Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (3) : 38    https://doi.org/10.1007/s11783-020-1330-1
REVIEW ARTICLE
Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review
Yunping Han1,2, Lin Li1,2(), Ying Wang1,2, Jiawei Ma1,2, Pengyu Li1,2, Chao Han3, Junxin Liu1,4
1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. National Engineering Laboratory for VOCs Pollution Control Material & Technology, University of Chinese Academy of Sciences, Beijing 101408, China
3. Tianjin Chengjian University, Tianjin 300384, China
4. University of Chinese Academy of Sciences, Beijing 100049, China
 Download: PDF(974 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Bioaerosols are produced in the process of wastewater biological treatment.

• The concentration of bioaerosol indoor is higher than outdoor.

• Bioaerosols contain large amounts of potentially pathogenic biomass and chemicals.

• Inhalation is the main route of exposure of bioaerosol.

• Both the workers and the surrounding residents will be affected by the bioaerosol.

Bioaerosols are defined as airborne particles (0.05–100 mm in size) of biological origin. They are considered potentially harmful to human health as they can contain pathogens such as bacteria, fungi, and viruses. This review summarizes the most recent research on the health risks of bioaerosols emitted from wastewater treatment plants (WWTPs) in order to improve the control of such bioaerosols. The concentration and size distribution of WWTP bioaerosols; their major emission sources, composition, and health risks; and considerations for future research are discussed. The major themes and findings in the literature are as follows: the major emission sources of WWTP bioaerosols include screen rooms, sludge-dewatering rooms, and aeration tanks; the bioaerosol concentrations in screen and sludge-dewatering rooms are higher than those outdoors. WWTP bioaerosols contain a variety of potentially pathogenic bacteria, fungi, antibiotic resistance genes, viruses, endotoxins, and toxic metal(loid)s. These potentially pathogenic substances spread with the bioaerosols, thereby posing health risks to workers and residents in and around the WWTP. Inhalation has been identified as the main exposure route, and children are at a higher risk of this than adults. Future studies should identify emerging contaminants, establish health risk assessments, and develop prevention and control systems.

Keywords Wastewater treatment plant      Bioaerosols      Pathogen      Dispersion      Risk assessment     
Corresponding Author(s): Lin Li   
Issue Date: 23 October 2020
 Cite this article:   
Yunping Han,Lin Li,Ying Wang, et al. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1330-1
https://academic.hep.com.cn/fese/EN/Y2021/V15/I3/38
Fig.1  Bioaerosol concentration at different operation sections of wastewater treatment plants (Data Sources: Fernando and Fedorak, 2005; Sánchez-Monedero et al., 2008; Niazi et al., 2015; Silini et al., 2016; Szyłak-szydłowski et al., 2016; Xu et al., 2018; Han et al., 2019; Wang et al., 2019a).
Fig.2  Schematic diagram of main components of bioaerosol in wastewater treatment plant.
Number Phylum Genus Species Sampling sites Wastewater property Treatment technology Country or region References
1 Firmicute Bacillus / Grille Municipal wastewater A/O Beijing, China Liu et al. (2013)
Proteobacteria Escherichia Escherichia coli
Pseudomonas /
Firmicute Staphylococcus /
Brevibacterium /
Firmicute Bacillus / Aeration tank
Staphylococcus /
Actinobacteria Corynebacterium /
Proteobacteria Pseudomonas / Sludge treatment
Escherichia Escherichia coli
Firmicute Bacillus /
2 Firmicute Bacillus / Oxidation ditch Municipal wastewater Oxidation ditch Beijing, China Yang et al. (2019b)
Lysinibacillus /
Proteobacteria Sphingomonas /
3 Firmicute Bicillus / Upwind direction, Mechanical treatment, Biological treatment, Downwind direction Municipal wastewater A2O Beijing, China Han et al. (2019)
Actinobacteria Arthrobacter /
Firmicute Micrococcus /
4 Acidobacteria Geothrix / Upwind direction Municipal wastewater Oxidation ditch Hefei, China Yang et al. (2019d)
Actinobacteria Microthrix / Fine grid, Downwind direction
Cyanobacteria Cyanobacteria / Aeration unit
Bacteroidetes Saprospiraceae / Sludge dewatering room
5 Proteobacteria Mitochondria / Sludge dewatering room Municipal wastewater Activated sludge Guangzhou, China Han et al. (2018)
Firmicute Peptostreptoco-
Ccaceae
/
Proteobacteria Sphingomonas /
6 Firmicute Staphylococcus / Mechanical treatment, Aeration tank, Clarifier, Sludge treatment Municipal wastewater,
Coking wastewater, Food processing wastewater,
Activated sludge Poland Kowalski et al. (2017)
Bacillus /
7 Actinobacteria Corynebacterium / Mechanical treatment, Biological treatment, Sludge treatment Municipal wastewater Activated sludge Eastern Poland Prazmo et al. (2003)
Actinobacteria Arthrobacter /
Firmicute Brevibacterium /
Staphylococcus /
Micrococcus /
Bacillus /
8 Firmicute Bacillus / Mechanical treatment, Biological treatment,
office
Municipal wastewater / India Gangamma et al. (2011)
Tab.1  Predominant bacteria in bioaerosols from WWTPs
Number Phylum Genus Species Sampling sites Wastewater property Treatment technology Country or region references
1 Zygomycotina Mucor / Grille Municipal wastewater A/O Beijing, China Liu et al. (2013)
Ascomycotina Penicillium /
Zygomycota Rhizopus /
Ascomycota Aspergillus /
Deuteromycotina Paecilomyces /
Zygomycotina Mucor / Aeration tank
Ascomycotina Penicillium /
Zygomycota Rhizopus /
Zygomycotina Mucor / Sludge treatment
Ascomycotina Penicillium /
2 Deuteromycotina Geotrichum Geotrichum candidum Mechanical treatment, Biological treatment, Sludge treatment Municipal wastewater Activated sludge Eastern Poland Prazmo et al. (2003)
Ascomycotina Penicillium /
Deuteromycotina Cladosporium Cladosporium lignicola
Ascomycota Alternaria Alternaria alternate
3 Ascomycota Aspergillus / Mechanical treatment, Biological treatment, Sludge treatment Municipal wastewater / Central Poland Cyprowski et al. (2008)
Zygomycotina Mucor /
Ascomycotina Penicillium /
Ascomycota Alternaria /
4 Deuteromycotina Cladosporium / Aeration tank Municipal wastewater, Feces-urine wastewater / Korea Park et al. (2011)
Ascomycota Alternaria /
Ascomycotina Penicillium /
Tab.2  Predominant fungi in bioaerosols in WWTPs
Transport scale Time Distance Occasions
Submicroscale <10 min <100 m Common type within buildings or other confined spaces
Microscale 10 min?1 h 100 m to 1 km Common type for bioaerosols transportation
Mesoscale A few days Up to 100 km Seldom occur in WWTPs
Macroscale Longer than a few days >100km No report related to WWTPs
Tab.3  Transport of bioaerosols
Distance
(m)
Airborne bacteria
(CFU/m3)
Airborne fungi
(CFU/m3)
E. coli(PFU/m3) Fecal coliform (PFU/m3) Fecal streptococci (PFU/m3) E. coli phage (PFU/m3) Rotavirus (viruses/m3h) Norovirus (viruses/m3h) Norovirus (GC/m3)
0 2358a ? ? ? ? ? ? ? ?
20 972 a ? ? ? ? ? ? ? ?
40 669 a ? ? ? ? ? ? ? ?
Upwind 824b ? ? ? ? ? ? ? ?
0.5 4536 b ? ? ? ? ? ? ? ?
25 2042 b ? ? ? ? ? ? ? ?
55 1475 b ? ? ? ? ? ? ? ?
210 1057 b ? ? ? ? ? ? ? ?
1.5 4155 c 883 c ? ? ? ? ? ? ?
6.5 1313c 203 c ? ? ? ? ? ? ?
Upwind ? ? 0.22d 0.01 d 0.04 d 120 d ? ? ?
<150 ? ? 6.81 d 1.67 d 0.29 d 730 d ? ? ?
150?250 ? ? 0.86 d 0.18 d 0.15 d 490 d ? ? ?
>250 ? ? 0.4 d 0.29 d 0.48 d 760 d ? ? ?
100 ? ? ? ? ? ? ? ? 0.16e
300 ? ? ? ? ? ? ? ? 8.60E-03 e
500 ? ? ? ? ? ? ? ? 2.10E-03 e
1000 ? ? ? ? ? ? ? ? 2.90E-04 e
Upwind 250 106f 67 f ? ? ? ? ? ? ?
100 166 f 322 f ? ? ? ? ? ? ?
250 198 f 394 f ? ? ? ? ? ? ?
500 181 f 189 f ? ? ? ? ? ? ?
0 ? ? ? ? ? ? 27 g 3099 g ?
300 ? ? ? ? ? ? 3.87E-06 g 1.75E-04 g ?
500 ? ? ? ? ? ? 1.51E-06 g 1.74E-04 g ?
1000 ? ? ? ? ? ? 4.56E-07 g 5.24E-05 g -
Tab.4  Variation of bioaerosols concentrations along horizontal distance from the sources
Concentration(CFU/m3) Vertical distance from water surface (m) References
0 0.1 0.5 1.0 1.5 2.0 3.0
Airborne bacteria ? 1588 ? ? 730 ? 138 Yang et al. (2019a)
? 715 ? ? 238 ? ? Wang et al. (2019a)
1416 ? 2358 ? ? 646 ? Li et al. (2013a)
1755 ? 4536 1047 ? ? ? Yang et al. (2019b)
Tab.5  Variation of bioaerosol concentrations along vertical distance from the wastewater surface
Fig.3  Hazard quotient (HQ) of bioaerosols for adult male, female, and children within and/or around WWTPs: Inhalation (a) and skin (b) exposure route (Data Sources: Niazi et al., 2015; Ding et al., 2016; Yang et al., 2019a; Yang et al., 2019b).
1 G M Afeti, F J Resch (1990). Distribution of the liquid aerosol produced from bursting bubbles in sea and distilled water. Tellus. Series B, Chemical and Physical Meteorology, 42(4): 378–384
https://doi.org/10.3402/tellusb.v42i4.15232
2 W S Baker, G C Gray (2009). A review of published reports regarding zoonotic pathogen infection in veterinarians. Journal of the American Veterinary Medical Association, 234(10): 1271–1278
https://doi.org/10.2460/javma.234.10.1271
3 E Baylor, V Peters, M Baylor (1977). Water-to-air transfer of virus. Science, 197(4305): 763–764
https://doi.org/10.1126/science.329413
4 D C Blanchard, L D Syzdek (1982). Water-to-air transfer and enrichment of bacteria in drops from bursting bubbles. Applied and Environmental Microbiology, 43(5): 1001–1005
https://doi.org/10.1128/AEM.43.5.1001-1005.1982
5 B L Charous, R G Hamilton, J W Yunginger (1994). Occupational latex exposure: characteristics of contact and systemic reactions in 47 workers. Journal of Allergy and Clinical Immunology, 94(1): 12–18
https://doi.org/10.1016/0091-6749(94)90065-5
6 D Courault, I Albert, S Perelle, A Fraisse, P Renault, A Salemkour, P Amato (2017). Assessment and risk modeling of airborne enteric viruses emitted from wastewater reused for irrigation. Science of the Total Environment, 592: 512–526
https://doi.org/10.1016/j.scitotenv.2017.03.105
7 M Cyprowski, M Sowiak, P M Soroka, A Buczyrńska, A Kozajda, I Szadkowska-Stańczyk (2008). Assessment of occupational exposure to fungal aerosols in wastewater treatment plants. Medycyna Pracy, 59(5): 365–371
8 R L Dimmick, H Wolochow, M A Chatigny (1979). Evidence that bacteria can form new cells in airborne particles. Applied and Environmental Microbiology, 37(5): 924–927
https://doi.org/10.1128/AEM.37.5.924-927.1979
9 W Ding, L Li, Y Han, J Liu, J Liu (2016). Site-related and seasonal variation of bioaerosol emission in an indoor wastewater treatment station: level, characteristics of particle size, and microbial structure. Aerobiologia, 32(2): 211–224
https://doi.org/10.1007/s10453-015-9391-5
10 M Divizia, B Cencioni, L Palombi, A Panà (2008). Sewage workers: Risk of acquiring enteric virus infections including Hepatitis. Anais de Microbiologia, 31(3): 337–341
11 J Douwes, P Thorne, N Pearce, D Heederik (2003). Bioaerosol health effects and exposure assessment: Progress and prospects. Annals of Occupational Hygiene, 47(3): 187–200
12 V I Enne, A King, D M Livermore, L M C Hall (2002). Sulfonamide resistance in Haemophilus influenza mediated by acquisition of sul2 or a short insertion in chromosomal folP. Antimicrobial Agents and Chemotherapy, 46(6): 1934–1939
https://doi.org/10.1128/AAC.46.6.1934-1939.2002
13 E Espigares, A Bueno, M Espigares, R Gálvez (2006). Isolation of Salmonella serotypes in wastewater and effluent: Effect of treatment and potential risk. International Journal of Hygiene and Environmental Health, 209(1): 103–107
https://doi.org/10.1016/j.ijheh.2005.08.006
14 K F Fannin, S C Vana, W Jakubowski (1985). Effect of an activated sludge wastewater treatment plant on ambient air densities of aerosols containing bacteria and viruses. Applied and Environmental Microbiology, 49(5): 1191–1196
https://doi.org/10.1128/AEM.49.5.1191-1196.1985
15 S Fathi, Y Hajizadeh, M Nikaeen, M Gorbani (2017). Assessment of microbial aerosol emissions in an urban wastewater treatment plant operated with activated sludge process. Aerobiologia, 33(4): 507–515
https://doi.org/10.1007/s10453-017-9486-2
16 N L Fernando, P M Fedorak (2005). Changes at an activated sludge sewage treatment plant alter the numbers of airborne aerobic microorganisms. Water Research, 39(19): 4597–4608
https://doi.org/10.1016/j.watres.2005.08.010
17 L Fracchia, S Pietronave, M Rinaldi, M Giovanna Martinotti(2006). Site-related airborne biological hazard and seasonal variations in two wastewater treatment plants. Water Research, 40(10): 1985–1994
https://doi.org/10.1016/j.watres.2006.03.016
18 K Frank, G Davies, N Shirodkar, A Sauvageau (2009). Aerating a high rate low SRT activated sludge reactor: coarse or fine bubble aeration: How about a hybrid? Proceedings of the Water Environment Federation, 8: 7215–7224
https://doi.org/10.2175/193864709793957382
19 S Gangamma, R S Patil, S Mukherji (2011). Characterization and proinflammatory response of airborne biological particles from wastewater treatment plants. Environmental Science & Technology, 45(8): 3282–3287
https://doi.org/10.1021/es103652z
20 M Gao, R Jia, T Qiu, M Han, Y Song, X Wang (2015). Seasonal size distribution of airborne culturable bacteria and fungi and preliminary estimation of their deposition in human lungs during non-haze and haze days. Atmospheric Environment, 118: 203–210
https://doi.org/10.1016/j.atmosenv.2015.08.004
21 A Gaviria-Figueroa, E C Preisner, S Hoque, C E Feigley, R S Norman (2019). Emission and dispersal of antibiotic resistance genes through bioaerosols generated during the treatment of municipal sewage. Science of the Total Environment, 686: 402–412
https://doi.org/10.1016/j.scitotenv.2019.05.454
22 GBD Mortality and Causes of Death Collaborators (2014). Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: A systematic analysis for the Global Burden of Disease Study 2013. The Lancet, 385(9963): 117–171 doi: 10.1016/S0140-6736(14)61682-2
23 B Ghosh, H Lal, A Srivastava (2015). Review of bioaerosols in indoor environment with special reference to sampling, analysis and control mechanisms. Environment International, 85: 254–272
https://doi.org/10.1016/j.envint.2015.09.018
24 R I Glass, U D Parashar, M K Estes (2009). Norovirus Gastroenteritis. New England Journal of Medicine, 361(18): 1776–1785 doi:10.1056/NEJMra0804575
25 A Gotkowska-Płachta, Z Filipkowska, E Korzeniewska, W Janczukowicz, B Dixon, I Gołaś, D Szwalgin (2013). Airborne microorganisms emitted from wastewater treatment plant treating domestic wastewater and meat processing industry wastes. CLEAN-Soil Air Water, 41(5): 429–436
https://doi.org/10.1002/clen.201100466
26 K A Hamilton, M T Hamilton, W Johnson, P Jjemba, Z Bukhari, M LeChevallier, C N Haas (2018). Health risks from exposure to Legionella in reclaimed water aerosols: Toilet flushing, spray irrigation, and cooling towers. Water Research, 134: 261–279
https://doi.org/10.1016/j.watres.2017.12.022
27 Y Han, L Li, J Liu (2013). Characterization of the airborne bacteria community at different distances from the rotating brushes in a wastewater treatment plant by 16S rRNA gene clone libraries. Journal of Environmental Sciences (China), 25(1): 5–15
https://doi.org/10.1016/S1001-0742(12)60018-7
28 Y Han, L Li, J Liu, M Zhang (2012). Microbial structure and chemical components of aerosols caused by rotating brushes in a wastewater treatment plant. Environmental Science and Pollution Research International, 19(9): 4097–4108
https://doi.org/10.1007/s11356-012-0885-1
29 Y Han, Y Wang, L Li, G Xu, J Liu, K Yang (2018). Bacterial population and chemicals in bioaerosols from indoor environment: Sludge dewatering houses in nine municipal wastewater treatment plants. Science of the Total Environment, 618: 469–478
https://doi.org/10.1016/j.scitotenv.2017.11.071
30 Y Han, K Yang, T Yang, M Zhang, L Li (2019). Bioaerosols emission and exposure risk of a wastewater treatment plant with A2O treatment process. Ecotoxicology and Environmental Safety, 169: 161–168
https://doi.org/10.1016/j.ecoenv.2018.11.018
31 Y Han, T Yang, X Yan, L Li, J Liu (2020). Effect of aeration mode on aerosol characteristics from the same wastewater treatment plant. Water Research, 170: 115324
https://doi.org/10.1016/j.watres.2019.115324
32 T W Hejkal, P A Larock, J W Winchester (1980). Water-to-air fractionation of bacteria. Applied and Environmental Microbiology, 39(2): 335–338
https://doi.org/10.1128/AEM.39.2.335-338.1980
33 K K Heldal, L Barregard, D G Ellingsen (2016). Biomarkers of inflammation in workersexposed to compost and sewage dust. International Archives of Occupational and Environmental Health, 89(5): 711–718
https://doi.org/10.1007/s00420-015-1109-z
34 L Helldal, N Karami, C Welinder-Olsson, E R B Moore, C Åhren (2017). Evaluation of MLVA for epidemiological typing and outbreak detection of ESBL-producing Escherichia coli in Sweden. BMC Microbiology, 17(1): 8-18
https://doi.org/10.1186/s12866-016-0922-1
35 C Humbal, S Gautam, U Trivedi (2018). A review on recent progress in observations, and health effects of bioaerosols. Environment International, 118: 189–193
https://doi.org/10.1016/j.envint.2018.05.053
36 T N Jang, S H Lee, C H Huang, C L Lee, W Y Chen (2009). Risk factors and impact of nosocomial Acinetobacter baumannii bloodstream infections in the adult intensive care unit: a case–control study. Journal of Hospital Infection, 73(2): 143–150
https://doi.org/10.1016/j.jhin.2009.06.007
37 H Kanaani, M Hargreaves, Z Ristovski, L Morawska (2008). Deposition rates of fungal spores in indoor environments, factors effecting them and comparison with non-biological aerosols. Atmospheric Environment, 42(30): 7141–7154
https://doi.org/10.1016/j.atmosenv.2008.05.059
38 W R Ke, Y M Kuo, C W Lin, S H Huang, C C Chen (2017). Characterization of aerosol emissions from single bubble bursting. Journal of Aerosol Science, 109: 1–12
https://doi.org/10.1016/j.jaerosci.2017.03.006
39 K H Kim, E Kabir, S A Jahan (2018). Airborne bioaerosols and their impact on human health. Journal of Environmental Sciences (China), 67: 23–35
https://doi.org/10.1016/j.jes.2017.08.027
40 E Korzeniewska, Z Filipkowska, A Gotkowska-Płachta, W Janczukowicz, B Dixon, M Czułowska (2009). Determination of emitted airborne microorganisms from a BIO-PAK wastewater treatment plant. Water Research, 43(11): 2841–2851
https://doi.org/10.1016/j.watres.2009.03.050
41 M Kowalski, J Wolany, J S Pastuszka, G Płaza, A Wlazło, K Ulfig, A Malina (2017). Characteristics of airborne bacteria and fungi in some Polish wastewater treatment plants. International Journal of Environmental Science and Technology, 14(10): 2181–2192
https://doi.org/10.1007/s13762-017-1314-2
42 J Lacey, B Crook (1988). Fungal and actinomycete spores as pollutants of the allergens. Annals of Occupational Hygiene, 32(4): 515–533
43 J P G Van Leuken, A N Swart, A H Havelaar, A Van Pul, W Van der Hoek, D Heederik (2016). Atmospheric dispersion modelling of bioaerosols that are pathogenic to humans and livestock: A review to inform risk assessment studies. Microbial Risk Analysis, 1: 19–39
https://doi.org/10.1016/j.mran.2015.07.002
44 J Li, L Zhou, X Zhang, C Xu, L Dong, M Yao (2016). Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant. Atmospheric Environment, 124: 404–412
https://doi.org/10.1016/j.atmosenv.2015.06.030
45 L Li, M Gao, J Liu, X Guo (2011). Removal of airborne microorganisms emitted from a wastewater treatment oxidation ditch by adsorption on activated carbon. Journal of Environmental Sciences (China), 23(5): 711–717
https://doi.org/10.1016/S1001-0742(10)60466-4
46 L Li, Y Han, J Liu (2013a). Assessing genetic structure, diversity of bacterial aerosol from aeration system in an oxidation ditch wastewater treatment plant by culture methods and bio-molecular tools. Environmental Monitoring and Assessment, 185(1): 603–613
https://doi.org/10.1007/s10661-012-2578-0
47 Y Li, H Zhang, X Qiu, Y Zhang, H Wang (2013b). Dispersion and risk assessment of bacterial aerosols emitted from rotating brush aerator during summer in a wastewater treatment plant of Xi’an, China. Aerosol and Air Quality Research, 13(6): 1807–1814
https://doi.org/10.4209/aaqr.2012.09.0245
48 J Liu, S Liu, D Liu, L Ma, M Zhao, X Wang (2012). Meta-analysis of thermophilic actinomycetes and lung disease of farmers in China. Modern Preventive Medicine, 39(23): 6093–6096, 6100
49 J Liu, J Zhou, W Ma (2013). Research on the pollution characteristics of microbial aerosol in municipal wastewater treatment plant in Beijing. Environmental Pollution & Control, 35(06): 1–4,31
50 S Liu, S Yin, Q Luo, L Zhou (2006). Numerical simulation of atomized flow diffusion in deep andnarrow goeges. Journal of Hydrodynamics, 18(3): 515–518
https://doi.org/10.1016/S1001-6058(06)60104-2
51 S Madhwal, V Prabhu, S Sundriyal, V Shridhar (2020). Distribution, characterization and health risk assessment of size fractionated bioaerosols at an open landfill site in Dehradun, India. Atmospheric Pollution Research, 11(1): 156–169
https://doi.org/10.1016/j.apr.2019.10.002
52 S Maharia, A Srivastava (2015). Influence of seasonal variation on concentration of fungal bioaerosol at a sewage treatment plant (STP) in Delhi. Aerobiologia, 31(2): 249–260
https://doi.org/10.1007/s10453-014-9361-3
53 J Mandal, H Brandl (2011). Bioaerosols in indoor environment: A review with special reference to residential and occupational locations. Open Environmental & Biological Monitoring Journal, 4(1): 83–96
https://doi.org/10.2174/1875040001104010083
54 F G Masclaux, P Hotz, D Gashi, D Savova-Bianchi, A Oppliger (2014). Assessment of airborne virus contamination in wastewater treatment plants. Environmental Research, 133: 260–265
https://doi.org/10.1016/j.envres.2014.06.002
55 Z Nasir, E Hayes, B Williams, T Gladding, C Rolph, S Khera, S Jackson, A Bennett, S Collins, S Parks, A Attwood, R P Kinnersley, K Walsh, S G Alcega, S J T Pollard, G Drew, F Coulon, S Tyrrel (2019). Scoping studies to establish the capability and utility of a real-time bioaerosol sensor to characterise emissions from environmental sources. Science of the Total Environment, 648: 25–32
https://doi.org/10.1016/j.scitotenv.2018.08.120
56 A Nel (2005). Air pollution-related illness: Effects of particles. Science, 308: 804–806 doi:10.1126/science.1108752
57 A Nel, T Xia, L Mädler, N Li (2006). Toxic potential of materials at the nano level. Science, 311(5761): 622–627
https://doi.org/10.1126/science.1114397
58 S Niazi, M S Hassanvand, A H Mahvi, R Nabizadeh, M Alimohammadi, S Nabavi, S Faridi, A Dehghani, M Hoseini, M Moradi-Joo, A Mokamel, H Kashani, N Yarali, M Yunesian (2015). Assessment of bioaerosol contamination (bacteria and fungi) in the largest urban wastewater treatment plant in the Middle East. Environmental Science and Pollution Research International, 22(20): 16014–16021
https://doi.org/10.1007/s11356-015-4793-z
59 K N Park, J Y Koh, C S Jeong, J Kim (2011). Distribution and characteristics of culturable airborne bacteria and fungi in municipal wastewater treatment plants. The Korean Journal of Microbiology, 47(1): 38–49
60 H Pasalari, A Ataei-Pirkooh, M Aminikhah, A J Jafari, M Farzadkia (2019). Assessment of airborne enteric viruses emitted from wastewater treatment plant: Atmospheric dispersion model, quantitative microbial risk assessment, disease burden. Environmental Pollution, 253: 464–473
https://doi.org/10.1016/j.envpol.2019.07.010
61 L Pascual, S Pérez-Luz, M A Yáñez, A Santamaría, K Gibert, M Salgot, D Apraiz, V Catalán (2003). Bioaerosol emission from wastewater treatment plants. Aerobiologia, 19(3/4): 261–270
https://doi.org/10.1023/B:AERO.0000006598.45757.7f
62 J S Pastuszka, U Kyaw Tha Paw, D O Lis, A Wlazło, K Ulfig (2000). Bacterial and fungal bioaerosols in indoor environment in Upper Silesia, Poland. Atmospheric Environment, 34(22): 3833–3842
https://doi.org/10.1016/S1352-2310(99)00527-0
63 I L Pepper, S E Dowd(2009). Aeromicrobiology. In: Maier R M, Pepper I L, Gerba C P, eds. Environmental Microbiology. 2nd ed. Tucson: Arizona, 83–102
64 S D Pillai, S C Ricke (2002). Bioaerosols from municipal and animal wastes: Background and contemporary issues. Canadian Journal of Microbiology, 48(8): 681–696
https://doi.org/10.1139/w02-070
65 Z Prazmo, E Krysinskatraczyk, C Skorska, J Sitkowska, G Cholewa, J Dutkiewicz (2003). Exposure to bioaerosols in a municipal sewage treatment plant. Annals of Agricultural and Environmental Medicine, 10(2): 241–248
66 J Qu, H Wang, K Wang, G Yu, B Ke, H-Q Yu, H Ren, X Zheng, J Li, W-W Li, S Gao, H Gong (2019). Municipal wastewater treatment in China: Development history and future perspectives. Frontiers of Environmental Science & Engineering, 13(6): 88
67 L Rizzo, C Manaia, C Merlin, T Schwartz, C Dagot, M C Ploy, I Michael, D Fatta-Kassinos (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447: 345–360
https://doi.org/10.1016/j.scitotenv.2013.01.032
68 L M Russell, E G Singh (2006). Submicron salt particle production in bubble bursting. Aerosol Science and Technology, 40(9): 664–671
https://doi.org/10.1080/02786820600793951
69 M A Sánchez-Monedero, M I Aguilar, R Fenoll, A Roig (2008). Effect of the aeration system on the levels of airborne microorganisms generated at wastewater treatment plants. Water Research, 42(14): 3739–3744
https://doi.org/10.1016/j.watres.2008.06.028
70 O Schlosser (2019). Bioaerosols and health: current knowledge and gaps in the field of waste management. Detritus, 5(1): 111–125 doi:10.31025/2611-4135/2019.13786
71 H Sheng, D Wu, H Zhang, X Wei (2006). Viscosity, surface tension, and atomization of water-methanol and diesel emulsions. Atomization and Sprays, 16(1): 1–14
https://doi.org/10.1615/AtomizSpr.v16.i1.10
72 H Shimizu, T G Phan, S Nishimura, S Okitsu, N Maneekarn, H Ushijima (2007). An outbreak of adenovirus serotype 41 infection in infants and children with acute gastroenteritis in Maizuru City, Japan. Infection, Genetics and Evolution, 7(2): 279–284
https://doi.org/10.1016/j.meegid.2006.11.005
73 S Silini, H Ali-Khodja, A Boudemagh, A Terrouche, M Bouziane (2016). Isolation and preliminary identification of actinomycetes isolated from a wastewater treatment plant and capable of growing on methyl ethyl ketone as a sole source of carbon and energy. Desalination and Water Treatment, 57(26): 12108–12117
https://doi.org/10.1080/19443994.2015.1046943
74 M Stafoggia, G Cesaroni, A Peters, Z J Andersen, C Badaloni, R Beelen, B Caracciolo, J Cyrys, U de Faire, K de Hoogh, K T Eriksen, L Fratiglioni, C Galassi, B Gigante, A S Havulinna, F Hennig, A Hilding, G Hoek, B Hoffmann, D Houthuijs, M Korek, T Lanki, K Leander, P K Magnusson, C Meisinger, E Migliore, K Overvad, C G Östenson, N L Pedersen, J Pekkanen, J Penell, G Pershagen, N Pundt, A Pyko, O Raaschou-Nielsen, A Ranzi, F Ricceri, C Sacerdote, W J R Swart, A W Turunen, P Vineis, C Weimar, G Weinmayr, K Wolf, B Brunekreef, F Forastiere (2014). Long-term exposure to ambient air pollution and incidence of cerebrovascular events: results from 11 European cohorts within the ESCAPE project. Environmental Health Perspectives, 122(9): 919–925
https://doi.org/10.1289/ehp.1307301
75 R E Stockwell, E L Ballard, P O’Rourke, L D Knibbs, L Morawska, S C Bell (2019). Indoor hospital air and the impact of ventilation on bioaerosols: A systematic review. Journal of Hospital Infection, 103(2): 175–184
https://doi.org/10.1016/j.jhin.2019.06.016
76 A Straumfors, K K Heldal, W Eduard, I M Wouters, D G Ellingsen, M Skogstad (2016). Cross-shift study of exposure-response relationships between bioaerosol exposure and respiratory effects in the Norwegian grain and animal feed production industry. Occupational and Environmental Medicine,73: 685–693
https://doi.org/10.1136/oemed-2015-103438
77 Q Sun, Y Lu (2018). Candida albicans morphological plasticity and pathogenesis.   Mycosystema, 37(10): 1287–1298 (in Chinese)_
78 J H Tian, C Yan, Z A Nasir, S G Alcega, S Tyrrel, F Coulon (2020). Real time detection and characterisation of bioaerosol emissions from wastewater treatment plants. Science of the Total Environment, 721: 1–13
https://doi.org/10.1016/j.scitotenv.2020.137629
79 K Uhrbrand, A C Schultz, A M Madsen (2011). Exposure to airborne noroviruses and other bioaerosol components at a wastewater treatment plant in Denmark. Food and Environmental Virology, 3(3–4): 130–137
https://doi.org/10.1007/s12560-011-9068-3
80 C D Upper, S S Hirano (1991). Aerial dispersal of bacteria. Biotechnology (Reading, Mass.), 15: 75–93
81 USEPA (1999). Human Health and Ecological Risk Assessment Support to the Development of Technical Standards for Emissions from Combustion Units Burning Hazardous Wastes, Background Document. Washington, DC
82 USEPA (2011). Exposure Factors Handbook, Office of Research and Development. Washington, DC
83 B van den Burg (2003). Extremophiles as a source for novel enzymes. Current Opinion in Microbiology, 6(3): 213–218
https://doi.org/10.1016/S1369-5274(03)00060-2
84 V Vujanovic, W Smoragiewicz, K Krzysztyniak (2001). Airborne fungal ecological niche determination as one of the possibilities for indirect mycotoxin risk assessment in indoor air. Environmental Toxicology, 16(1): 1–8
https://doi.org/10.1002/1522-7278(2001)16:1<1::AID-TOX10>3.0.CO;2-8
85 S M Walser, D G Gerstner, B Brenner, C Holler, B Liebl, C E Herr (2014). Assessing the environmental health relevance of cooling towers–a systematic review of legionellosis outbreaks. International Journal of Hygiene and Environmental Health, 217(2–3): 145–154
https://doi.org/10.1016/j.ijheh.2013.08.002
86 F Wang, J Zhang, Y Liu, G Liu, J Liu (2011). Study on the correlation of pathogenicity and distribution characters of pathogenic genes in Staphylococcus aureus. Laboratory Medcine and Clinic, 8(16): 1967–1968 (in Chinese)
87 Y Wang, H Lan, L Li, K Yang, J Qu, J Liu (2018b). Chemicals and microbes in bioaerosols from reaction tanks of six wastewater treatment plants: survival factors, generation sources, and mechanisms. Scientific Reports, 8(1): 1–12
https://doi.org/10.1038/s41598-018-27652-2
88 Y Wang, L Li, Y Han, J Liu, K Yang (2018a). Intestinal bacteria in bioaerosols and factors affecting their survival in two oxidation ditch process municipal wastewater treatment plants located in different regions. Ecotoxicology and Environmental Safety, 154: 162–170
https://doi.org/10.1016/j.ecoenv.2018.02.041
89 Y Wang, L Li, R Xiong, X Guo, J Liu (2019a). Effects of aeration on microbes and intestinal bacteria in bioaerosols from the BRT of an indoor wastewater treatment facility. Science of the Total Environment, 648: 1453–1461
https://doi.org/10.1016/j.scitotenv.2018.08.244
90 Y Wang, L Li, S Xue, Y Han, K Yang (2019b). Characteristics and formation mechanism of intestinal bacteria particles emitted from aerated wastewater treatment tanks. Water Research, 163: 114862
https://doi.org/10.1016/j.watres.2019.114862
91 L Wu, D Ning, B Zhang, Y Li, P Zhang, X Shan, Q Zhang, M R Brown, Z Li, D. J Van Nostrand, F Ling, N Xiao, Y Zhang, J Vierheilig, F. G Wells, Y Yang, Y Deng, Q Tu, A Wang, Global Water Microbiome Consortium, T Zhang, Z He, J Keller, H. P Nielsen, J. J. P Alvarez, S. C Criddle, M Wagner, M. J Tiedje, Q He, P. T Curtis, D A. Stahl, L Alvarez-Cohen, B E. Rittmann, X Wen, J Zhou (2019). Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nature Microbiology, 4(7): 1183–1195
https://doi.org/10.1038/s41564-019-0426-5
92 G Xu, Y Han, L Li, J Liu (2018). Characterization and source analysis of indoor/outdoor culturable airborne bacteria in a municipal wastewater treatment plant. Journal of Environmental Sciences (China), 74(12): 71–81
https://doi.org/10.1016/j.jes.2018.02.007
93 K Yang, L Li, Y Wang, S Xue, Y Han, J Liu (2019a). Emission level, particle size and exposure risks of airborne bacteria from the oxidation ditch for seven months observation. Atmospheric Pollution Research, 10(6): 1803–1811
https://doi.org/10.1016/j.apr.2019.07.012
94 K Yang, L Li, Y Wang, S Xue, Y Han, J Liu (2019b). Airborne bacteria in a wastewater treatment plant: Emission characterization, source analysis and health risk assessment. Water Research, 149: 596–606
https://doi.org/10.1016/j.watres.2018.11.027
95 L Yang, Q Wen, Z Chen, R Duan, P Yang (2019c). Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant. Frontiers of Environmental Science & Engineering, 13(3): 32 doi:10.1007/s11783-019-1116-5
96 S Yang, M Wang (2006). Aeromonas hydrophila and its pathogensis to humans. Chinese Journal of Disease Control & Prevention, (05): 511–514
97 T Yang, Y Han, J Liu, L Li (2019d). Aerosols from a wastewater treatment plant using oxidation ditch process: Characteristics, source apportionment, and exposure risks. Environmental Pollution, 250: 627–638
https://doi.org/10.1016/j.envpol.2019.04.071
98 T Yang, L Jiang, Y Han, J Liu, X Wang, X Yan, J Liu (2020). Linking aerosol characteristics of size distributions, core potential pathogens and toxic metal(loid)s to wastewater treatment process. Environmental Pollution, 264: 114741
https://doi.org/10.1016/j.envpol.2020.114741
99 M Zhang, J Zuo, X Yu, X Shi, L Chen, Z Li (2018). Quantification of multi-antibiotic resistant opportunistic pathogenic bacteria in bioaerosols in and around a pharmaceutical wastewater treatment plant. Journal of Environmental Sciences (China), 72(10): 53–65
https://doi.org/10.1016/j.jes.2017.12.011
[1] Liang Cui, Ji Li, Xiangyun Gao, Biao Tian, Jiawen Zhang, Xiaonan Wang, Zhengtao Liu. Human health ambient water quality criteria for 13 heavy metals and health risk assessment in Taihu Lake[J]. Front. Environ. Sci. Eng., 2022, 16(4): 41-.
[2] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[3] Chenchen Li, Lijie Yan, Yiming Li, Dan Zhang, Mutai Bao, Limei Dong. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72-.
[4] Wenwen Xie, Yanpeng Li, Wenyan Bai, Junli Hou, Tianfeng Ma, Xuelin Zeng, Liyuan Zhang, Taicheng An. The source and transport of bioaerosols in the air: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 44-.
[5] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[6] Pil Uthaug Rasmussen, Katrine Uhrbrand, Mette Damkjær Bartels, Helle Neustrup, Dorina Gabriela Karottki, Ute Bültmann, Anne Mette Madsen. Occupational risk of exposure to methicillin-resistant Staphylococcus aureus (MRSA) and the quality of infection hygiene in nursing homes[J]. Front. Environ. Sci. Eng., 2021, 15(3): 41-.
[7] Min Gao, Ziye Yang, Yajie Guo, Mo Chen, Tianlei Qiu, Xingbin Sun, Xuming Wang. The size distribution of airborne bacteria and human pathogenic bacteria in a commercial composting plant[J]. Front. Environ. Sci. Eng., 2021, 15(3): 39-.
[8] Kehui Liu, Xiaolu Liang, Chunming Li, Fangming Yu, Yi Li. Nutrient status and pollution levels in five areas around a manganese mine in southern China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 100-.
[9] Jianfeng Zhou, Ting Wang, Cecilia Yu, Xing Xie. Locally enhanced electric field treatment (LEEFT) for water disinfection[J]. Front. Environ. Sci. Eng., 2020, 14(5): 78-.
[10] Lei Zheng, Xingbao Gao, Wei Wang, Zifu Li, Lingling Zhang, Shikun Cheng. Utilization of MSWI fly ash as partial cement or sand substitute with focus on cementing efficiency and health risk assessment[J]. Front. Environ. Sci. Eng., 2020, 14(1): 5-.
[11] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[12] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[13] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[14] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[15] Bao Yu, Guodi Zheng, Xuedong Wang, Min Wang, Tongbin Chen. Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies[J]. Front. Environ. Sci. Eng., 2019, 13(3): 41-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed