Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (4) : 72    https://doi.org/10.1007/s11783-020-1365-3
RESEARCH ARTICLE
TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy
Chenchen Li, Lijie Yan, Yiming Li(), Dan Zhang, Mutai Bao, Limei Dong
Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
 Download: PDF(3401 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• A novel and multi-functional clay-based oil spill remediation system was constructed.

• TiO2@PAL functions as a particulate dispersant to break oil slick into tiny droplets.

• Effective dispersion leads to the direct contact of TiO2 with oil pollutes directly.

• TiO2 loaded on PAL exhibits efficient photodegradation for oil pollutants.

• TiO2@PAL shows a typical dispersion-photocatalysis synergistic remediation.

Removing spilled oil from the water surface is critically important given that oil spill accidents are a common occurrence. In this study, TiO2@Palygorskite composite prepared by a simple coprecipitation method was used for oil spill remediation via a dispersion-photodegradation synergy. Diesel could be efficiently dispersed into small oil droplets by TiO2@Palygorskite. These dispersed droplets had an average diameter of 20–30 mm and exhibited good time stability. The tight adsorption of TiO2@Palygorskite on the surface of the droplets was observed in fluorescence and SEM images. As a particulate dispersant, the direct contact of TiO2@Palygorskite with oil pollutants effectively enhanced the photodegradation efficiency of TiO2 for oil. During the photodegradation process, •O2and •OH were detected by ESR and radical trapping experiments. The photodegradation efficiency of diesel by TiO2@Palygorskite was enhanced by about 5 times compared with pure TiO2 under simulated sunlight irradiation. The establishment of this new dispersion-photodegradation synergistic remediation system provides a new direction for the development of marine oil spill remediation.

Keywords Palygorskite      TiO2      Pickering emulsion      Oil spill      Dispersion      Photodegradation     
Corresponding Author(s): Yiming Li   
Issue Date: 12 November 2020
 Cite this article:   
Chenchen Li,Lijie Yan,Yiming Li, et al. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1365-3
https://academic.hep.com.cn/fese/EN/Y2021/V15/I4/72
Fig.1  (a, b) SEM and TEM images of PAL; (c, d) TiO2@PAL. (e, f) HRTEM of TiO2@PAL.
Fig.2  (a) XRD spectra of PAL, TiO2, and TiO2@PAL. (b–d) XPS spectroscopy: full spectrum, Ti 2p and O1s.
Fig.3  (a) UV-vis DRS spectra of TiO2, PAL, and TiO2@PAL composite; (b) the dependence of (αhv)2 on hv. (c, d) transient photocurrent curves and Nyquist plots of TiO2 and TiO2@PAL particles.
Fig.4  (a) EI and average droplet diameter emulsified by PAL and TiO2@PAL after 24 h. (b) The stability of emulsion stabilized by TiO2@PAL at different times. (c) Effect of TiO2@PAL concentration on Pickering emulsification. (d) Effect of Voil /Vwater on Pickering emulsification of TiO2@PAL. Except or Fig. 4(b), all EI values of the emulsions were measured after they had been left standing for 24 h.
Fig.5  (a) Optical microscopy image of diesel emulsions and (b) fluorescence image of emulsion stabilized by TiO2@PAL. (c, d) SEM images of paraffin-in-water emulsion stabilized by TiO2@PAL.
Fig.6  (a) Removal rate of diesel under 24 h of simulated sunlight and UV irradiation. (b) Removal rate of diesel under different conditions after 24 h of sunlight irradiation.
Fig.7  (a) Removal rate of diesel under different Voil/Vwater after 12 h of irradiation. (b) Removal rate of diesel under different concentrations of TiO2@PAL after 12 h. (c) Removal rate of diesel under different irradiation times. (d) The fitting curve of ln (Ct/C0) versus time.
Photocatalyst Oil phase Removal rate References
BiOI/EP Diesel (1000 mg/L) 85% Qiu et al., 2019
CaFe2O4 Palm oil mill effluent 56% (COD) Charles and Cheng, 2019
Yb2O3/ZnO+ H2O2 Diesel (200 mg/L) 93.89% Yu et al., 2018
ZrO2(Er3+)/TiO2 Diesel (200 mg/L) 87.74% Ji et al., 2017
TiO2@PAL Diesel (33000 mg/L) 50% This study
Tab.1  Comparison of oil removal rate by various materials reported in the literature
Fig.8  (a, b) ESR spectra of TiO2 and TiO2@PAL in H2O and methanol solutions, respectively. (c) Effects of different capture agents on diesel photodegradation.
Fig.9  Illustration of the simplified mechanism of diesel photodegradation by TiO2@PAL.
Fig.10  (a) Dependence of EI24 and average droplet diameter on the recycle number. (b) The recyclability of TiO2@PAL for diesel degradation. The illumination time of each recycle experiment was 5 h.
1 E Ambrosio, D L Lucca, M H B Garcia, M T F de Souza, T K F de S. Freitas, R P de Souza, J V Visentainer, J C Garcia (2017). Optimization of photocatalytic degradation of biodiesel using TiO2/H2O2 by experimental design. Science of the Total Environment, 581–582: 1–9
https://doi.org/10.1016/j.scitotenv.2016.11.177
2 R M Atlas (1995). Petroleum biodegradation and oil spill bioremediation. Marine Pollution Bulletin, 31(4–12): 178–182
https://doi.org/10.1016/0025-326X(95)00113-2
3 B P Binks, T S Horozov (2005). Aqueous foams stabilized solely by silica nanoparticles. Angewandte Chemie International Edition, 44(24): 3722–3725
https://doi.org/10.1002/anie.200462470
4 Z Cai, X Hao, X Sun, P Du, W Liu, J Fu (2019). Highly active WO3@anatase-SiO2 aerogel for solar-light-driven phenanthrene degradation: Mechanism insight and toxicity assessment. Water Resources, 162: 369–382
5 A Charles, C K Cheng (2019). Photocatalytic treatment of palm oil mill effluent by visible light-active calcium ferrite: Effects of catalyst preparation technique. Journal of Environmental Management, 234: 404–411
https://doi.org/10.1016/j.jenvman.2019.01.024
6 D Chen, Y Li, M Bao, Y Hou, J Jin, Z Yin, Z Wang (2019a). Magnet-responsive silica microrods as solid stabilizer and adsorbent for simultaneous removal of coexisting contaminants in water. ACS Sustainable Chemistry & Engineering, 7(16): 13786–13795
https://doi.org/10.1021/acssuschemeng.9b01559
7 D Chen, A Wang, Y Li, Y Hou, Z Wang (2019b). Biosurfactant-modified palygorskite clay as solid-stabilizers for effective oil spill dispersion. Chemosphere, 226: 1–7
https://doi.org/10.1016/j.chemosphere.2019.03.100
8 J Chen, W Zhang, Z Wan, S Li, T Huang, Y Fei (2019c). Oil spills from global tankers: Status review and future governance. Journal of Cleaner Production, 227: 20–32
https://doi.org/10.1016/j.jclepro.2019.04.020
9 M Cheryan, N Rajagopalan (1998). Membrane processing of oily streams. Wastewater treatment and waste reduction. Journal of Membrane Science, 151(1): 13–28
https://doi.org/10.1016/S0376-7388(98)00190-2
10 Y Chevalier, M A Bolzinger (2013). Emulsions stabilized with solid nanoparticles: Pickering emulsions. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 439: 23–34
https://doi.org/10.1016/j.colsurfa.2013.02.054
11 M Chi, X Sun, A Sujan, Z Davis, B J Tatarchuk (2019). A quantitative XPS examination of UV induced surface modification of TiO2 sorbents for the increased saturation capacity of sulfur heterocycles. Fuel, 238: 454–461
https://doi.org/10.1016/j.fuel.2018.10.114
12 D Das, P Makal (2020). Narrow band gap reduced TiO2-B:Cu nanowire heterostructures for efficient visible light absorption, charge separation and photocatalytic degradation. Applied Surface Science, 506: 144880–144891
https://doi.org/10.1016/j.apsusc.2019.144880
13 Y Deng (2020). Low-cost adsorbents for urban stormwater pollution control Collection. Frontiers of Environmental Science & Engineering, 14 (5): 83
https://doi.org/doi.org/10.1007/s11783-020-1262-9
14 J Dong, A J Worthen, L M Foster, Y Chen, K A Cornell, S L Bryant, T M Truskett, C W Bielawski, K P Johnston (2014). Modified montmorillonite clay microparticles for stable oil-in-seawater emulsions. ACS Applied Materials & Interfaces, 6(14): 11502–11513
https://doi.org/10.1021/am502187t
15 Z Du, C Huang, J Meng, Y Yuan, Z Yin, L Feng, Y Liu, L Zhang (2020). Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars. Frontiers of Environmental Science & Engineering,14 (3): 43
https://doi.org/doi.org/10.1007/s11783-020-1220-6
16 M Ge, C Guo, X Zhu, L Ma, Z Han, W Hu, Y Wang (2009). Photocatalytic degradation of methyl orange using ZnO/TiO2 composites. Frontiers of Environmental Science & Engineering in China, 3(3): 271–280
https://doi.org/10.1007/s11783-009-0035-2
17 H Gong, M Bao, G Pi, Y Li, A Wang, Z Wang (2016). Dodecanol-modified petroleum hydrocarbon degrading bacteria for oil spill remediation: double effect on dispersion and degradation. ACS Sustainable Chemistry & Engineering, 4(1): 169–176
https://doi.org/10.1021/acssuschemeng.5b00935
18 H Gong, Y Li, M Bao, D Lv, Z Wang (2015). Petroleum hydrocarbon degrading bacteria associated with chitosan as effective particle-stabilizers for oil emulsification. RSC Advances, 5(47): 37640–37647
https://doi.org/10.1039/C5RA01360G
19 S Guo, Y Jiang, F Wu, P Yu, H Liu, Y Li, L Mao (2019). Graphdiyne-promoted highly efficient photocatalytic activity of graphdiyne/silver phosphate pickering emulsion under visible-light irradiation. ACS Applied Materials & Interfaces, 11(3): 2684–2691
https://doi.org/10.1021/acsami.8b04463
20 H A Hamad, W A Sadik, M M Abd El-Latif, A B Kashyout, M Y Feteha (2016). Photocatalytic parameters and kinetic study for degradation of dichlorophenol-indophenol (DCPIP) dye using highly active mesoporous TiO2 nanoparticles. Journal of Environmental Sciences-China, 43: 26–39
https://doi.org/10.1016/j.jes.2015.05.033
21 L Hu, J Yan, C Wang, B Chai, J Li (2019). Direct electrospinning method for the construction of Z-scheme TiO2/g-C3N4/RGO ternary heterojunction photocatalysts with remarkably ameliorated photocatalytic performance. Chinese Journal of Catalysis, 40(3): 458–469
https://doi.org/10.1016/S1872-2067(18)63181-X
22 I B Ivshina, M S Kuyukina, A V Krivoruchko, A A Elkin, S O Makarov, C J Cunningham, T A Peshkur, R M Atlas, J C Philp (2015). Oil spill problems and sustainable response strategies through new technologies. Environmental Science. Processes & Impacts, 17(7): 1201–1219
https://doi.org/10.1039/C5EM00070J
23 Q Ji, X Yu, J Zhang, Y Liu, X Shang, X Qi (2017). Photocatalytic degradation of diesel pollutants in seawater by using ZrO2 (Er3+)/TiO2 under visible light. Journal of Environmental Chemical Engineering, 5(2): 1423–1428
https://doi.org/10.1016/j.jece.2017.01.011
24 H Katepalli, V T John, A Bose (2013). The response of carbon black stabilized oil-in-water emulsions to the addition of surfactant solutions. Langmuir, 29(23): 6790–6797
https://doi.org/10.1021/la400037c
25 S Kleindienst, J H Paul, S B Joye (2015). Using dispersants after oil spills: impacts on the composition and activity of microbial communities. Nature Reviews. Microbiology, 13(6): 388–396
https://doi.org/10.1038/nrmicro3452
26 P G Kougias, I Angelidaki (2018). Biogas and its opportunities—A review. Frontiers of Environmental Science & Engineering, 12(3): 14–25
https://doi.org/10.1007/s11783-018-1037-8
27 G Lagaly, M Reese, S Abend (1999). Smectites as colloidal stabilizers of emulsions II. Rheological properties of smectite-laden emulsions. Applied Clay Science, 14(5–6): 279–298
https://doi.org/10.1016/S0169-1317(99)00004-6
28 R R Lessard, G Demarco (2000). The significance of oil spill dispersants. Spill Science & Technology Bulletin, 6(1): 59–68
https://doi.org/10.1016/S1353-2561(99)00061-4
29 X Li, J Xiong, Y Xu, Z Feng, J Huang (2019). Defect-assisted surface modification enhances the visible light photocatalytic performance of g-C3N4@C-TiO2 direct Z-scheme heterojunctions. Chinese Journal of Catalysis, 40(3): 424–433
https://doi.org/10.1016/S1872-2067(18)63183-3
30 Y Li, Z Zhu, X Wang (2018). Synthesis and thermal properties of organically modified palygorskite/fluorinated polyurethane nanocomposites. Journal of Applied Polymer Science, 135(28): 45460–45467
https://doi.org/10.1002/app.45460
31 R López, R Gómez (2012). Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. Journal of Sol-Gel Science and Technology, 61(1): 1–7
https://doi.org/10.1007/s10971-011-2582-9
32 J Lu, X Tian, Y Jin, J Chen, K B Walters, S Ding (2014). A pH responsive Pickering emulsion stabilized by fibrous palygorskite particles. Applied Clay Science, 102: 113–120
https://doi.org/10.1016/j.clay.2014.10.019
33 J Lu, W Zhou, J Chen, Y Jin, K B Walters, S Ding (2015). Pickering emulsions stabilized by palygorskite particles grafted with pH-responsive polymer brushes. RSC Advances, 5(13): 9416–9424
https://doi.org/10.1039/C4RA14109A
34 J Luo, G Duan, W Wang, Y Luo, X Liu (2017). Size-controlled synthesis of palygorskite/Ag3PO4 nanocomposites with enhanced visible-light photocatalytic performance. Applied Clay Science, 143: 273–278
https://doi.org/10.1016/j.clay.2017.04.004
35 N Mohaghegh, M Tasviri, E Rahimi, M R Gholami (2015). A novel p–n junction Ag3PO4/BiPO4-based stabilized Pickering emulsion for highly efficient photocatalysis. RSC Advances, 5(17): 12944–12955
https://doi.org/10.1039/C4RA14294B
36 M M Momeni, Y Ghayeb, F Ezati (2018). Fabrication, characterization and photoelectrochemical activity of tungsten-copper co-sensitized TiO2 nanotube composite photoanodes. Journal of Colloid and Interface Science, 514: 70–82
https://doi.org/10.1016/j.jcis.2017.12.021
37 E Nyankson, O Olasehinde, V T John, R B Gupta (2015). Surfactant-loaded halloysite clay nanotube dispersants for crude oil spill remediation. Industrial & Engineering Chemistry Research, 54(38): 9328–9341
https://doi.org/10.1021/acs.iecr.5b02032
38 O Owoseni, E Nyankson, Y Zhang, D J Adams, J He, L Spinu, G L McPherson, A Bose, R B Gupta, V T John (2016). Interfacial adsorption and surfactant release characteristics of magnetically functionalized halloysite nanotubes for responsive emulsions. Journal of Colloid and Interface Science, 463: 288–298
https://doi.org/10.1016/j.jcis.2015.10.064
39 M Pan, M Kim, L Blauch, S K Y Tang (2016). Surface-functionalizable amphiphilic nanoparticles for pickering emulsions with designer fluid–fluid interfaces. RSC Advances, 6(46): 39926–39932
https://doi.org/10.1039/C6RA03950B
40 M Pelaez, N T Nolan, S C Pillai, M K Seery, P Falaras, A G Kontos, P S M Dunlop, J W J Hamilton, J A Byrne, K O’Shea, M H Entezari, D D Dionysiou (2012). A review on the visible light active titanium dioxide photocatalysts for environmental applications. Applied Catalysis B: Environmental, 125: 331–349
https://doi.org/10.1016/j.apcatb.2012.05.036
41 K C Powell, A Chauhan (2014). Interfacial tension and surface elasticity of carbon black (CB) covered oil-water interface. Langmuir, 30(41): 12287–12296
https://doi.org/10.1021/la503049m
42 H Qiu, J Hu, R Zhang, W Gong, Y Yu, H Gao (2019). The photocatalytic degradation of diesel by solar light-driven floating BiOI/EP composites. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 583: 123996
https://doi.org/10.1016/j.colsurfa.2019.123996
43 A L Rodd, M A Creighton, C A Vaslet, J R Rangel-Mendez, R H Hurt, A B Kane (2014). Effects of surface-engineered nanoparticle-based dispersants for marine oil spills on the model organism Artemia franciscana. Environmental Science & Technology, 48(11): 6419–6427
https://doi.org/10.1021/es500892m
44 A Saha, A Nikova, P Venkataraman, V T John, A Bose (2013). Oil emulsification using surface-tunable carbon black particles. ACS Applied Materials & Interfaces, 5(8): 3094–3100
https://doi.org/10.1021/am3032844
45 R Shen, C Jiang, Q Xiang, J Xie, X Li (2019). Surface and interface engineering of hierarchical photocatalysts. Applied Surface Science, 471: 43–87
https://doi.org/10.1016/j.apsusc.2018.11.205
46 R Shi, Y Cao, Y Bao, Y Zhao, G I N Waterhouse, Z Fang, L Z Wu, C H Tung, Y Yin, T Zhang (2017). Self-assembled Au/CdSe nanocrystal clusters for plasmon-mediated photocatalytic hydrogen evolution. Advanced Materials, 29(27): 1700803–1700809
https://doi.org/10.1002/adma.201700803
47 E Stathatos, D Papoulis, C A Aggelopoulos, D Panagiotaras, A Nikolopoulou (2012). TiO2/palygorskite composite nanocrystalline films prepared by surfactant templating route: synergistic effect to the photocatalytic degradation of an azo-dye in water. Journal of Hazardous Materials, 211–212: 68–76
https://doi.org/10.1016/j.jhazmat.2011.11.055
48 H L Tang, Y Ren, S H Wei, G Liu, X X Xu (2019). Preparation of 3D ordered mesoporous anatase TiO2 and their photocatalytic activity. Rare Metals, 38(5): 453–458
https://doi.org/10.1007/s12598-019-01211-8
49 J Tang, P J Quinlan, K C Tam (2015). Stimuli-responsive Pickering emulsions: recent advances and potential applications. Soft Matter, 11(18): 3512–3529
https://doi.org/10.1039/C5SM00247H
50 C Tao, Q Jia, B Han, Z Ma (2020). Tunable selectivity of radical generation over TiO2 for photocatalysis. Chemical Engineering Science, 214: 115438
https://doi.org/10.1016/j.ces.2019.115438
51 C Wang, X Zou, H Liu, T Chen, S L Suib, D Chen, J Xie, M Li, F Sun (2019a). A highly efficient catalyst of palygorskite-supported manganese oxide for formaldehyde oxidation at ambient and low temperature: Performance, mechanism and reaction kinetics. Applied Surface Science, 486: 420–430
https://doi.org/10.1016/j.apsusc.2019.04.257
52 J Wang, B Liu, K Nakata (2019b). Effects of crystallinity, {001}/{101} ratio, and Au decoration on the photocatalytic activity of anatase TiO2 crystals. Chinese Journal of Catalysis, 40(3): 403–412
https://doi.org/10.1016/S1872-2067(18)63174-2
53 P Wang, S Xu, F Chen, H Yu (2019c). Ni nanoparticles as electron-transfer mediators and NiS as interfacial active sites for coordinative enhancement of H2-evolution performance of TiO2. Chinese Journal of Catalysis, 40(3): 343–351
https://doi.org/10.1016/S1872-2067(18)63157-2
54 R Wang, G Jiang, Y Ding, Y Wang, X Sun, X Wang, W Chen (2011). Photocatalytic activity of heterostructures based on TiO2 and halloysite nanotubes. ACS Applied Materials & Interfaces, 3(10): 4154–4158
https://doi.org/10.1021/am201020q
55 Z Wang, C Shen, Y Du, Y Zhang, B Li (2019d) Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil. Frontiers of Environmental Science & Engineering, 13 (5): 79
https://doi.org/doi.org/10.1007/s11783-019-1163-y
56 T Watanabe, A Nakajima, R Wang, M Minabe, S Koizumi, A Fujishima, K Hashimoto (1999). Photocatalytic activity and photoinduced hydrophilicity of titanium dioxide coated glass. Thin Solid Films, 351(1–2): 260–263
https://doi.org/10.1016/S0040-6090(99)00205-9
57 A J Worthen, L M Foster, J Dong, J A Bollinger, A H Peterman, L E Pastora, S L Bryant, T M Truskett, C W Bielawski, K P Johnston (2014). Synergistic formation and stabilization of oil-in-water emulsions by a weakly interacting mixture of zwitterionic surfactant and silica nanoparticles. Langmuir, 30(4): 984–994
https://doi.org/10.1021/la404132p
58 F Wu, X Li, W Liu, S Zhang (2017). Highly enhanced photocatalytic degradation of methylene blue over the indirect all-solid-state Z-scheme g-C3N4-RGO-TiO2 nanoheterojunctions. Applied Surface Science, 405: 60–70
https://doi.org/10.1016/j.apsusc.2017.01.285
59 X Q Wu, Z D Shao, Q Liu, Z Xie, F Zhao, Y M Zheng (2019). Flexible and porous TiO2/SiO2/carbon composite electrospun nanofiber mat with enhanced interfacial charge separation for photocatalytic degradation of organic pollutants in water. Journal of Colloid and Interface Science, 553: 156–166
https://doi.org/10.1016/j.jcis.2019.06.019
60 C Y Xie, S X Meng, L H Xue, R X Bai, X Yang, Y Wang, Z P Qiu, B P Binks, T Guo, T Meng (2017). Light and magnetic dual-responsive pickering emulsion micro-reactors. Langmuir, 33(49): 14139–14148
https://doi.org/10.1021/acs.langmuir.7b03642
61 X Yu, Q Ji, J Zhang, Z Nie, H Yang (2018). Photocatalytic degradation of diesel pollutants in seawater under visible light. Regional Studies in Marine Science, 18: 139–144
https://doi.org/10.1016/j.rsma.2018.02.006
62 Y Zhang, N Liu, W Wang, J Sun, L Zhu (2020). Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles. Frontiers of Environmental Science & Engineering, 14(6): 103
63 Y Zhao, Y Zhao, R Shi, B Wang, G I N Waterhouse, L Z Wu, C H Tung, T Zhang (2019). Tuning oxygen vacancies in ultrathin TiO2 nanosheets to boost photocatalytic nitrogen fixation up to 700 nm. Advanced Materials, 31(16): 1806482–1806491
https://doi.org/10.1002/adma.201806482
64 Y Zhu, Z Zhang, N Lu, R Hua, B Dong (2019). Prolonging charge-separation states by doping lanthanide-ions into {001}/{101} facets-coexposed TiO2 nanosheets for enhancing photocatalytic H2 evolution. Chinese Journal of Catalysis, 40(3): 413–423
https://doi.org/10.1016/S1872-2067(18)63182-1
[1] FSE-20132-OF-LCC_suppl_1 Download
[1] Yuanyuan Luo, Yangyang Zhang, Mengfan Lang, Xuetao Guo, Tianjiao Xia, Tiecheng Wang, Hanzhong Jia, Lingyan Zhu. Identification of sources, characteristics and photochemical transformations of dissolved organic matter with EEM-PARAFAC in the Wei River of China[J]. Front. Environ. Sci. Eng., 2021, 15(5): 96-.
[2] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[3] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
[4] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[5] Reza Katal, Mohammad Tanhaei, Jiangyong Hu. Photocatalytic degradation of the acetaminophen by nanocrystal-engineered TiO2 thin film in batch and continuous system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 27-.
[6] Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(6): 103-.
[7] Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan. Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(5): 77-.
[8] Zhan Wang, Chongyang Shen, Yichun Du, Yulong Zhang, Baoguo Li. Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil[J]. Front. Environ. Sci. Eng., 2019, 13(5): 79-.
[9] In-Sun Kang, Jinying Xi, Hong-Ying Hu. Photolysis and photooxidation of typical gaseous VOCs by UV Irradiation: Removal performance and mechanisms[J]. Front. Environ. Sci. Eng., 2018, 12(3): 8-.
[10] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[11] Chaojie Jiang, Lifen Liu, John C. Crittenden. An electrochemical process that uses an Fe0/TiO2 cathode to degrade typical dyes and antibiotics and a bio-anode that produces electricity[J]. Front. Environ. Sci. Eng., 2016, 10(4): 15-.
[12] Rongfang YUAN,Beihai ZHOU,Duo HUA,Chunhong SHI. Effect of metal ion-doping on characteristics and photocatalytic activity of TiO2 nanotubes for removal of humic acid from water[J]. Front. Environ. Sci. Eng., 2015, 9(5): 850-860.
[13] Ana PICADO,Susana M. PAIXÃO,Liliana MOITA,Luis SILVA,Mário S. DINIZ,Joana LOURENÇO,Isabel PERES,Luisa CASTRO,José Brito CORREIA,Joana PEREIRA,Isabel FERREIRA,António Pedro Alves MATOS,Pedro BARQUINHA,Elsa MENDONCA. A multi-integrated approach on toxicity effects of engineered TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2015, 9(5): 793-803.
[14] Jiangkun DU,Jianguo BAO,Wei HU. Efficient dechlorination of 2,4-dichlorophenol in an aqueous media with a mild pH using a Pd/TiO2NTs/Ti cathode[J]. Front. Environ. Sci. Eng., 2015, 9(5): 919-928.
[15] Yuan ZHANG,Chunming HU,Tao YU. Photodegradation of chromophoric dissolved organic matters in the water of Lake Dianchi, China[J]. Front. Environ. Sci. Eng., 2015, 9(4): 575-582.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed