Capture of CO2 from flue gas via multiwalled carbon nanotubes. The Science of the total environment , 2009, 407(8): 3017-3023 doi: 10.1016/j.scitotenv.2009.01.007 pmid:19201012
|
91 |
Gebald C, Wurzbacher J A, Tingaut P, Zimmermann T, Steinfeld A. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air. Environmental Science & Technology , 2011, 45(20): 9101-9108 doi: 10.1021/es202223p pmid:21916488
|
92 |
Bhagiyalakshmi M, Yun L J, Anuradha R, Jang H T. Utilization of rice husk ash as silica source for the synthesis of mesoporous silicas and their application to CO2 adsorption through TREN/TEPA grafting. Journal of Hazardous Materials , 2010, 175(1-3): 928-938 doi: 10.1016/j.jhazmat.2009.10.097 pmid:19939554
|
93 |
Kassab H, Maksoud M, Aguado S, Pera-Titus M, Albela B, Bonneviot L. Polyethylenimine covalently grafted on mesostructured porous silica for CO2 capture. RSC Advances , 2012, 2(6): 2508-2516 doi: 10.1039/c2ra01007k
|
94 |
Lu W G, Sculley J P, Yuan D Q, Krishna R, Wei Z W, Zhou H C. Polyamine-tethered porous polymer networks for carbon dioxide capture from flue gas. Angewandte Chemie International Edition , 2012, 51(30): 7480-7484 doi: 10.1002/anie.201202176 pmid:22715127
|
95 |
Drese J H, Choi S H, Lively R P, Koros W J, Fauth D J, Gray M L, Jones C W. Synthesis-structure-property relationships for hyperbranched aminosilica CO2 adsorbents. Advanced Functional Materials , 2009, 19(23): 3821-3832 doi: 10.1002/adfm.200901461
|
96 |
Li W, Bollini P, Didas S A, Choi S H, Drese J H, Jones C W. Structural changes of silica mesocellular foam supported amine-functionalized CO2 adsorbents upon exposure to steam. ACS Applied Materials & Interfaces , 2010, 2(11): 3363-3372 doi: 10.1021/am100786z pmid:21062035
|
97 |
Liang Z J, Fadhel B, Schneider C J, Chaffee A L. Adsorption of CO2 on mesocellular siliceous foam iteratively functionalized with dendrimers. Adsorption , 2009, 15(5-6): 429-437 doi: 10.1007/s10450-009-9192-7
|
98 |
Yang Y, Li H C, Chen S X, Zhao Y N, Li Q H. Preparation and characterization of a solid amine adsorbent for capturing CO2 by grafting allylamine onto PAN fiber. Langmuir , 2010, 26(17): 13897-13902 doi: 10.1021/la101281v pmid:20806963
|
99 |
Liang Z J, Fadhel B, Schneider C J, Chaffee A L. Stepwise growth of melamine-based dendrimers into mesopores and their CO2 adsorption properties. Microporous and Mesoporous Materials , 2008, 111(1-3): 536-543 doi: 10.1016/j.micromeso.2007.08.030
|
100 |
Hicks J C, Drese J H, Fauth D J, Gray M L, Qi G G, Jones C W. Designing adsorbents for CO2 capture from flue gas-hyperbranched aminosilicas capable of capturing CO2 reversibly. Journal of the American Chemical Society , 2008, 130(10): 2902-2903 doi: 10.1021/ja077795v pmid:18281986
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|