Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 262-269    https://doi.org/10.1007/s11783-014-0746-x
RESEARCH ARTICLE
Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands
Jianguo LIU(),Wen ZHANG,Peng QU,Mingxin WANG
School of Environmental and Safety Engineering, Changzhou University, Changzhou 213164, China
 Download: PDF(139 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Variations in cadmium (Cd) tolerances and accumulations among fifteen wetland plant species in moderately (0.5 mg·L−1) and heavily (1.0 mg·L−1) Cd-polluted wastewaters were investigated in constructed wetlands. Cd removal efficiencies from the wastewaters were more than 90%, and 23.5% and 16.8% of the Cd in the water accumulated in wetland plants for 0.5 and 1.0 mg·L−1 Cd treatments, respectively. The variations among the plant species were 29.4-fold to 48.7-fold in plant biomasses, 5.4-fold to 21.9-fold in Cd concentrations, and 13.8-fold to 29.6-fold in Cd accumulations. The plant species were also largely diversified in terms of Cd tolerance. Some species were tolerant of heavy Cd stress, and some others were sensitive to moderate Cd level. Four wetland plant species were selected for the treatment of Cd-polluted wastewater for their high Cd accumulating abilities and relative Cd tolerances. Plant Cd quantity accumulations are correlated positively and significantly (P <0.05) with plant biomasses and correlated positively but insignificantly (P >0.05) with plant Cd concentrations. The results indicate that the Cd accumulation abilities of wetland plant species are determined mainly by their biomasses and Cd tolerances in growth, which should be the first criteria in selecting wetland plant species for the treating Cd-polluted wastewaters. Cd concentration in the plants may be the second consideration.

Keywords cadmium (Cd)      wastewater treatment      wetland plant      selection      index     
Corresponding Author(s): Jianguo LIU   
Online First Date: 25 July 2014    Issue Date: 01 February 2016
 Cite this article:   
Jianguo LIU,Wen ZHANG,Peng QU, et al. Cadmium tolerance and accumulation in fifteen wetland plant species from cadmium-polluted water in constructed wetlands[J]. Front. Environ. Sci. Eng., 2016, 10(2): 262-269.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0746-x
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/262
code name family species
A Gramineae Echinochloa crus-galli (L.) Beauv
B Gramineae Echinochloa oryzicola (Ard.) Fritsch
C Gramineae Zizania latifolia (Griseb.) Stapf
D Gramineae Digitaria sanguinalis (L.) Scop
E Gramineae Phragmites communis Trin.
F Gramineae Isachne globosa (Thunb.) Kuntze
G Polygonaceae Polygonum lapathifolium L.
H Polygonaceae Polygonum hydropiper L.
I Compositae Eclipta prostrata L.
J Compositae Aster subulatus Michx
K Cyperaceae Cyperus iria L.
L Cyperaceae Fimbristylis miliacea (L.) Vahl
M Leguminosae Aeschynomene indica L.
N Pontederiaceae Monochoria vaginalis (Burm. f.) Presl
O Amaranthaceae Alternanthera philoxeroides (Mart.) Griseb
Tab.1  Family and species of the wetland plants used in this experiments
plant species belowground aboveground
control 0.5 mg?L−1 Cd treatment ±% a) 1.0 mg?L−1 Cd treatment ±% control 0.5 mg?L−1 Cd treatment ±% 1.0 mg?L−1 Cd treatment ±%
A 91.42 89.23 −2.39 78.78 −13.82** 418.59 420.83 0.53 404.94 −3.26
B 26.25 28.18 7.36* 22.61 −13.86** 110.96 114.62 3.30 102.99 −7.18*
C 272.82 265.60 −2.65 251.13 −7.95* 479.83 478.00 −0.38 473.40 −1.34
D 43.78 43.47 −0.70 42.40 −3.14 125.81 133.89 6.42* 126.95 0.91
E 99.59 105.36 5.79* 92.19 −7.43* 377.88 388.75 2.88 370.54 −1.94
F 32.84 35.82 9.09* 31.72 −3.40 133.44 141.94 6.37* 122.85 −7.94*
G 18.95 19.37 2.22 15.85 −16.36** 97.39 92.63 −4.89* 85.05 −12.68**
H 26.35 23.84 −9.51** 24.29 −7.81* 225.18 219.91 −2.34 217.17 −3.56
I 12.82 11.58 −9.65* 9.56 −25.41** 54.93 47.99 −12.62** 45.27 −17.59**
J 6.72 5.69 −15.27** 5.48 −18.39** 16.31 14.90 −8.62* 13.10 −19.69**
K 27.73 26.70 −3.71 23.21 −16.29** 106.88 110.49 3.37 99.02 −7.36*
L 32.33 32.72 1.21 29.52 −8.69* 146.25 141.31 −3.38 136.06 −6.97*
M 37.01 34.65 −6.38* 29.44 −20.46** 198.98 193.07 −2.97 178.54 −10.27**
N 16.99 17.71 4.25 16.37 −3.64 128.51 125.19 −2.58 121.44 −5.50*
O 35.43 38.04 7.37* 34.53 −2.54 319.55 345.23 8.04* 311.26 −2.59
average 52.07 51.86 −0.39 47.14 −9.47* 196.03 197.92 0.96 187.24 −4.49*
Tab.2  The biomasses of the wetland plants in different water Cd levels/(g?chamber−1, DW)
plant species Cd concentrations/(μg?g−1, DW) Cd accumulations/(mg?chamber−1)
0.5 mg?L−1 Cd treatment 1.0 mg?L−1 Cd treatment 0.5 mg?L−1 Cd treatment 1.0 mg?L−1 Cd treatment
belowground aboveground belowground aboveground belowground aboveground whole plant belowground aboveground whole plant
A 18.93 7.75 29.84 11.40 1.69 3.26 4.95 2.35 4.62 6.97
B 22.26 7.03 32.35 11.18 0.63 0.81 1.44 0.73 1.15 1.88
C 10.47 6.46 16.86 8.30 2.78 3.09 5.87 4.23 3.93 8.16
D 24.97 14.80 44.02 23.65 1.09 1.98 3.07 1.87 3.00 4.87
E 6.65 7.30 17.18 11.54 0.70 2.84 3.54 1.58 4.28 5.86
F 26.25 34.61 49.55 53.15 0.94 4.91 5.85 1.57 6.53 8.10
G 43.45 10.99 74.87 16.08 0.84 1.02 1.86 1.19 1.37 2.56
H 50.27 14.58 80.91 21.75 1.20 3.21 4.41 1.97 4.72 6.69
I 24.34 11.23 34.12 16.90 0.28 0.54 0.82 0.33 0.76 1.09
J 39.89 17.33 71.09 22.33 0.23 0.26 0.49 0.39 0.29 0.68
K 19.94 23.57 43.54 37.71 0.53 2.60 3.13 1.01 3.73 4.74
L 22.49 14.84 35.83 21.62 0.74 2.10 2.84 1.06 2.94 4.00
M 13.83 8.05 25.43 12.20 0.48 1.55 2.03 0.75 2.18 2.93
N 145.57 26.41 241.68 41.06 2.58 3.31 5.89 3.96 4.99 8.95
O 89.77 19.83 131.41 27.54 3.41 6.85 10.26 4.54 8.57 13.11
total 18.12 38.32 56.44 27.53 53.07 80.60
Tab.3  Cd concentrations and accumulations of the wetland plants in different water Cd levels
Cd concentrations of the inflow wastewaters/(mg?L−1) Cd concentrations of the outflow waters after experiment/(mg?L−1) Cd removal efficiencies/%
0.500 0.034 93.2
1.000 0.039 96.1
Tab.4  Cd removal efficiencies from the wastewaters by the constructed wetland
Fig.1  Correlations between plant Cd accumulations and concentrations of different wetland plant species. (a) 0.5 mg?L−1 water Cd treatment, (b) 1.0 mg?L−1 water Cd treatment
Fig.2  Correlations between plant Cd accumulations and biomasses of the control for different wetland plant species. (a) 0.5 mg?L−1 water Cd treatment, (b) 1.0 mg?L−1 water Cd treatment. * Significant at the P0.05 level
Fig.3  Correlations between plant Cd accumulations and biomasses of water Cd treatments for different wetland plant species. (a) 0.5 mg?L−1 water Cd treatment, (b) 1.0 mg?L−1 water Cd treatment. * Significant at the P0.05 level
1 DalCorso  G, Farinati  S, Maistri  S, Furini  A. How plants cope with cadmium: staking all on metabolism and gene expression. Journal of Integrative Plant Biology, 2008, 50(10): 1268–1280
https://doi.org/10.1111/j.1744-7909.2008.00737.x pmid: 19017114
2 Madejón  P, Marañón  T, Murillo  J M, Robinson  B. White poplar (Populus alba) as a biomonitor of trace elements in contaminated riparian forests. Environmental Pollution, 2004, 132(1): 145–155
https://doi.org/10.1016/j.envpol.2004.03.015 pmid: 15276282
3 Wang  H, Jia  Y, Wang  S, Zhu  H, Wu  X. Bioavailability of cadmium adsorbed on various oxides minerals to wetland plant species Phragmites australis. Journal of Hazardous Materials, 2009, 167(1−3): 641–646
https://doi.org/10.1016/j.jhazmat.2009.01.012 pmid: 19201537
4 Solano  M L, Soriano  P, Ciria  M P. Constructed wetlands as a sustainable solution for wastewater treatment in small villages. Biosystems Engineering, 2004, 87(1): 109–118
https://doi.org/10.1016/j.biosystemseng.2003.10.005
5 Carty  A, Scholz  M, Heal  K, Gouriveau  F, Mustafa  A. The universal design, operation and maintenance guidelines for farm constructed wetlands (FCW) in temperate climates. Bioresource Technology, 2008, 99(15): 6780–6792
https://doi.org/10.1016/j.biortech.2008.01.045 pmid: 18359625
6 Kaseva  M E. Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater-a tropical case study. Water Research, 2004, 38(3): 681–687
https://doi.org/10.1016/j.watres.2003.10.041 pmid: 14723937
7 Korkusuz  E A, Beklioglu  M, Demirer  G N. Comparison of the treatment performance of the blast furnace slag-based and gravel-based vertical flow wetlands operated identically for domestic wastewater treatment in Turkey. Ecological Engineering, 2005, 24(3): 187–200
https://doi.org/10.1016/j.ecoleng.2004.10.002
8 Zhang  D Q, Gersberg  R M, Hua  T, Zhu  J, Tuan  N A, Tan  S K. Pharmaceutical removal in tropical subsurface flow constructed wetlands at varying hydraulic loading rates. Chemosphere, 2012, 87(3): 273–277
https://doi.org/10.1016/j.chemosphere.2011.12.067 pmid: 22264861
9 Rai  U N, Tripathi  R D, Singh  N K, Upadhyay  A K, Dwivedi  S, Shukla  M K, Mallick  S, Singh  S N, Nautiyal  C S. Constructed wetland as an ecotechnological tool for pollution treatment for conservation of Ganga river. Bioresource Technology, 2013, 148: 535–541
https://doi.org/10.1016/j.biortech.2013.09.005 pmid: 24080292
10 Bulc  T G. Long term performance of a constructed wetland for landfill leachate treatment. Ecological Engineering, 2006, 26(4): 365–374
https://doi.org/10.1016/j.ecoleng.2006.01.003
11 Justin  M Z, Zupančič  M. Combined purification and reuse of landfill leachate by constructed wetland and irrigation of grass and willows. Desalination, 2009, 24: 15–16
12 Bobbink  R, Whigham  D F, Beltman  B, Verhoeven  J T A. Wetland functioning in relation to biodiversity conservation and restoration. In: Bobbink  R, Beltman  B, Verhoeven  J T A, Whigham  D F, eds. Wetlands: functioning, biodiversity conservation, and restoration. Berlin: Springer, 2006, 1–12.
13 Maine  M A, Suñe  N, Hadad  H, Sánchez  G, Bonetto  C. Removal efficiency of a constructed wetland for wastewater treatment according to vegetation dominance. Chemosphere, 2007, 68(6): 1105–1113
https://doi.org/10.1016/j.chemosphere.2007.01.064 pmid: 17346771
14 Deng  H, Ye  Z H, Wong  M H. Accumulation of lead, zinc, copper and cadmium by 12 wetland plant species thriving in metal-contaminated sites in China. Environmental Pollution, 2004, 132(1): 29–40
https://doi.org/10.1016/j.envpol.2004.03.030 pmid: 15276271
15 Ye  Z H, Cheung  K C, Wong  M H. Copper uptake in Typha latifolia as affected by iron and manganese plaque on the root surface. Canadian Journal of Botany, 2001, 79(3): 314–320
https://doi.org/10.1139/b01-012
16 Stoltz  E, Greger  M. Accumulation properties of As, Cd, Cu, Pb and Zn by four wetland plant species growing on submerged mine tailings. Environmental and Experimental Botany, 2002, 47(3): 271–280
https://doi.org/10.1016/S0098-8472(02)00002-3
17 Najeeb  U, Xu  L, Ali  S, Jilani  G, Gong  H J, Shen  W Q, Zhou  W J. Citric acid enhances the phytoextraction of manganese and plant growth by alleviating the ultrastructural damages in Juncus effusus L. Journal of Hazardous Materials, 2009, 170(2−3): 1156–1163
https://doi.org/10.1016/j.jhazmat.2009.05.084 pmid: 19541411
18 Yoon  J, Cao  X, Zhou  Q, Ma  L Q. Accumulation of Pb, Cu, and Zn in native plants growing on a contaminated Florida site. Science of the Total Environment, 2006, 368(2−3): 456–464
https://doi.org/10.1016/j.scitotenv.2006.01.016 pmid: 16600337
19 Qian  Y, Gallagher  F J, Feng  H, Wu  M. A geochemical study of toxic metal translocation in an urban brownfield wetland. Environmental Pollution, 2012, 166: 23–30
https://doi.org/10.1016/j.envpol.2012.02.027 pmid: 22459711
20 Liu  J G, Li  G H, Shao  W C, Xu  J K, Wang  D K. Variations in uptake and translocation of copper, chromium, and nickel among nineteen wetland plant species. Pedosphere, 2010, 20(1): 96–103
https://doi.org/10.1016/S1002-0160(09)60288-5
21 Liu  J, Dong  Y, Xu  H, Wang  D, Xu  J. Accumulation of Cd, Pb and Zn by 19 wetland plant species in constructed wetland. Journal of Hazardous Materials, 2007, 147(3): 947–953
https://doi.org/10.1016/j.jhazmat.2007.01.125 pmid: 17353090
22 Amacher  M C. Nickel, cadmium, and lead. In: Sparks  D L, ed. Methods of soil analysis, part 3- chemical methods. Madison: Soil Science Society of America Inc. and American Society of Agronomy Inc., 1996, 739–768
23 Demirezen  D, Aksoy  A. Accumulation of heavy metals in Typha angustifolia (L.) and Potamogeton pectinatus (L.) living in Sultan Marsh (Kayseri, Turkey). Chemosphere, 2004, 56(7): 685–696
https://doi.org/10.1016/j.chemosphere.2004.04.011 pmid: 15234165
24 Allen  S E. Analysis of vegetation and other organic materials. In: Allen  S E, ed. Chemical Analysis of Ecological Materials. Oxford: Blackwell Scientific Publications, 1989, 46–61
25 Song  Z W, Zheng  Z P, Li  J, Sun  X F, Han  X Y, Wang  W, Xu  M. Seasonal and annual performance of a full-scale constructed wetland system for sewage treatment in China. Ecological Engineering, 2006, 26(3): 272–282
https://doi.org/10.1016/j.ecoleng.2005.10.008
26 Maine  M A, Suñe  N, Hadad  H, Sánchez  G, Bonetto  C. Nutrient and metal removal in a constructed wetland for wastewater treatment from a metallurgic industry. Ecological Engineering, 2006, 26(4): 341–347
https://doi.org/10.1016/j.ecoleng.2005.12.004
27 Maine  M A, Suñe  N, Hadad  H, Sánchez  G, Bonetto  C. Phosphate and metal retention in a small-scale constructed wetland for waste-water treatment. In: Golterman, H L, Serrano  L, eds. Phosphate in Sediments. Leiden: Backhuys Publishers, 2005, 21–31
28 Cheng  S P, Grosse  W, Karrenbrock  F, Thoennessen  M. Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecological Engineering, 2002, 18(3): 317–325
https://doi.org/10.1016/S0925-8574(01)00091-X
29 Ayaz  S C, Akça  L. Treatment of wastewater by natural systems. Environment International, 2001, 26(3): 189–195
https://doi.org/10.1016/S0160-4120(00)00099-4 pmid: 11341705
30 Xue  P Y, Li  G X, Liu  W J, Yan  C Z. Copper uptake and translocation in a submerged aquatic plant Hydrilla verticillata (L.f.) Royle. Chemosphere, 2010, 81(9): 1098–1103
https://doi.org/10.1016/j.chemosphere.2010.09.023 pmid: 20934737
31 Zhang  M Y, Cui  L J, Sheng  L X, Wang  Y F. Distribution and enrichment of heavy metals among sediments, water body and plants in Hengshuihu Wetland of Northern China. Ecological Engineering, 2009, 35(4): 563–569
https://doi.org/10.1016/j.ecoleng.2008.05.012
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[3] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[4] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[5] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[6] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[7] Qian-Yuan Wu, Yi-Jun Yan, Yao Lu, Ye Du, Zi-Fan Liang, Hong-Ying Hu. Identification of important precursors and theoretical toxicity evaluation of byproducts driving cytotoxicity and genotoxicity in chlorination[J]. Front. Environ. Sci. Eng., 2020, 14(2): 25-.
[8] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[9] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[10] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[11] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[12] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
[13] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[14] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[15] Yujiao Sun, Juanjuan Zhao, Lili Chen, Yueqiao Liu, Jiane Zuo. Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge[J]. Front. Environ. Sci. Eng., 2018, 12(4): 10-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed