Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (6) : 75    https://doi.org/10.1007/s11783-024-1835-0
Recent advances, challenges, and perspectives on carbon capture
Shihan Zhang1, Yao Shen1,2, Chenghang Zheng3,4, Qianqian Xu2, Yifang Sun2, Min Huang2, Lu Li2, Xiongwei Yang2, Hao Zhou2, Heliang Ma2, Zhendong Li2, Yuanhang Zhang5, Wenqing Liu6, Xiang Gao1,3,4()
1. Institute of Energy and Sustainable Development, Zhejiang University of Technology, Hangzhou 310014, China
2. College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
3. Baima Lake Laboratory, Hangzhou 310051, China
4. Institute of Carbon Neutrality, College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
5. State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
6. Key Laboratory of Environmental Optics and Technology, Anhui Institute of Optics and Fine Mechanics, HFIPS, Chinese Academy of Sciences, Hefei 230031, China
 Download: PDF(11128 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

�?Recent advances in promising CCUS technologies are assessed.

�?Research status and trends in CCUS are visually analyzed.

�?Carbon capture remains a hotspot of CCUS research.

�?State-of-the-art capture technologies is summarized.

�?Perspective research of carbon capture is proposed

Carbon capture, utilization and storage (CCUS) technologies play an essential role in achieving Net Zero Emissions targets. Considering the lack of timely reviews on the recent advancements in promising CCUS technologies, it is crucial to provide a prompt review of the CCUS advances to understand the current research gaps pertained to its industrial application. To that end, this review first summarized the developmental history of CCUS technologies and the current large-scale demonstrations. Then, based on a visually bibliometric analysis, the carbon capture remains a hotspot in the CCUS development. Noting that the materials applied in the carbon capture process determines its performance. As a result, the state-of-the-art carbon capture materials and emerging capture technologies were comprehensively summarized and discussed. Gaps between state-of-art carbon capture process and its ideal counterpart are analyzed, and insights into the research needs such as material design, process optimization, environmental impact, and technical and economic assessments are provided.

Keywords Carbon capture, utilization and storage      Visualization analysis      Research hotspots and trends      CO2 capture technology     
Corresponding Author(s): Xiang Gao   
About author: Li Liu and Yanqing Liu contributed equally to this work.
Issue Date: 15 April 2024
 Cite this article:   
Shihan Zhang,Yao Shen,Chenghang Zheng, et al. Recent advances, challenges, and perspectives on carbon capture[J]. Front. Environ. Sci. Eng., 2024, 18(6): 75.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1835-0
https://academic.hep.com.cn/fese/EN/Y2024/V18/I6/75
Fig.1  Schematic diagram of the CCUS technique.
Fig.2  CO2 capture capacities of commercial-scale CCUS projects at various levels of advancement worldwide.
No. Name of the project Year of operation Capture capacity/(Mt/a) Country Source of CO2
1 Taizhou Power Plant CCUS Project 2023 0.5 China Flue gas
2 Qilu Petrochemical-Shengli Oilfield Million-ton CCUS Project 2022 1.0 China Qilu Petrochemical Capture
3 Gorgon CO2 Injection Project 2019 3.4–4.0 Australia Natural gas plant
4 PetroChina Jilin Oilfield-Changling Natural Gas Plant Project 2018 0.6 China Natural gas plant
5 Illinois Industrial CCS Project (IL-ICCS) 2017 1.0 USA Ethanol plant
6 Petra Nova Carbon Capture 2016 1.4 USA Coal power plant
7 Abu Dhabi CCA (Phase 1 Emirates Steel Industries) 2016 0.8 United Arab Emirates Steel plant
8 Quest 2015 1.08 Canada Hydrogen production
9 Uthmaniyah CO2-EOR Demonstration 2015 0.8 Saudi Arabia Natural gas plant
10 Boundary Dam CCS 2014 1.0 Canada Coal power plant
11 Petrobras Santos Basin Pre-Salt Oil Field CCS 2013 3.0 Brazil Natural gas plant
12 Coffeyville Gasification Plant 2013 1.0 USA Chemical fertilizer plant
13 Air Products Steam Methane Reformer 2013 1.0 USA Oil refinery
14 Lost Cabin Gas Plant 2013 0.9 USA Natural gas plant
15 Century Plant 2010 8.4 USA Natural gas plant
16 Snehvit CO2 Storage 2008 0.7 Norway Natural gas plant
17 Great Plains Synfuels Plant and Weybum-Midale 2000 3.0 USA Natural gas plant
18 Sleipner CO2 Storage 1996 1.0 Norway Natural gas plant
19 Shute Creek Gas Processing Plant 1986 7.0 USA Natural gas plant
20 Enid Fertiliser 2003 0.68 USA Chemical fertilizer plant
21 Terrell Nature Gas Processing Plant (formerly Val Verde) 1972 1.3 USA Natural gas plant
Tab.1  The global large-scale CCUS projects (Global CCS Institute, 2020)
Fig.3  Number of papers published annually and over time related to (a) CCUS and (b) carbon capture topics in the WoS database.
Fig.4  Relationship between research hotspots over time in (a) CCUS and (b) carbon capture.
Keywords Start year Begin of outbreak End of outbreak 2004–2023
CO2 2006 2014 2015 ▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂▂
Storage 2009 2011 2017 ▂▂▂▂▂▂▂▃▃▃▃▃▃▃▂▂▂▂▂▂
CO2 capture 2008 2016 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▂▂▂▂▂
Transport 2015 2015 2016 ▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂▂▂
Enhanced oil recovery 2014 2017 2019 ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂
Coal 2009 2017 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂
Power plants 2017 2017 2018 ▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂▂▂
CO2 utilization 2013 2018 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▃▃▂▂
Integration 2010 2019 2020 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂▂
Cost 2015 2020 2021 ▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▂▃▃▂▂
Tab.2  The relationship between the 10 most frequent keywords over time in CCUS
Fig.5  Technology options for liquid-based CO2 capture and strategies for improving CO2 capture performance: (a) Blended amine solvents. Copyright 2023, Elsevier (Zhang et al., 2023b); (b) Biphasic amine solvents. Copyright 2018, American Chemical Society (Zhang et al., 2018); (c) Non-aqueous amine solvents. Copyright 2018, American Chemical Society (Wang et al., 2018); (d) Conventional IL solvents. Copyright 2021, American Chemical Society (Feng et al., 2021); (e) Functionalized IL solvents. Copyright 2018, American Chemical Society (Jing et al., 2018).
Absorbent type Absorbing material Temperature (K) Absorption capacity Energy consumption Ref.
Amine-based solvents
 Blended amine  absorbents MEA/TiO(OH)2/H2O 298 0.54 mol/mol Around 3.2 GJ/t Lai et al. (2018)
MEA/EG/H2O 293–323 0.91 mol/mol 1823 GJ/t Kang et al. (2017)
DEEA/MAPA 313 0.87 mol/mol −54.35 kJ/mol (Reaction heat of absorbents with CO2) Knuutila & Nannestad (2017)
 Biphasic amine solvents TETA-DMCA 313.15 0.95 mol/mol 2.07 GJ/t CO2 Zhang et al. (2018)
MEA/Sulfolane (phase-changed) 318 3.88 mol/L 2.67 MJ/kg Wang et al. (2018)
DEEA/TETA/Sulfolane (phase-changed) 303 4.92 mol/L 1.81 MJ/kg Tao et al. (2018)
DEEA/TETA/H2O (phase-changed) 303 3.1 mol/L 2.3 MJ/kg
AEEA/PMDETA/DMSO (phase-changed) 333 1.78 1.76 MJ/kg CO2 Zhou et al. (2020)
 Non-aqueous amine solvents MEA/DEGMEE 298 0.48 929 kJ/mol CO2 Bougie & Fan (2018)
MEA/PEG200 313 0.483 2547 kJ/g CO2 Tian et al. (2021)
TETA/PEG200 333 1.86 25 MJ/kg Li et al. (2022a)
TETA/BDO 303 1.75 92MJ/kg Li et al. (2020)
AMP/AEEA/NMP 298 1.65 mol/kg 2.09 MJ/kg Lv et al. (2020)
Ionic liquid-based solvents
 Conventional IL solvents [hmim][Tf2N] 298 0.7 −12.1 kJ/mol(partial molar enthalpies) Muldoon et al. (2007)
 Functionalized IL solvents [Cho][His] 318.15 1 (mol CO2/kg IL) −45.85 kJ/mol(enthalpy of chemical absorption) Noorani & Mehrdad (2022)
[B4MPyr][L-Val] 298K 0.47 (mol CO2/kg IL) −49.92 kJ/mol(enthalpy of chemical absorption) Noorani et al. (2021)
[BMIm][Val] 318.15K 0.59 −11.07 kJ/mol(enthalpy of chemical absorption) Noorani & Mehrdad (2020)
Tab.3  CO2 capture by chemical absorption
Fig.6  Technology strategy for CO2 capture by adsorption: (a) CaO based sorbents. Copyright 2023, Elsevier (Liu et al., 2023); (b) Alkaline silicate based sorbents. Copyright 2022, American Chemical Society (Morita et al., 2022); (c) Alkaline titanate based adsorbent. Copyright 2020, Elsevier (Zheng et al., 2020); (d) Hydrotalc like derived sorbents. Copyright 2016, American Chemical Society (Kim et al., 2016); (e) MgO based sorbents. Copyright 2023, American Chemical Society (Wu et al., 2023); (f) Alkali carbonate based sorbents. Copyright 2021, Elsevier (Wu et al., 2021); (g) Zeolite based sorbents. Copyright 2023, John Wiley and Sons (Wang et al., 2023b); (h) Metal-organic framework (MOF) based sorbents. Copyright 2023, American Chemical Society (Hu et al., 2023); (i) Aeroget. Copyright 2024, Elsevier (Wang et al., 2024); (j) Alkali carbonate based sorbents. Copyright 2021, Elsevier (Cai et al., 2021); (k) solid amine. Copyright 2023, American Chemical Society (Wang et al., 2023a).
Adsorbent type Adsorbing material Adsorption condition Absorption capacity (mmol/g) Desorption condition Enthalpy of absorption /adsorption (kJ/mol) Ref.
Low-temperature solid CO2 sorbents
 MOF sorbents Diamine-appended Mg2(dobpdc) 30%RH, 0.044%CO2, 30 °C 5.7 140 °C, N2 Holmes et al. (2023)
Dobpdc 50%RH, 0.04%CO2, 20 °C 1.7 150 °C, N2 Bose et al. (2023)
MOF-74(Ni)-24-140 15%CO2, dry, 25 °C 3.82 60–70 °C, N2 −30.0 to −52.0 Lei et al. (2022)
 Amine-based sorbent Ph-X-YY/SBA-15 0.04%CO2/He, 30%RH, 35 °C 2.9 90 °C, He Kumar et al. (2020)
PEI-80a and PEI-80b 0.042%CO2/N2, 41%RH, 33 °C 2.36 100 °C, N2 Wijesiri et al. (2019)
PM01 0.04%CO2/N2, 65%RH, 25 °C 1.5 100 °C, N2 −87.15 Al-Absi et al. (2022)
TEPA@ZIF-8 15%CO2/N2, 30 °C, 100 mL/min 1.45 800 °C, N2 −37.8 Shen et al. (2022)
 Silica materials sorbents HMS-4 h-75% TEPA 5%CO2, dry, 90 °C 4.9 100 °C, N2 −69.49 Yan et al. (2022)
Al-MCM-41-0.3 5%CO2/N2, dry, 50 °C 1.35 Steam regeneration,120 °C, N2, 30 min Jahandar Lashaki et al. (2022)
5%CO2/N2, dry, 25 °C 1.48
 Carbonaceous adsorbent HG-HCNTs-PEI-2 10%CO2/Ar, dry, 40 mL/min, 25 °C 4.43 100 °C, Ar, 1 h, 30 mL/min −65 Wu et al. (2021)
2K0U800 1barCO2, dry, 25 °C 4.02 100 °C under vacuum −37.2 (Shi et al., 2022)
aPAni/GO10 1barCO2, dry, 25 °C 4.11? −31.2 to −27.0 (Szcześniak and Choma, 2020)
Intermediate-temperature solid CO2 sorbents
 MgO based adsorbent  materials AMS/CaMgO 45%CO2/N2, 50 mL/min, 1 h, 350 °C, 12.8 450 °C, N2, 50 mL/min −100.7 Sun et al. (2023)
10 mol % NaNO2+MgO 100%CO2, 62 mL/min, 325 °C, 55 min, 1atm 6.8 450 °C, N2, 60 mL/min, 5 min Gao et al. (2021)
 Hydrotalc like derived  adsorbent materials Mg30Al1 100%CO2, 90 min, 300 °C, 5 h, 1 atm 14.9 400 °C, N2, 30 min, 1atm Kim et al. (2023)
High-temperature solid CO2 absorbents
 Alkaline titanate based  absorbent KNaTiO3 20%CO2, 10%H20, 700 °C,1 atm, 30 min, 40 mL/min 3.7 700 °C, N2, 40 mL/min, 30 min Zheng et al. (2020)
 Alkaline silicate based  absorbent Li4SiO4 20%CO2, 580 °C, 3 h 4.1 800 °C N2, 60 mL/min −121.43 Hernández-Palomares et al. (2023)
 CaO-based sorbents Carbide slag 100%CO2, 20mL/min, 750 °C 12.3 900 °C, He, 40 mL/min Liu et al. (2020a)
LAC-C 30%CO2/N2, 100 mL/min, 750 °C, 20 min 11.8 750 °C N2, 100 mL/min, 30 min Liu et al. (2023)
Tab.4  Different technologies for CO2 adsorption
Fig.7  Membrane separation technology for CO2 capture: (a) CD/PA and IL-CD/PA membranes. Copyright 2023, American Chemical Society (Li et al., 2023); (b) Polyimide membranes. Copyright 2018, Elsevier (Song et al., 2018); (c) Three-dimensional (3D) surface profile of M1 after modification. Copyright 2023, Elsevier (Fu et al., 2023a); (d) Al2O3 ceramic membrane. Copyright 2023, Elsevier (Fu et al., 2023b); (e) ZSM-5. Copyright 2022, Elsevier (Zhang et al., 2022); (f) ZIF. Copyright 2015, John Wiley and Sons (Ban et al., 2015); (g) Nylon 6,6/La-MA MOF. Copyright 2023, American Chemical Society (Fateminia et al., 2023).
Fig.8  Oxygen transfer mechanism of the oxygen carrier during the (a) reduction process and (b) the oxidization process. Copyright 2022, Elsevier (Liu et al., 2022b).
Oxygen carrier Fuel CO2 capture efficiency Refs.
CaSO4 Coal N.A. Andrus et al. (2010)
NiO CH4/natural gas 94.5%–99% Linderholm et al. (2008); Linderholm et al. (2009); Berguerand & Lyngfelt (2008)
ilmenite Coal, petroleum coke 68%–96% Berguerand & Lyngfelt (2009); Lyngfelt (2011)
CuO CH4 ~100% Adánez et al. (2006); de Diego et al. (2007)
NiO Coal biomass 95% Shen et al. (2009b)
Fe2O3 76%–87% Shen et al. (2009a)
Fe2O3 Coal syngas > 97% Fan & Li (2010)
Fe2O3 99.80% Sridhar et al. (2012)
NiO Syngas ~95% Kolbitsch et al. (2009); Kolbitsch et al. (2010)
Ilmenite ~65% Pröll et al. (2009a); Pröll et al. (2009b)
Tab.5  CO2 capture efficiency by oxygen carriers in CLC
Fig.9  Solid electrolyte reactor design for carbon capture from different CO2 sources: (a) Schematic of the solid-electrolyte reactor for carbon capture; (b)Schematic of the reaction mechanism at the catalyst–membrane interface; (c) Photograph of the solid-electrolyte reactor and captured CO2 gas (inset) flowing out of the solid-electrolyte layer; (d) A radar plot comparison of different carbon-capture technologies. Copyright 2023, Springer Nature (Zhu et al., 2023).
Capture method Feed Energy consumption(kJ/mol CO2) Currentefficiency Product Current density(mA/cm2) Ref.
Fuel-cell Air + H2 350 23% CO2(g) 0.5 Eisaman et al. (2009)
Electrolysis Air 290–350 (kJ/mol KOH) > 95% CO2(g) + H2(g) 100 Stucki et al. (1995)
Electrolysis Air + mined CaCO3(s) 266 CO2(g) + H2(g) Rau (2008)
Electrolysis Synthetic flue gas + cement kiln dust 4634–1276(kJ/mol CaCO3) 60%–90% CaCO3(s) 100–200 Youn et al. (2019)
Bipolar membrane electrodialysis (BPMED) NaHCO3/NaOH 160–500 65%–80% CO2(g) 5–20 Iizuka et al. (2012)
BPMED KHCO3/K2CO3 100–450 95% (KHCO3),50% (K2CO3) CO2(g) 5–100 Eisaman et al. (2011a)
BPMED KHCO3 200–500 70%–90% CO2(g) 22–139 Eisaman et al. (2011b)
BPMED Artificial seawater 250–400 < 70% CO2(g) 1–3 Eisaman et al. (2012)
BPMED Artificial seawater + NaCl 390–640 60%–95% CO2(g) or CaCO3(s) 100 de Lannoy et al. (2018)
BPMED Artificial seawater + CO2(g) 1080–2880 (kJ/mol CaCO3) CaCO3(s) Zhao et al. (2020)
EDI + BPMED Synthetic flue gas CO2(g) 2–16 Datta et al. (2013)
EDI + electrolysis Natural seawater 2775–6940 CO2(g)/H2(g) 20–61 Dimascio et al. (2010); Willauer et al. (2017); Willauer et al. (2014); Willauer et al. (2011)
MCDI Synthetic flue gas 40–50 60%–80% CO2(g) 0.02–0.06 Legrand et al. (2020)
Redox-active carriers + pH-swing Synthetic flue gas 106 90% CO2(g) 18 Huang et al. (2019)
Redox-active carriers Synthetic flue gas 56 > 75% CO2(g) 0.5 Liu et al. (2020c)
Tab.6  Description of electrochemical CO2 capture technologies
Adsorption type Adsorbent Adsorption capacity/efficiency Adsorption conditions Desorption conditions Regenerative energy consumption Ref.
Solid DAC
 Zeolites+amine PEI50/FAU300 1.54 mmol/g 0.04%CO2/N2,25 °C, 100 mL/min,4 h, 60%RH 80 °C, 80% N2/ 20% O2, 100 mL/min, 30 min Kumar et al. (2023)
 MOF+amine 2-UIO-EDA 0.44 mmol/g 0.04%CO2/Ar,25 °C, 10 mL/min, 30%RH Dong et al. (2023)
 MOF+SIL Ni-MOF/IL-3 2.54 mmol/g 0.04%CO2/He, 25 °C, 10%RH 90 °C Qiu et al. (2023)
 Silica+amine PEI50/SBA-15 2.16 mmol/g 0.04%CO2/He, 25 °C, 100 mL/min, 60%RH 80 °C, wet He, 30 mL/min, 30 min Kumar et al. (2022)
 Fibers+amine PF-15-DETA 0.8 mmol/g 0.04%CO2,25 °C, 50%RH 70 °C N2 Sekizkardes et al. (2023)
Liquid DAC
 Amino Acids Potassium glycinate, potassium sarcosinate 0.12–0.20 mol/mol amine 0.04%CO2, 25 °C 60–120 °C 8.2 GJ/ton CO2 Custelcean et al. (2019)
 Liquid amine IPDA 99%, 201 mmol/h for 1 mol of amine 0.04%CO2/N2, 25 °C 60 °C N2 Kikkawa et al. (2022)
Tab.7  A technology comparison of different technologies for DAC
Fig.10  Different technologies for DAC. (a) NaOH aqueous solution absorbent. Copyright 2023, American Chemical Society (Ghaffari et al., 2023). (b) Liquid amine absorbent. Copyright 2022, American Chemical Society (Kikkawa et al., 2022). (c) ILs absorbent. Copyright 2024, American Chemical Society (Bera et al., 2024). (d) Aqueous amino acids absorbent. Copyright 2019, American Chemical Society (Custelcean et al., 2019). (e) Amine-functionalized FAU zeolites adsorbent. Copyright 2023, Elsevier (Kumar et al., 2023). (f) Amine-functionalized mesoporous silica adsorbent. Copyright 2022, Elsevier (Kumar et al., 2022). (g) Amine-functionalized MOF adsorbent. Copyright 2023, American Chemical Society (Dong et al., 2023). (h) Amine-functionalized carbon fibers adsorbent. Copyright 2023, Elsevier (Lee et al., 2023).
  
AEM Anion exchange membranes
AMP Amphetamine
BPMED Bipolar membrane electrodialysis
CCUS Carbon capture, utilisation and storage
CCS Carbon capture and storage
CLC Chemical looping combustion
CMS Carbon molecular sieves
DAC Direct air capture
DEEA Diethylethanolamine
DEA Ethylene glycol amine
EOR Enhance oil recovery
GO Graphene oxide
IPCC The Intergovernmental Panel on Climate Change
IL Ionic liquid
MEA monoethanolamine
MDEA Methyldiethanolamine
MMEA Methylethanolamin
MMM Mixed matrix membrane
ML Mechanical learning
MOF Metal-organic framework
NOx Nitrogen oxide
OC Oxygen carrier
OER Oxygen evolution reaction
OTC Oxygen transport capacity
ORR Oxygen reduction reaction
PA Polyamide
PEI Polyvinylamine
PI Polyimide
PSE Porous Solid Electrolyte
PCET Proton-coupled electron transfer
PZ Piperazine
TETA Triethylenetetramine
TEPA Tetraethylenepentamine
WMO The World Meteorological Organization
WoS Web of Science
  
1 A A Abd, S Z Naji, A S Hashim, M R Othman. (2020). Carbon dioxide removal through physical adsorption using carbonaceous and non-carbonaceous sorbents: a review. Journal of Environmental Chemical Engineering, 8(5): 104142
https://doi.org/10.1016/j.jece.2020.104142
2 J Adánez, P Gayán, J Celaya, Diego L F De, F García-Labiano, A Abad. (2006). Chemical looping combustion in a 10 kWth prototype using a CuO/Al2O3 oxygen carrier: effect of operating conditions on methane combustion. Industrial & Engineering Chemistry Research, 45(17): 6075–6080
https://doi.org/10.1021/ie060364l
3 M Aghaie, N Rezaei, S Zendehboudi. (2018). A systematic review on CO2 capture with ionic liquids: current status and future prospects. Renewable & Sustainable Energy Reviews, 96: 502–525
https://doi.org/10.1016/j.rser.2018.07.004
4 R Ahmed, G J Liu, B Yousaf, Q Abbas, H Ullah, M U Ali. (2020). Recent advances in carbon-based renewable adsorbent for selective carbon dioxide capture and separation: a review. Journal of Cleaner Production, 242: 118409
https://doi.org/10.1016/j.jclepro.2019.118409
5 A A Al-Absi, M Mohamedali, A Domin, A M Benneker, N Mahinpey. (2022). Development of in situ polymerized amines into mesoporous silica for direct air CO2 capture. Chemical Engineering Journal, 447: 137465
https://doi.org/10.1016/j.cej.2022.137465
6 H E AndrusJ H ChiuP R ThibeaultC Miller (2010). Alstom’s Chemical Looping Combustion Coal Power Technology Development Prototype. Morgantown: National Energy Technology Laboratory (NETL)
7 A N Antzaras, T Papalas, E Heracleous, C Kouris. (2023). Techno-economic and environmental assessment of CO2 capture technologies in the cement industry. Journal of Cleaner Production, 428: 139330
https://doi.org/10.1016/j.jclepro.2023.139330
8 M M Azis, E Jerndal, H Leion, T Mattisson, A Lyngfelt. (2010). On the evaluation of synthetic and natural ilmenite using syngas as fuel in chemical-looping combustion (CLC). Chemical Engineering Research & Design, 88(11): 1505–1514
https://doi.org/10.1016/j.cherd.2010.03.006
9 Y J Ban, Z J Li, Y S Li, Y Peng, H Jin, W M Jiao, A Guo, P Wang, Q Y Yang, C L Zhong. et al.. (2015). Confinement of ionic liquids in nanocages: tailoring the molecular sieving properties of ZIF-8 for membrane-based CO2 capture. Angewandte Chemie International Edition, 54(51): 15483–15487
https://doi.org/10.1002/anie.201505508
10 V Barbarossa, F Barzagli, F Mani, S Lai, P Stoppioni, G Vanga. (2013). Efficient CO2 capture by non-aqueous 2-amino-2-methyl-1-propanol (AMP) and low temperature solvent regeneration. RSC Advances, 3(30): 12349–12355
https://doi.org/10.1039/c3ra40933c
11 E D Bates, R D Mayton, I Ntai, J H Davis. (2002). CO2 capture by a task-specific ionic liquid. Journal of the American Chemical Society, 124(6): 926–927
https://doi.org/10.1021/ja017593d
12 A Baylin-SternN Berghout (2021). Is carbon capture too expensive? Paris: IEA
13 N Bera, P Sardar, A N Samanta, N Sarkar. (2024). Arginine-based ionic liquid in a water–DMSO binary mixture for highly efficient CO2 capture from open air. Energy & Fuels, 38(2): 1281–1287
https://doi.org/10.1021/acs.energyfuels.3c03647
14 N Berguerand, A Lyngfelt. (2009). Chemical-looping combustion of petroleum coke using ilmenite in a 10 kWh unit-high-temperature operation. Energy & Fuels, 23(10): 5257–5268
https://doi.org/10.1021/ef900464j
15 N Berguerand, A Lyngfelt. (2008). The use of petroleum coke as fuel in a 10 kWth chemical-looping combustor. International Journal of Greenhouse Gas Control, 2(2): 169–179
https://doi.org/10.1016/j.ijggc.2007.12.004
16 J E T Bistline, G J Blanford. (2021). Impact of carbon dioxide removal technologies on deep decarbonization of the electric power sector. Nature Communications, 12(1): 3732
https://doi.org/10.1038/s41467-021-23554-6
17 L A Blanchard, D Hancu, E J Beckman, J F Brennecke. (1999). Green processing using ionic liquids and CO2. Nature, 399(6731): 28–29
https://doi.org/10.1038/19887
18 S Bose, D Sengupta, C D Malliakas, K B Idrees, H M Xie, X L Wang, M L Barsoum, N M Barker, V P Dravid, T Islamoglu. et al.. (2023). Suitability of a diamine functionalized metal-organic framework for direct air capture. Chemical Science, 14(35): 9380–9388
https://doi.org/10.1039/D3SC02554C
19 F Bougie, X F Fan. (2018). Microwave regeneration of monoethanolamine aqueous solutions used for CO2 capture. International Journal of Greenhouse Gas Control, 79: 165–172
https://doi.org/10.1016/j.ijggc.2018.10.008
20 P G Boyd, A Chidambaram, E García-Díez, C P Ireland, T D Daff, R Bounds, A Gladysiak, P Schouwink, S M Moosavi, M M Maroto-Valer. et al.. (2019). Data-driven design of metal-organic frameworks for wet flue gas CO2 capture. Nature, 576(7786): 253–256
https://doi.org/10.1038/s41586-019-1798-7
21 F M Brethomé, N J Williams, C A Seipp, M K Kidder, R Custelcean. (2018). Direct air capture of CO2 via aqueous-phase absorption and crystalline-phase release using concentrated solar power. Nature Energy, 3(7): 553–559
https://doi.org/10.1038/s41560-018-0150-z
22 P Brúder, A Grimstvedt, T Mejdell, H F Svendsen. (2011). CO2 capture into aqueous solutions of piperazine activated 2-amino-2-methyl-1-propanol. Chemical Engineering Science, 66(23): 6193–6198
https://doi.org/10.1016/j.ces.2011.08.051
23 T Cai, X Chen, H Tang, W Zhou, Y Wu, C Zhao. (2021). Unraveling the disparity of CO2 sorption on alkali carbonates under high humidity. Journal of CO2 Utilization, 53: 101737
https://doi.org/10.1016/j.jcou.2021.101737
24 T Y Cai, X P Chen, J Zhong, Y Wu, J L Ma, D Y Liu, C Liang. (2020). Understanding the morphology of supported Na2CO3/γ-AlOOH solid sorbent and its CO2 sorption performance. Chemical Engineering Journal, 395: 124139
https://doi.org/10.1016/j.cej.2020.124139
25 A K Chakraborty, G Astarita, K B Bischoff. (1986). CO2 absorption in aqueous solutions of hindered amines. Chemical Engineering Science, 41(4): 997–1003
https://doi.org/10.1016/0009-2509(86)87185-8
26 S Chatterjee, K W Huang. (2020). Unrealistic energy and materials requirement for direct air capture in deep mitigation pathways. Nature Communications, 11(1): 3287
https://doi.org/10.1038/s41467-020-17203-7
27 C M Chen, J X Yu, G S Song, K Che. (2023a). Desorption performance of commercial zeolites for temperature-swing CO2 capture. Journal of Environmental Chemical Engineering, 11(3): 110253
https://doi.org/10.1016/j.jece.2023.110253
28 H H Chen, Y Z Zheng, J L Li, L Y Li, X A Wang. (2023b). AI for nanomaterials development in clean energy and carbon capture, utilization and storage (CCUS). ACS Nano, 17(11): 9763–9792
https://doi.org/10.1021/acsnano.3c01062
29 L Y Chen, J H Bao, L Kong, M Combs, H S Nikolic, Z Fan, K L Liu. (2017). Activation of ilmenite as an oxygen carrier for solid-fueled chemical looping combustion. Applied Energy, 197: 40–51
https://doi.org/10.1016/j.apenergy.2017.03.127
30 X X Chen, Z Xiong, Y D Qin, B G Gong, C Tian, Y C Zhao, J Y Zhang, C G Zheng. (2016). High-temperature CO2 sorption by Ca-doped Li4SiO4 sorbents. International Journal of Hydrogen Energy, 41(30): 13077–13085
https://doi.org/10.1016/j.ijhydene.2016.05.267
31 L H Cheng, Y J Fu, K S Liao, J T Chen, C C Hu, W S Hung, K R Lee, J Y Lai. (2014). A high-permeance supported carbon molecular sieve membrane fabricated by plasma-enhanced chemical vapor deposition followed by carbonization for CO2 capture. Journal of Membrane Science, 460: 1–8
https://doi.org/10.1016/j.memsci.2014.02.033
32 T T Cruz, Balestieri J A Perrella, Toledo Silva J M de, M R N Vilanova, O J Oliveira, I Ávila. (2021). Life cycle assessment of carbon capture and storage/utilization: from current state to future research directions and opportunities. International Journal of Greenhouse Gas Control, 108: 103309
https://doi.org/10.1016/j.ijggc.2021.103309
33 R Custelcean, N J Williams, K A Garrabrant, P Agullo, F M Brethome, H J Martin, M K Kidder. (2019). Direct air capture of CO2 with aqueous amino acids and solid bis-iminoguanidines (BIGs). Industrial & Engineering Chemistry Research, 58(51): 23338–23346
https://doi.org/10.1021/acs.iecr.9b04800
34 S Dasgupta, M Rajasekaran, P K Roy, F M Thakkar, A D Pathak, K G Ayappa, P K Maiti. (2022). Influence of chain length on structural properties of carbon molecular sieving membranes and their effects on CO2, CH4 and N2 adsorption: a molecular simulation study. Journal of Membrane Science, 664: 121044
https://doi.org/10.1016/j.memsci.2022.121044
35 S Datta, M P Henry, Y J Lin, A T Fracaro, C S Millard, S W Snyder, R L Stiles, J Shah, J W Yuan, L Wesoloski. et al.. (2013). Electrochemical CO2 capture using resin-wafer electrodeionization. Industrial & Engineering Chemistry Research, 52(43): 15177–15186
https://doi.org/10.1021/ie402538d
36 Diego L F de, F Garcı´a-Labiano, P Gayán, J Celaya, J M Palacios, J Adánez. (2007). Operation of a 10 kWth chemical-looping combustor during 200h with a CuO-Al2O3 oxygen carrier. Fuel, 86(7–8): 1036–1045
https://doi.org/10.1016/j.fuel.2006.10.004
37 C F de Lannoy, M D Eisaman, A Jose, S D Karnitz, R W Devaul, K Hannun, J L B Rivest. (2018). Indirect ocean capture of atmospheric CO2: Part I. Prototype of a negative emissions technology. International Journal of Greenhouse Gas Control, 70: 243–253
https://doi.org/10.1016/j.ijggc.2017.10.007
38 F DimascioH D WillauerD R HardyM K LewisF W Williams (2010). Extraction of Carbon Dioxide from Seawater by an Electrochemical Acidification Cell. Part 1. Initial Feasibility Studies. Washington, DC: Naval Research Laboratory
39 J Ding, C Yu, J F Lu, X L Wei, W L Wang, G C Q Pan. (2020). Enhanced CO2 adsorption of MgO with alkali metal nitrates and carbonates. Applied Energy, 263: 114681
https://doi.org/10.1016/j.apenergy.2020.114681
40 H Dong, L H Li, Z Feng, Q N Wang, P Luan, J Li, C Li. (2023). Amine-functionalized quasi-MOF for direct air capture of CO2. ACS Materials Letters, 5(10): 2656–2664
https://doi.org/10.1021/acsmaterialslett.3c00708
41 A Dubey, A Arora. (2022). Advancements in carbon capture technologies: a review. Journal of Cleaner Production, 373: 133932
https://doi.org/10.1016/j.jclepro.2022.133932
42 M D Eisaman, L Alvarado, D Larner, P Wang, B Garg, K A Littau. (2011a). CO2 separation using bipolar membrane electrodialysis. Energy & Environmental Science, 4(4): 1319–1328
https://doi.org/10.1039/C0EE00303D
43 M D Eisaman, L Alvarado, D Larner, P Wang, K A Littau. (2011b). CO2 desorption using high-pressure bipolar membrane electrodialysis. Energy & Environmental Science, 4(10): 4031–4037
https://doi.org/10.1039/c1ee01336j
44 M D Eisaman, K Parajuly, A Tuganov, C Eldershaw, N Chang, K A Littau. (2012). CO2 extraction from seawater using bipolar membrane electrodialysis. Energy & Environmental Science, 5(6): 7346–7352
https://doi.org/10.1039/c2ee03393c
45 Eisaman M D, Schwartz D E, Amic S, Larner D, Zesch J, Torres F, Littau K (2009). Energy-efficient electrochemical CO2 capture from the atmosphere. In: Technical proceedings of the clean technology conference and trade show. Houston: CRC Press–Taylor & Francis Group, 175–178
46 L S Fan, F X Li. (2010). Chemical looping technology and its fossil energy conversion applications. Industrial & Engineering Chemistry Research, 49(21): 10200–10211
https://doi.org/10.1021/ie1005542
47 W Q Fan, T Y Zhang, N M Musyoka, L Huang, H L Li, L D Wang, Q Wang. (2023). Fabrication of structurally improved KNaTiO3 pellets derived from cheap rutile sand for high-temperature CO2 capture. Fuel, 354(15): 129322
https://doi.org/10.1016/j.fuel.2023.129322
48 Z Fateminia, H Chiniforoshan, V Ghafarinia. (2023). Novel core/Shell nylon 6,6/La-TMA MOF electrospun nanocomposite membrane and CO2 capture assessments of the membrane and pure La-TMA MOF. ACS Omega, 8(25): 22742–22751
https://doi.org/10.1021/acsomega.3c01616
49 S S Fatima, A Borhan, M Ayoub, N Abd Ghani. (2021). Development and progress of functionalized silica-based sorbents for CO2 capture. Journal of Molecular Liquids, 338(15): 116913
https://doi.org/10.1016/j.molliq.2021.116913
50 L L Feng, X C Yin, S Y Tan, C Li, X Y Gong, X Fang, Y J Pan. (2021). Ammonium bicarbonate significantly accelerates the microdroplet reactions of amines with carbon dioxide. Analytical Chemistry, 93(47): 15775–15784
https://doi.org/10.1021/acs.analchem.1c03954
51 J R Fernández. (2023). An overview of advances in CO2 capture technologies. Energies, 16(3): 1413
https://doi.org/10.3390/en16031413
52 B Flyvbjerg. (2014). What you should know about megaprojects and why: an overview. Project Management Journal, 45(2): 6–19
https://doi.org/10.1002/pmj.21409
53 H M Fu, Y B Shen, Z H Li, H Zhang, H P Chen, D Gao. (2023a). CO2 capture using superhydrophobic ceramic membrane: Preparation and performance analysis. Energy, 282(1): 128873
https://doi.org/10.1016/j.energy.2023.128873
54 H M Fu, K L Xue, J H Yang, Z H Li, H Zhang, D Gao, H P Chen. (2023b). CO2 capture based on Al2O3 ceramic membrane with hydrophobic modification. Journal of the European Ceramic Society, 43(8): 3427–3436
https://doi.org/10.1016/j.jeurceramsoc.2023.01.057
55 A Galán-Martín, D Vázquez, S Cobo, Dowell N Mac, J A Caballero, G Guillén-Gosálbez. (2021). Delaying carbon dioxide removal in the European Union puts climate targets at risk. Nature Communications, 12(1): 6490
https://doi.org/10.1038/s41467-021-26680-3
56 W L Gao, M A Vasiliades, C M Damaskinos, M Zhao, W Q Fan, Q Wang, T R Reina, A M Efstathiou. (2021). Molten salt-promoted MgO sorbents for CO2 capture: transient kinetic studies. Environmental Science & Technology, 55(8): 4513–4521
https://doi.org/10.1021/acs.est.0c08731
57 W Gao, S Liang, R Wang, Q Jiang, Y Zhang, Q Zheng, B Xie, C Y Toe, X Zhu, J Wang. et al.. (2020). Industrial carbon dioxide capture and utilization: state of the art and future challenges. Chemical Society Reviews, 49(23): 8584–8686
https://doi.org/10.1039/D0CS00025F
58 R L Gardas, J A P Coutinho. (2008). A group contribution method for viscosity estimation of ionic liquids. Fluid Phase Equilibria, 266(1–2): 195–201
https://doi.org/10.1016/j.fluid.2008.01.021
59 S Ghaffari, M F Gutierrez, A Seidel-Morgenstern, H Lorenz, P Schulze. (2023). Sodium hydroxide-based CO2 direct air capture for soda ash production─fundamentals for process engineering. Industrial & Engineering Chemistry Research, 62(19): 7566–7579
https://doi.org/10.1021/acs.iecr.3c00357
60 CCS Institute Global (2020). Global Status of CCS 2020. Washington, DC: The Global CCS Institute
61 CCS Institute Global (2022). Global Status of CCS 2022. Washington, DC: The global CCS Institute
62 T Gelles, S Lawson, A A Rownaghi, F Rezaei. (2020). Recent advances in development of amine functionalized sorbents for CO2 capture. Adsorption, 26(1): 5–50
https://doi.org/10.1007/s10450-019-00151-0
63 Y Geng, Y Guo, B Fan, F Cheng, H Cheng. (2021). Research progress of calcium-based sorbents for CO2 capture and anti-sintering modification. Journal of Fuel Chemistry & Technology, 49(7): 998–1013
https://doi.org/10.1016/S1872-5813(21)60040-3
64 H Ghaedi, P Kalhor, M Zhao, P T Clough, E J Anthony, P S Fennell. (2022). Potassium carbonate-based ternary transition temperature mixture (deep eutectic analogues) for CO2 absorption: characterizations and DFT analysis. Frontiers of Environmental Science & Engineering, 16(7): 92
https://doi.org/10.1007/s11783-021-1500-9
65 P Gkotsis, E Peleka, A Zouboulis. (2023). Membrane-based technologies for post-combustion CO2 capture from flue gases: Recent progress in commonly employed membrane materials. Membranes, 13(12): 898
https://doi.org/10.3390/membranes13120898
66 S J Gregg, J D Ramsay. (1970). Adsorption of carbon dioxide by magnesia studied by use of infrared and isotherm measurements. Journal of the Chemical Society A: Inorganic, Physical, Theoretical, 17: 2784–2787
https://doi.org/10.1039/J19700002784
67 H M Gu, L H Shen, J Xiao, S W Zhang, T Song. (2011). Chemical looping combustion of biomass/coal with natural Iron ore as oxygen carrier in a continuous reactor. Energy & Fuels, 25(1): 446–455
https://doi.org/10.1021/ef101318b
68 J P Hallett, T Welton. (2011). Room-temperature ionic liquids: Solvents for synthesis and catalysis. 2. Chemical Reviews, 111(5): 3508–3576
https://doi.org/10.1021/cr1003248
69 T Harada, F Simeon, E Z Hamad, T A Hatton. (2015). Alkali metal nitrate-promoted high-capacity MgO adsorbents for regenerable CO2 capture at moderate temperatures. Chemistry of Materials, 27(6): 1943–1949
https://doi.org/10.1021/cm503295g
70 A Hernández-Palomares, B Alcántar-Vázquez, R M Ramírez-Zamora, E Coutino-Gonzalez, F Espejel-Ayala. (2023). CO2 capture using lithium-based sorbents prepared with construction and demolition wastes as raw materials. Materials Today Sustainability, 24: 100491
https://doi.org/10.1016/j.mtsust.2023.100491
71 H E Holmes, S Ghosh, C Y Li, J Kalyanaraman, M J Realff, S C Weston, R P Lively. (2023). Optimum relative humidity enhances CO2 uptake in diamine-appended M2(dobpdc). Chemical Engineering Journal, 477(1): 147119
https://doi.org/10.1016/j.cej.2023.147119
72 D Hospital-Benito, C Moya, M Gazzani, J Palomar. (2023). Direct air capture based on ionic liquids: From molecular design to process assessment. Chemical Engineering Journal, 468: 143630
https://doi.org/10.1016/j.cej.2023.143630
73 L Hu, W Wu, L Jiang, M Hu, H Zhu, L Gong, J Yang, D Lin, K Yang. (2023). Methyl-functionalized Al-based MOF ZJU-620 (Al): A potential physisorbent for carbon dioxide capture. ACS Applied Materials & Interfaces, 15(37): 43925–43932
https://doi.org/10.1021/acsami.3c10086
74 C L Huang, C J Liu, K J Wu, H R Yue, S Y Tang, H F Lu, B Liang. (2019). CO2 capture from flue gas using an electrochemically reversible hydroquinone/quinone solution. Energy & Fuels, 33(4): 3380–3389
https://doi.org/10.1021/acs.energyfuels.8b04419
75 IEA (2013). Technology roadmap: carbon capture and storage 2013 edition. Paris: International Energy Agency (IEA)
76 IEA (2021). Net Zero by 2050: A Roadmap for the Global Energy Sector. Paris, France: International Energy Agency (IEA)
77 IEA (2022). Global Energy Review: CO2 Emissions in 2021, Global emission rebound sharply to higheat ever level. Paris, France: International Energy Agency (IEA)
78 A Iizuka, K Hashimoto, H Nagasawa, K Kumagai, Y Yanagisawa, A Yamasaki. (2012). Carbon dioxide recovery from carbonate solutions using bipolar membrane electrodialysis. Separation and Purification Technology, 101: 49–59
https://doi.org/10.1016/j.seppur.2012.09.016
79 IPCC (2001). Climatic Change 2001: Synthesis Report. Cambridge, United Kingdom: Cambridge University Press
80 IPCC (2014). Climatic Change 2014: Synthesis Report. Geneva, Switzerland: Intergovernmental Panel on Climate Change (IPCC)
81 IPCC (2018). Global Warming of 1.5 °C. Geneva, Switzerland: Intergovernmental Panel on Climate Change (IPCC)
82 IPCC (2023). Climate Change 2023: Synthesis Report. Geneva, Switzerland: Intergovernmental Panel on Climate Change(IPCC)
83 M Jahandar Lashaki, H Ziaei-Azad, A Sayari. (2022). Unprecedented improvement of the hydrothermal stability of amine-grafted MCM-41 silica for CO2 capture via aluminum incorporation. Chemical Engineering Journal, 450(4): 138393
https://doi.org/10.1016/j.cej.2022.138393
84 K Jiang, P Ashworth. (2021). The development of carbon capture utilization and storage (CCUS) research in China: A bibliometric perspective. Renewable & Sustainable Energy Reviews, 138: 110521
https://doi.org/10.1016/j.rser.2020.110521
85 G H Jing, Y H Qian, X B Zhou, B H Lv, Z M Zhou. (2018). Designing and screening of multi-amino-functionalized ionic liquid solution for CO2 capture by quantum chemical simulation. ACS Sustainable Chemistry & Engineering, 6(1): 1182–1191
https://doi.org/10.1021/acssuschemeng.7b03467
86 M K Kang, S B Jeon, J H Cho, J S Kim, K J Oh. (2017). Characterization and comparison of the CO2 absorption performance into aqueous, quasi-aqueous and non-aqueous MEA solutions. International Journal of Greenhouse Gas Control, 63: 281–288
https://doi.org/10.1016/j.ijggc.2017.05.020
87 M Keller, H Oka, J Otomo. (2019). Reactivity improvement of ilmenite by calcium nitrate melt infiltration for chemical looping combustion of biomass. Carbon Resources Conversion, 2(1): 51–58
https://doi.org/10.1016/j.crcon.2019.01.001
88 N Khakpoor, E Mostafavi, N Mahinpey, H De la Hoz Siegler. (2019). Oxygen transport capacity and kinetic study of ilmenite ores for methane chemical-looping combustion. Energy, 169: 329–337
https://doi.org/10.1016/j.energy.2018.12.056
89 S Kikkawa, K Amamoto, Y Fujiki, J Hirayama, G Kato, H Miura, T Shishido, S Yamazoe. (2022). Direct air capture of CO2 using a liquid amine-solid carbamic acid phase-separation system using diamines bearing an aminocyclohexyl group. ACS Environmental Au, 2(4): 354–362
https://doi.org/10.1021/acsenvironau.1c00065
90 S Kim, S G Jeon, K B Lee. (2016). High-temperature CO2 sorption on hydrotalcite having a high Mg/Al molar ratio. ACS applied materials & interfaces, 8(9): 5763–5767
https://doi.org/10.1021/acsami.5b12598
91 S Kim, K B Lee. (2019). Impregnation of hydrotalcite with NaNO3 for enhanced high-temperature CO2 sorption uptake. Chemical Engineering Journal, 356: 964–972
https://doi.org/10.1016/j.cej.2018.08.207
92 S Kim, H J Yoon, C H Lee, K B Lee. (2023). Effects of alkali-metal nitrate salts on hydrotalcite-based sorbents for enhanced cyclic CO2 capture at high temperatures. Journal of CO2 Utilization, 77: 102610
https://doi.org/10.1016/j.jcou.2023.102610
93 H K Knuutila, Å Nannestad. (2017). Effect of the concentration of MAPA on the heat of absorption of CO2 and on the cyclic capacity in DEEA-MAPA blends. International Journal of Greenhouse Gas Control, 61: 94–103
https://doi.org/10.1016/j.ijggc.2017.03.026
94 P Kolbitsch, J Bolhàr-Nordenkampf, T Pröll, H Hofbauer. (2009). Comparison of two Ni-based oxygen carriers for chemical looping combustion of natural gas in 140 kW continuous looping operation. Industrial & Engineering Chemistry Research, 48(11): 5542–5547
https://doi.org/10.1021/ie900123v
95 P Kolbitsch, J Bolhàr-Nordenkampf, T Pröll, H Hofbauer. (2010). Operating experience with chemical looping combustion in a 120 kW dual circulating fluidized bed (DCFB) unit. Energy Procedia, 1(1): 1465–1472
https://doi.org/10.1016/j.egypro.2009.01.192
96 P V Kortunov, M Siskin, L S Baugh, D C Calabro. (2015). In situ nuclear magnetic resonance mechanistic studies of carbon dioxide reactions with liquid amines in aqueous systems: new insights on carbon capture reaction pathways. Energy & Fuels, 29(9): 5919–5939
https://doi.org/10.1021/acs.energyfuels.5b00850
97 M Krödel, A Landuyt, P M Abdala, C R Müller. (2020). Mechanistic understanding of CaO-based sorbents for high-temperature CO2 capture: Advanced characterization and prospects. ChemSusChem, 13(23): 6259–6272
https://doi.org/10.1002/cssc.202002078
98 H C Ku, Y H Miao, Y Z Wang, X Chen, X C Zhu, H L Lu, J Li, L J Yu. (2023). Frontier science and challenges on offshore carbon storage. Frontiers of Environmental Science & Engineering, 17(7): 80
https://doi.org/10.1007/S11783-023-1680-6
99 D R Kumar, C Rosu, A R Sujan, M A Sakwa-Novak, E W Ping, C W Jones. (2020). Alkyl-aryl amine-rich molecules for CO2 removal via direct air capture. ACS Sustainable Chemistry & Engineering, 8(29): 10971–10982
https://doi.org/10.1021/acssuschemeng.0c03706
100 R Kumar, M Bandyopadhyay, M Pandey, N Tsunoji. (2022). Amine-impregnated nanoarchitectonics of mesoporous silica for capturing dry and humid 400 ppm carbon dioxide: A comparative study. Microporous and Mesoporous Materials, 338: 111956
https://doi.org/10.1016/j.micromeso.2022.111956
101 R Kumar, S Ohtani, N Tsunoji. (2023). Direct air capture on amine-impregnated FAU zeolites: Exploring for high adsorption capacity and low-temperature regeneration. Microporous and Mesoporous Materials, 360: 112714
https://doi.org/10.1016/j.micromeso.2023.112714
102 Q H Lai, S Toan, M A Assiri, H G Cheng, A G Russell, H Adidharma, M Radosz, M H Fan. (2018). Catalyst-TiO(OH)2 could drastically reduce the energy consumption of CO2 capture. Nature Communications, 9(1): 2672
https://doi.org/10.1038/s41467-018-05145-0
103 O Lawal, A Bello, R Idem. (2005). The role of methyl diethanolamine (MDEA) in preventing the oxidative degradation of CO2 loaded and concentrated aqueous monoethanolamine (MEA)-MDEA blends during CO2 absorption from flue gases. Industrial & Engineering Chemistry Research, 44(6): 1874–1896
https://doi.org/10.1021/ie049261y
104 Quéré C Le, G P Peters, P Friedlingstein, R M Andrew, J G Canadell, S J Davis, R B Jackson, M W Jones. (2021). Fossil CO2 emissions in the post-COVID-19 era. Nature Climate Change, 11(3): 197–199
https://doi.org/10.1038/s41558-021-01001-0
105 W H Lee, X Zhang, S Banerjee, C W Jones, M J Realff, R P Lively. (2023). Sorbent-coated carbon fibers for direct air capture using electrically driven temperature swing adsorption. Joule, 7(6): 1241–1259
https://doi.org/10.1016/j.joule.2023.05.016
106 L Legrand, Q Shu, M Tedesco, J E Dykstra, H V M Hamelers. (2020). Role of ion exchange membranes and capacitive electrodes in membrane capacitive deionization (MCDI) for CO2 capture. Journal of Colloid and Interface Science, 564: 478–490
https://doi.org/10.1016/j.jcis.2019.12.039
107 L Lei, Y Cheng, C W Chen, M Kosari, Z Y Jiang, C He. (2022). Taming structure and modulating carbon dioxide (CO2) adsorption isosteric heat of nickel-based metal organic framework (MOF-74(Ni)) for remarkable CO2 capture. Journal of Colloid and Interface Science, 612: 132–145
https://doi.org/10.1016/j.jcis.2021.12.163
108 H Leion, T Mattisson, A Lyngfelt. (2009). Use of ores and industrial products As oxygen carriers in chemical-looping combustion. Energy & Fuels, 23(4): 2307–2315
https://doi.org/10.1021/ef8008629
109 J X Li, Y Li, C Li, R Tu, P F Xie, Y He, Y Shi. (2022a). CO2 absorption and microwave regeneration with high-concentration TETA nonaqueous absorbents. Greenhouse Gases: Science and Technology, 12(3): 362–375
https://doi.org/10.1002/ghg.2148
110 Q Li, G Liu, X Li, Z A Chen. (2022b). Intergenerational evolution and presupposition of CCUS technology from a multidimensional perspective. Advanced Engineering Sciences, 54(1): 157–166
111 W Li, K L Goh, C Y Chuah, T H Bae. (2019). Mixed-matrix carbon molecular sieve membranes using hierarchical zeolite: A simple approach towards high CO2 permeability enhancements. Journal of Membrane Science, 588: 117220
https://doi.org/10.1016/j.memsci.2019.117220
112 X L Li, X B Zhou, J W Wei, Y M Fan, L Liao, H Q Wang. (2021). Reducing the energy penalty and corrosion of carbon dioxide capture using a novel nonaqueous monoethanolamine-based biphasic solvent. Separation and Purification Technology, 265: 118481
https://doi.org/10.1016/j.seppur.2021.118481
113 X Li, C Jiao, X Zhang, X Li, X Song, Y Zhao, H Jiang. (2023). Dual-modulated polyamide membranes based on vapor-liquid interfacial polymerization for CO2 separation. Chemistry of Materials, 36(1): 461–470
https://doi.org/10.1021/acs.chemmater.3c02448
114 X Li, X H Zhao, Y Y Liu, T A Hatton, Y Y Liu. (2022c). Redox-tunable Lewis bases for electrochemical carbon dioxide capture. Nature Energy, 7(11): 1065–1075
https://doi.org/10.1038/s41560-022-01137-z
115 Y Li, J Z Gao, J X Li, Y N Li, M T Bernards, M N Tao, Y He, Y Shi. (2020). Screening and performance evaluation of triethylenetetramine nonaqueous solutions for CO2 capture with microwave regeneration. Energy & Fuels, 34(9): 11270–11281
https://doi.org/10.1021/acs.energyfuels.0c02006
116 X Liao, B Wang, R Q Yin, W G Ren, J Li, H T Gan, P Lv, W R Bao, J C Wang, L P Chang. et al.. (2023). Manipulation of the crystallization of SSZ-13 transformed from coal fly ash-derived analcime. Journal of Solid State Chemistry, 323: 124024
https://doi.org/10.1016/j.jssc.2023.124024
117 J B Lin, T T T Nguyen, R Vaidhyanathan, J Burner, J M Taylor, H Durekova, F Akhtar, R K Mah, O Ghaffari-Nik, S Marx. et al.. (2021). A scalable metal-organic framework as a durable physisorbent for carbon dioxide capture. Science, 374(6574): 1464–1469
https://doi.org/10.1126/science.abi7281
118 L Lin, Y Meng, T Y Ju, S Y Han, F Z Meng, J L Li, Y F Du, M Z Song, T Lan, J G Jiang. (2023). Characteristics, application and modeling of solid amine sorbents for CO2 capture: a review. Journal of Environmental Management, 325(A): 116438
119 C Linderholm, A Abad, T Mattisson, A Lyngfelt. (2008). 160 h of chemical-looping combustion in a 10 kW reactor system with a NiO-based oxygen carrier. International Journal of Greenhouse Gas Control, 2(4): 520–530
https://doi.org/10.1016/j.ijggc.2008.02.006
120 C Linderholm, T Mattisson, A Lyngfelt. (2009). Long-term integrity testing of spray-dried particles in a 10-kW chemical-looping combustor using natural gas as fuel. Fuel, 88(11): 2083–2096
https://doi.org/10.1016/j.fuel.2008.12.018
121 A H Liu, J J Li, B H Ren, X B Lu. (2019). Development of high-capacity and water-lean CO2 absorbents by a concise molecular design strategy through viscosity control. ChemSusChem, 12(23): 5164–5171
https://doi.org/10.1002/cssc.201902279
122 F Liu, G H Jing, X B Zhou, B H Lv, Z M Zhou. (2018). Performance and mechanisms of triethylene tetramine (TETA) and 2-amino-2-methyl-1-propanol (AMP) in aqueous and nonaqueous solutions for CO2 capture. ACS Sustainable Chemistry & Engineering, 6(1): 1352–1361
https://doi.org/10.1021/acssuschemeng.7b03717
123 G Liu, B Cai, Q Li, X Zhang, T Ouyang. (2022a). China’s pathways of CO2 capture, utilization and storage under carbon neutrality vision 2060. Carbon Management, 13(1): 435–449
https://doi.org/10.1080/17583004.2022.2117648
124 K Liu, B S Zhao, Y Wu, F Li, Q Li, J B Zhang. (2020a). Bubbling synthesis and high-temperature CO2 adsorption performance of CaO-based sorbents from carbide slag. Fuel, 269: 117481
https://doi.org/10.1016/j.fuel.2020.117481
125 L Liu, Z S Li, L J Wang, Z H Zhao, Y Li, N S Cai. (2020b). MgO-kaolin-supported manganese ores as oxygen carriers for chemical looping combustion. Industrial & Engineering Chemistry Research, 59(15): 7238–7246
https://doi.org/10.1021/acs.iecr.9b05267
126 Y H Liu, Y Guan, X L Lin, B Wang, Q Lyu. (2022b). Research progress and perspectives of solid fuels chemical looping reaction with Fe-based oxygen carriers. Energy & Fuels, 36(23): 13956–13984
https://doi.org/10.1021/acs.energyfuels.2c02802
127 Y Y Liu, H Z Ye, K M Diederichsen, T Van Voorhis, T A Hatton. (2020c). Electrochemically mediated carbon dioxide separation with quinone chemistry in salt-concentrated aqueous media. Nature Communications, 11(1): 2278
https://doi.org/10.1038/s41467-020-16150-7
128 Z X Liu, Y L Lu, C F Wang, Y Zhang, X D Jin, J W Wu, Y H Wang, J B Zeng, Z F Yan, H M Sun. et al.. (2023). MOF-derived nano CaO for highly efficient CO2 fast adsorption. Fuel, 340: 127476
https://doi.org/10.1016/j.fuel.2023.127476
129 P Lu, X Yan, L Ye, D Chen, D Chen, J Huang, C Cen. (2024). Performance and mechanism of CO2 absorption during the simultaneous removal of SO2 and NOx by wet scrubbing process. Journal of Environmental Sciences (China), 135: 534–545
https://doi.org/10.1016/j.jes.2022.08.028
130 B H Lv, K X Yang, X B Zhou, Z M Zhou, G H Jing. (2020). 2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture. Applied Energy, 264: 114703
https://doi.org/10.1016/j.apenergy.2020.114703
131 A Lyngfelt. (2011). Oxygen carriers for chemical looping combustion-4000 h of operational experience. Oil & Gas Science and Technology-Revue D IFP Energies Nouvelles, 66(2): 161–172
132 N McQueen, P Kelemen, G Dipple, P Renforth, J Wilcox. (2020). Ambient weathering of magnesium oxide for CO2 removal from air. Nature Communications, 11(1): 3299
https://doi.org/10.1038/s41467-020-16510-3
133 J Meckling, E Biber. (2021). A policy roadmap for negative emissions using direct air capture. Nature Communications, 12(1): 2051
https://doi.org/10.1038/s41467-021-22347-1
134 B Milad, R G Moghanloo, N W Hayman. (2024). Assessing CO2 geological storage in arbuckle group in northeast oklahoma. Fuel, 356: 129323
https://doi.org/10.1016/j.fuel.2023.129323
135 M Morita, Y Horiuchi, M Matsuoka, M Ogawa. (2022). Preparation of titanium-containing layered alkali silicates. Crystal Growth & Design, 22(3): 1638–1644
https://doi.org/10.1021/acs.cgd.1c01158
136 M J Muldoon, S Aki, J L Anderson, J K Dixon, J F Brennecke. (2007). Improving carbon dioxide solubility in ionic liquids. Journal of Physical Chemistry B, 111(30): 9001–9009
https://doi.org/10.1021/jp071897q
137 L J Müller, A Kätelhön, S Bringezu, S Mccoy, S Suh, R Edwards, V Sick, S Kaiser, R Cuéllar-Franca, Khamlichi A El. et al.. (2020). The carbon footprint of the carbon feedstock CO2. Energy & Environmental Science, 13(9): 2979–2992
https://doi.org/10.1039/D0EE01530J
138 NEA (2023). China Carbon Capture, Utilization and Storage (CCUS) Annual Report (2023). Beijing: National Energy Administration (in Chinese)
139 O G NikX Y ChenS Kaliaguine (2012). Functionalized metal organic framework-polyimide mixed matrix membranes for CO2/CH4 separation. Journal of Membrane Science, 413-414: 48-61
140 N Noorani, A Mehrdad. (2020). CO2 solubility in some amino acid-based ionic liquids: Measurement, correlation and DFT studies. Fluid Phase Equilibria, 517: 112591
https://doi.org/10.1016/j.fluid.2020.112591
141 N Noorani, A Mehrdad. (2022). Cholinium-amino acid ionic liquids as biocompatible agents for carbon dioxide absorption. Journal of Molecular Liquids, 357: 119078
https://doi.org/10.1016/j.molliq.2022.119078
142 N Noorani, A Mehrdad, I Ahadzadeh. (2021). CO2 absorption in amino acid-based ionic liquids: Experimental and theoretical studies. Fluid Phase Equilibria, 547: 113185
https://doi.org/10.1016/j.fluid.2021.113185
143 A Orujov, K Coddington, S A Aryana. (2023). A review of CCUS in the context of foams, regulatory frameworks and monitoring. Energies, 16(7): 3284
https://doi.org/10.3390/en16073284
144 H B Park, J Kamcev, L M Robeson, M Elimelech, B D Freeman. (2017). Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science, 356(6343): eaab0530
https://doi.org/10.1126/science.aab0530
145 T Pröll, P Kolbitsch, J Bolhàr-Nordenkampf, H Hofbauer. (2009a). A novel dual circulating fluidized bed system for chemical looping processes. AIChE Journal. American Institute of Chemical Engineers, 55(12): 3255–3266
https://doi.org/10.1002/aic.11934
146 T Pröll, K Mayer, J Bolhàr-Nordenkampf, P Kolbitsch, T Mattisson, A Lyngfelt, H Hofbauer. (2009b). Natural minerals as oxygen carriers for chemical looping combustion in a dual circulating fluidized bed system. Energy Procedia, 1(1): 27–34
https://doi.org/10.1016/j.egypro.2009.01.006
147 G Qi, S Wang. (2017). Thermodynamic modeling of NH3-CO2-SO2-K2SO4-H2O system for combined CO2 and SO2 capture using aqueous NH3. Applied Energy, 191(1): 549–558
https://doi.org/10.1016/j.apenergy.2017.01.083
148 L Qiu, L Peng, D Moitra, H Liu, Y Fu, Z Dong, W Hu, M Lei, D E Jiang, H Lin. et al.. (2023). Harnessing the hybridization of a metal-organic framework and superbase-derived ionic liquid for high-performance direct air capture of CO2. Small, 19(41): 2302708
https://doi.org/10.1002/smll.202302708
149 Y Qiu, P Lamers, V Daioglou, N McQueen, H S de Boer, M Harmsen, J Wilcox, A Bardow, S Suh. (2022). Environmental trade-offs of direct air capture technologies in climate change mitigation toward 2100. Nature Communications, 13(1): 3635
https://doi.org/10.1038/s41467-022-31146-1
150 A RajendranS G SubravetiK N PaiV PrasadZ Li (2023). How can (or why should) process engineering aid the screening and discovery of solid sorbents for CO2 capture? Accounts of Chemical Research, 56(17): 2354–2365
151 G H Rau. (2008). Electrochemical splitting of calcium carbonate to increase solution alkalinity: implications for mitigation of carbon dioxide and ocean acidity. Environmental Science & Technology, 42(23): 8935–8940
https://doi.org/10.1021/es800366q
152 G Realmonte, L Drouet, A Gambhir, J Glynn, A Hawkes, A C Köberle, M Tavoni. (2019). An inter-model assessment of the role of direct air capture in deep mitigation pathways. Nature Communications, 10(1): 3277
https://doi.org/10.1038/s41467-019-10842-5
153 G T Rochelle. (2024). Air pollution impacts of amine scrubbing for CO2 capture. Carbon Capture Science & Technology, 11: 100192
https://doi.org/10.1016/j.ccst.2024.100192
154 O Sanyal, S S Hays, N E León, Y A Guta, A K Itta, R P Lively, W J Koros. (2020). A self-consistent model for sorption and transport in polyimide-derived carbon molecular sieve gas separation membranes. Angewandte Chemie International Edition, 59(46): 20343–20347
https://doi.org/10.1002/anie.202006521
155 M Schmitz, C Linderholm, P Hallberg, S Sundqvist, A Lyngfelt. (2016). Chemical-looping combustion of solid fuels using manganese ores as oxygen carriers. Energy & Fuels, 30(2): 1204–1216
https://doi.org/10.1021/acs.energyfuels.5b02440
156 M Sedighi, M R Talaie, H Sabzyan, S F Aghamiri. (2023). A computational investigation on the roles of binding affinity and pore size on CO2/N2 overall adsorption process performance of MOFs through modifying MIL-101 structure. Sustainable Materials and Technologies, 38: e00701
https://doi.org/10.1016/j.susmat.2023.e00701
157 A K Sekizkardes, V A Kusuma, J T Culp, P Muldoon, J Hoffman, J A Steckel, D Hopkinson. (2023). Single polymer sorbent fibers for high performance and rapid direct air capture. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 11(22): 11670–11674
https://doi.org/10.1039/D2TA09270K
158 K Y Shan, Y L Lin, P S Chu, X P Yu, F F Song. (2023). Seasonal advance of intense tropical cyclones in a warming climate. Nature, 623(7985): 83–89
https://doi.org/10.1038/s41586-023-06544-0
159 L H Shen, J H Wu, Z P Gao, J Xiao. (2009a). Reactivity deterioration of NiO/Al2O3 oxygen carrier for chemical looping combustion of coal in a 10 kWth reactor. Combustion and Flame, 156(7): 1377–1385
https://doi.org/10.1016/j.combustflame.2009.02.005
160 L H Shen, J H Wu, J Xiao, Q L Song, R Xiao. (2009b). Chemical-looping combustion of biomass in a 10 kWth reactor with iron oxide As an oxygen carrier. Energy & Fuels, 23(5): 2498–2505
https://doi.org/10.1021/ef900033n
161 Q Shen, X H Song, F Mao, N N Sun, X Wen, W Wei. (2020). Carbon reduction potential and cost evaluation of different mitigation approaches in China’s coal to olefin Industry. Journal of Environmental Sciences, 90: 352–363
https://doi.org/10.1016/j.jes.2019.11.004
162 Y Shen, F Liu, X Y Wang, P J Shao, Z He, S H Zhang, L Chen, S J Li, W Li, L D Wang. et al.. (2022). A pore matching amine-functionalized strategy for efficient CO2 physisorption with low energy penalty. Chemical Engineering Journal, 432: 134403
https://doi.org/10.1016/j.cej.2021.134403
163 J S Shi, H M Cui, J G Xu, N F Yan, S Y You. (2022). Synthesis of N-doped hierarchically ordered micro-mesoporous carbons for CO2 adsorption. Journal of CO2 Utilization, 62: 102081
https://doi.org/10.1016/j.jcou.2022.102081
164 R L Siegelman, E J Kim, J R Long. (2021). Porous materials for carbon dioxide separations. Nature Materials, 20(8): 1060–1072
https://doi.org/10.1038/s41563-021-01054-8
165 C F Song, Z C Fan, R Li, Q L Liu, Y W Sun, Y Kitamura. (2018). Intensification of CO2 separation performance via cryogenic and membrane hybrid process—comparison of polyimide and polysulfone hollow fiber membrane. Chemical Engineering and Processing - Process Intensification, 133: 83–89
https://doi.org/10.1016/j.cep.2018.09.015
166 D Sridhar, A Tong, H Kim, L Zeng, F Li, L S Fan. (2012). Syngas chemical looping process: design and construction of a 25 kWh subpilot unit. Energy & Fuels, 26(4): 2292–2302
https://doi.org/10.1021/ef202039y
167 E Stefanelli, S Vitolo, M Puccini. (2022). Single-step fabrication of templated Li4SiO4-based pellets for CO2 capture at high temperature. Journal of Environmental Chemical Engineering, 10(5): 108389
https://doi.org/10.1016/j.jece.2022.108389
168 K Storrs, I Lyhne, R Drustrup. (2023). A comprehensive framework for feasibility of CCUS deployment: a meta-review of literature on factors impacting CCUS deployment. International Journal of Greenhouse Gas Control, 125: 103878
https://doi.org/10.1016/j.ijggc.2023.103878
169 S Stucki, A Schuler, M Constantinescu. (1995). Coupled CO2 recovery from the atmosphere and water electrolysis: feasibility of a new process for hydrogen storage. International Journal of Hydrogen Energy, 20(8): 653–663
https://doi.org/10.1016/0360-3199(95)00007-Z
170 Z Y Sun, B Shao, Y Zhang, Z H Gao, M H Wang, H L Liu, J Hu. (2023). Integrated CO2 capture and methanation from the intermediate-temperature flue gas on dual functional hybrids of AMS/CaMgO. NixCoy. Separation and Purification Technology, 307: 122680
https://doi.org/10.1016/j.seppur.2022.122680
171 S Sundqvist, M Arjmand, T Mattisson, M Rydén, A Lyngfelt. (2015). Screening of different manganese ores for chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU). International Journal of Greenhouse Gas Control, 43: 179–188
https://doi.org/10.1016/j.ijggc.2015.10.027
172 B Szcześniak, J Choma. (2020). Graphene-containing microporous composites for selective CO2 adsorption. Microporous and Mesoporous Materials, 292: 109761
https://doi.org/10.1016/j.micromeso.2019.109761
173 M N Tao, J Z Gao, W Zhang, Y Li, Y He, Y Shi. (2018). A novel phase-changing nonaqueous solution for CO2 capture with high capacity, thermostability, and regeneration efficiency. Industrial & Engineering Chemistry Research, 57(28): 9305–9312
https://doi.org/10.1021/acs.iecr.8b01775
174 H J Tian, R Siriwardane, T Simonyi, J Poston. (2013). Natural ores as oxygen carriers in chemical looping combustion. Energy & Fuels, 27(8): 4108–4118
https://doi.org/10.1021/ef301486n
175 W Tian, K Ma, J Y Ji, S Y Tang, S Zhong, C J Liu, H R Yue, B Liang. (2021). Nonaqueous MEA/PEG200 absorbent with high efficiency and low energy consumption for CO2 capture. Industrial & Engineering Chemistry Research, 60(10): 3871–3880
https://doi.org/10.1021/acs.iecr.0c05294
176 X Tian, H B Zhao, K Wang, J C Ma, C G Zheng. (2015). Performance of cement decorated copper ore as oxygen carrier in chemical-looping with oxygen uncoupling. International Journal of Greenhouse Gas Control, 41: 210–218
https://doi.org/10.1016/j.ijggc.2015.07.015
177 D Tong, Q Zhang, Y X Zheng, K Caldeira, C Shearer, C P Hong, Y Qin, S J Davis. (2019). Committed emissions from existing energy infrastructure jeopardize 1.5 °C climate target. Nature, 572(7769): 373
https://doi.org/10.1038/s41586-019-1364-3
178 H Wang, Z Y Yang, Y Q Zhou, H J Cui, Z M Cheng, Z M Zhou. (2023a). Direct air capture of CO2 with metal nitrate-doped, tetraethylenepentamine-functionalized SBA-15 sorbents. Industrial & Engineering Chemistry Research, 62(41): 16579–16588
https://doi.org/10.1021/acs.iecr.3c02041
179 L D Wang, Y F Zhang, R J Wang, Q W Li, S H Zhang, M Li, J Liu, B Chen. (2018). Advanced monoethanolamine absorption using sulfolane as a phase splitter for CO2 capture. Environmental Science & Technology, 52(24): 14556–14563
https://doi.org/10.1021/acs.est.8b05654
180 L Wang, C Lin, I Boldog, J Yang, C Janiak, J Li. (2023b). Inverse adsorption separation of N2O/CO2 in AgZK-5 zeolite. Angewandte Chemie International Edition, 63(4): e202317435
https://doi.org/10.1002/anie.202317435
181 R Wang. (2024). Status and perspectives on CCUS clusters and hubs. Unconventional Resources, 4: 100065
https://doi.org/10.1016/j.uncres.2023.100065
182 R J Wang, L Jiang, Q W Li, G Gao, S H Zhang, L D Wang. (2020). Energy-saving CO2 capture using sulfolane-regulated biphasic solvent. Energy, 211: 118667
https://doi.org/10.1016/j.energy.2020.118667
183 Y H Wang, K X Wang, X R Zhang, J P Li. (2023c). Co@NC@ZIF-8-hybridized carbon molecular sieve membranes for highly efficient gas separation. Journal of Membrane Science, 682: 121781
https://doi.org/10.1016/j.memsci.2023.121781
184 Y Y Wang, X D Tang, S J XinWei, L Gao, Y Jiang. (2024). Study of CO2 adsorption on carbon aerogel fibers prepared by electrospinning. Journal of Environmental Management, 349: 119432
https://doi.org/10.1016/j.jenvman.2023.119432
185 M Waqas Anjum, F de Clippel, J Didden, A Laeeq Khan, S Couck, G V Baron, J F M Denayer, B F Sels, I F J Vankelecom. (2015). Polyimide mixed matrix membranes for CO2 separations using carbon-silica nanocomposite fillers. Journal of Membrane Science, 495: 121–129
https://doi.org/10.1016/j.memsci.2015.08.006
186 Y Y Wen, Z S Li, L Xu, N S Cai. (2012). Experimental study of natural Cu ore particles as oxygen carriers in chemical looping with oxygen uncoupling (CLOU). Energy & Fuels, 26(6): 3919–3927
https://doi.org/10.1021/ef300076m
187 R P Wijesiri, G P Knowles, H Yeasmin, A F A Hoadley, A L Chaffee. (2019). CO2 capture from air using pelletized polyethylenimine impregnated MCF silica. Industrial & Engineering Chemistry Research, 58(8): 3293–3303
https://doi.org/10.1021/acs.iecr.8b04973
188 H D WillauerF DimascioD R Hardy (2017). Extraction of carbon dioxide and hydrogen from seawater by an electrolytic cation exchange module (E-CEM) part 5: E-CEM effluent discharge composition as a function of electrode water composition. Washington DC: Naval research laboratory
189 H D Willauer, F Dimascio, D R Hardy, M K Lewis, F W Williams. (2011). Development of an electrochemical acidification cell for the recovery of CO2 and H2 from seawater. Industrial & Engineering Chemistry Research, 50(17): 9876–9882
https://doi.org/10.1021/ie2008136
190 H D Willauer, F Dimascio, D R Hardy, F W Williams. (2014). Feasibility of CO2 extraction from seawater and simultaneous hydrogen gas generation using a novel and robust electrolytic cation exchange module based on continuous electrodeionization technology. Industrial & Engineering Chemistry Research, 53(31): 12192–12200
https://doi.org/10.1021/ie502128x
191 WMO (2023). Provisional state of the global climate 2023. Geneva, Switzerland: World Meteorological Organization
192 B Z Wu, F Q Liu, S W Luo, L Q Zhang, F X Zou. (2021). Carbonaceous materials-supported polyethylenimine with high thermal conductivity: A promising adsorbent for CO2 capture. Composites Science and Technology, 208: 108781
https://doi.org/10.1016/j.compscitech.2021.108781
193 K Wu, S Peng, G Ye, Z Chen, D Wu. (2023). Self-Assembled core–shell structure MgO@ TiO2 as a K2CO3 support with superior performance for direct air capture CO2. ACS Applied Materials & Interfaces, 15(51): 59561–59572
https://doi.org/10.1021/acsami.3c17365
194 C Xia, Y Xia, P Zhu, L Fan, H T Wang. (2019). Direct electrosynthesis of pure aqueous H2O2 solutions up to 20% by weight using a solid electrolyte. Science, 366(6462): 226–231
https://doi.org/10.1126/science.aay1844
195 M Xiao, H L Liu, H X Gao, W Olson, Z W Liang. (2019). CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine. Applied Energy, 235: 311–319
https://doi.org/10.1016/j.apenergy.2018.10.103
196 R Xiao, Q L Song, S A Zhang, W G Zheng, Y C Yang. (2010). Pressurized chemical-looping combustion of chinese bituminous coal: cyclic performance and characterization of iron ore-based oxygen carrier. Energy & Fuels, 24(2): 1449–1463
https://doi.org/10.1021/ef901070c
197 H Xie, W Jiang, T Liu, Y Wu, Y Wang, B Chen, D Niu, B Liang. (2020). Low-energy electrochemical carbon dioxide capture based on a biological redox proton carrier. Cell Reports. Physical Science, 1(5): 100046
https://doi.org/10.1016/j.xcrp.2020.100046
198 Y Xie, H Zhong, Z X Weng, X B Guo, S E Kim, S W Wu. (2023). PM2.5 concentration declining saves health expenditure in China. Frontiers of Environmental Science & Engineering, 17(7): 90
https://doi.org/10.1007/S11783-023-1690-4
199 W Xie, Y Jiao, Z L Cai, H Y Liu, L L Gong, W Lai, L L Shan, S J Luo. (2022). Highly selective benzimidazole-based polyimide/ionic polyimide membranes for pure- and mixed-gas CO2/CH4 separation. Separation and Purification Technology, 282(B): 120091
200 L Xu, H M Sun, Z S Li, N S Cai. (2016). Experimental study of copper modified manganese ores as oxygen carriers in a dual fluidized bed reactor. Applied Energy, 162: 940–947
https://doi.org/10.1016/j.apenergy.2015.10.167
201 H Y Yan, G J Zhang, Y Xu, Q Q Zhang, J Liu, G Q Li, Y Q Zhao, Y Wang, Y F Zhang. (2022). High CO2 adsorption on amine-functionalized improved macro-/mesoporous multimodal pore silica. Fuel, 315: 123195
https://doi.org/10.1016/j.fuel.2022.123195
202 Y L Yan, T N Borhani, S G Subraveti, K N Pai, V Prasad, A Rajendran, P Nkulikiyinka, J O Asibor, Z E Zhang, D Shao. et al.. (2021). Harnessing the power of machine learning for carbon capture, utilisation, and storage (CCUS): a state-of-the-art review. Energy & Environmental Science, 14(12): 6122–6157
https://doi.org/10.1039/D1EE02395K
203 H Yang, X J Huang, J L Hu, J R Thompson, R J Flower. (2022). Achievements, challenges and global implications of China’s carbon neutral pledge. Frontiers of Environmental Science & Engineering, 16(8): 111
https://doi.org/10.1007/S11783-022-1532-9
204 Z Y Yang, A N Soriano, A R Caparanga, M H Li. (2010). Equilibrium solubility of carbon dioxide in (2-amino-2-methyl-1-propanol+piperazine+water). Journal of Chemical Thermodynamics, 42(5): 659–665
https://doi.org/10.1016/j.jct.2009.12.006
205 Z Yang, B Chen, H Chen, H Li. (2023). A critical review on machine-learning-assisted screening and design of effective sorbents for carbon dioxide (CO2) capture. Frontiers in Energy Research, 10: 1043064
https://doi.org/10.3389/fenrg.2022.1043064
206 B Yao, Y Q Wang, Z Fang, Y Hu, Z Z Ye, X S Peng. (2023a). Electrodepositing MOFs into laminated graphene oxide membrane for CO2 capture. Microporous and Mesoporous Materials, 361: 112758
https://doi.org/10.1016/j.micromeso.2023.112758
207 J Yao, H Han, Y Yang, Y Song, G Li. (2023b). A review of recent progress of carbon capture, utilization, and storage (CCUS) in China. Applied Sciences, 13(2): 1169
https://doi.org/10.3390/app13021169
208 M H Youn, K T Park, Y H Lee, S P Kang, S M Lee, S S Kim, Y E Kim, Y N Ko, S K Jeong, W Lee. (2019). Carbon dioxide sequestration process for the cement industry. Journal of CO2 Utilization, 34: 325–334
https://doi.org/10.1016/j.jcou.2019.07.023
209 M Younas, M Rezakazemi, M Daud, M B Wazir, S Ahmad, N Ullah, S Inamuddin. (2020). Recent progress and remaining challenges in post-combustion CO2 capture using metal-organic frameworks (MOFs). Progress in Energy and Combustion Science, 80: 100849
https://doi.org/10.1016/j.pecs.2020.100849
210 Y Yu, J F Mao, S D Wullschleger, A P Chen, X Y Shi, Y P Wang, F M Hoffman, Y L Zhang, E Pierce. (2022). Machine learning-based observation-constrained projections reveal elevated global socioeconomic risks from wildfire. Nature Communications, 13(1): 1250
https://doi.org/10.1038/s41467-022-28853-0
211 G X Zhan, B L Yuan, Y M Duan, Y F Bai, J J Chen, Z Chen, J H Li. (2023). Simulation and optimization of carbon dioxide capture using Water-Lean solvent from industrial flue gas. Chemical Engineering Journal, 474: 145773
https://doi.org/10.1016/j.cej.2023.145773
212 X H Zhan, B H Lv, K X Yang, G H Jing, Z M Zhou. (2020). Dual-functionalized ionic liquid biphasic solvent for carbon dioxide capture: High-efficiency and energy saving. Environmental Science & Technology, 54(10): 6281–6288
https://doi.org/10.1021/acs.est.0c00335
213 C Zhang, J F Zhang, Y S Yu, Z X Zhang, G G X Wang. (2021a). Adsorption mechanism of CO2 on the single atom doped or promoted Li4SiO4(010) surface from first principles. Computational & Theoretical Chemistry, 1205: 113424
https://doi.org/10.1016/j.comptc.2021.113424
214 C Zhang, X Q Zhang, T Y Su, Y H Zhang, L W Wang, X C Zhu. (2023a). Modification schemes of efficient sorbents for trace CO2 capture. Renewable & Sustainable Energy Reviews, 184: 113473
https://doi.org/10.1016/j.rser.2023.113473
215 K X Zhang, J S Wu, H Yoo, Y J Lee. (2021b). Machine learning-based approach for tailor-made design of ionic liquids: application to CO2 capture. Separation and Purification Technology, 275: 119117
https://doi.org/10.1016/j.seppur.2021.119117
216 R Zhang, R X Liu, F Barzagli, M G Sanku, C Li, M Xiao. (2023b). CO2 absorption in blended amine solvent: speciation, equilibrium solubility and excessive property. Chemical Engineering Journal, 466: 143279
https://doi.org/10.1016/j.cej.2023.143279
217 R Zhang, X W Zhang, Q Yang, H Yu, Z W Liang, X Luo. (2017). Analysis of the reduction of energy cost by using MEA-MDEA-PZ solvent for post-combustion carbon dioxide capture (PCC). Applied Energy, 205: 1002–1011
https://doi.org/10.1016/j.apenergy.2017.08.130
218 S H Zhang, Y Shen, P J Shao, J M Chen, L D Wang. (2018). Kinetics, thermodynamics, and mechanism of a novel biphasic solvent for CO2 capture from flue gas. Environmental Science & Technology, 52(6): 3660–3668
https://doi.org/10.1021/acs.est.7b05936
219 S Q Zhang, C Chen, W S Ahn. (2019). Recent progress on CO2 capture using amine-functionalized silica. Current Opinion in Green and Sustainable Chemistry, 16: 26–32
https://doi.org/10.1016/j.cogsc.2018.11.011
220 Y Y Zhang, M Y Sun, L Li, R S Xu, Y Q Pan, T H Wang. (2022). Carbon molecular sieve/ZSM-5 mixed matrix membranes with enhanced gas separation performance and the performance recovery of the aging membranes. Journal of Membrane Science, 660: 120869
https://doi.org/10.1016/j.memsci.2022.120869
221 H B Zhao, K Wang, Y F Fang, J C Ma, D F Mei, C G Zheng. (2014). Characterization of natural copper ore as oxygen carrier in chemical-looping with oxygen uncoupling of anthracite. International Journal of Greenhouse Gas Control, 22: 154–164
https://doi.org/10.1016/j.ijggc.2013.12.023
222 Y Y Zhao, J H Wang, Z Y Ji, J Liu, X F Guo, J S Yuan. (2020). A novel technology of carbon dioxide adsorption and mineralization via seawater decalcification by bipolar membrane electrodialysis system with a crystallizer. Chemical Engineering Journal, 381: 122542
https://doi.org/10.1016/j.cej.2019.122542
223 Z Q Zhao, H Zhang, C Jiao, Q F Wang, X L Lin. (2021). Review on global CCUS technology and application. Modern Chemical Industry, 41(4): 5–10
224 B Zheng, P Ciais, F Chevallier, H Yang, J G Canadell, Y Chen, Der Velde I R Van, I Aben, E Chuvieco, S J Davis. et al.. (2023). Record-high CO2 emissions from boreal fires in 2021. Science, 379(6635): 912–917
https://doi.org/10.1126/science.ade0805
225 Q W Zheng, L Huang, Z Y Zhong, B Louis, Q Wang. (2020). Development of KNaTiO3 as a novel high-temperature CO2 capturing material with fast sorption rate and high reversible sorption capacity. Chemical Engineering Journal, 380: 122444
https://doi.org/10.1016/j.cej.2019.122444
226 X B Zhou, X L Li, J W Wei, Y M Fan, L Liao, H Q Wang. (2020). Novel nonaqueous liquid-liquid biphasic solvent for energy-efficient carbon dioxide capture with low corrosivity. Environmental Science & Technology, 54(24): 16138–16146
https://doi.org/10.1021/acs.est.0c05774
227 X B Zhou, C Liu, J Zhang, Y M Fan, Y N Zhu, L H Zhang, S Tang, S P Mo, H X Zhu, Z Q Zhu. (2023). Novel 2-amino-2-methyl-1-propanol-based biphasic solvent for energy-efficient carbon dioxide capture using tetraethylenepentamine as a phase change regulator. Energy, 270: 126930
https://doi.org/10.1016/j.energy.2023.126930
228 Y Zhou, J L Zhang, L Wang, X L Cui, X L Liu, S S Wong, H An, N Yan, J Y Xie, C Yu. et al.. (2021). Self-assembled iron-containing mordenite monolith for carbon dioxide sieving. Science, 373(6552): 315
https://doi.org/10.1126/science.aax5776
229 P Zhu, Z Y Wu, A Elgazzar, C X Dong, T U Wi, F Y Chen, Y Xia, Y G Feng, M Shakouri, J Y Kim. et al.. (2023). Continuous carbon capture in an electrochemical solid-electrolyte reactor. Nature, 618(7967): 959–966
https://doi.org/10.1038/s41586-023-06060-1
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed