Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (4) : 70    https://doi.org/10.1007/s11783-020-1363-5
RESEARCH ARTICLE
Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction
Lina Gan1, Kezhi Li2, Hejingying Niu3(), Yue Peng4, Jianjun Chen4(), Yuandong Huang1, Junhua Li4
1. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China
2. Institute of Engineering Technology, Sinopec Catalyst Co., Ltd., Beijing 101111, China
3. School of Environmental & Chemical Engineering, Shanghai University, Shanghai 200444, China
4. School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(1414 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• A V2O5/TiO2 granular catalyst for simultaneous removal of NO and chlorobenzene.

• Catalyst synthesized by vanadyl acetylacetonate showed good activity and stability.

• The kinetic model was established and the synergetic activity was predicted.

• Both chlorobenzene oxidation and SCR of NO follow pseudo-first-order kinetics.

• The work is of much value to design of multi-pollutants emission control system.

The synergetic abatement of multi-pollutants is one of the development trends of flue gas pollution control technology, which is still in the initial stage and facing many challenges. We developed a V2O5/TiO2 granular catalyst and established the kinetic model for the simultaneous removal of NO and chlorobenzene (i.e., an important precursor of dioxins). The granular catalyst synthesized using vanadyl acetylacetonate precursor showed good synergistic catalytic performance and stability. Although the SCR reaction of NO and the oxidation reaction of chlorobenzene mutually inhibited, the reaction order of each reaction was not considerably affected, and the pseudo-first-order reaction kinetics was still followed. The performance prediction of this work is of much value to the understanding and reasonable design of a catalytic system for multi-pollutants (i.e., NO and dioxins) emission control.

Keywords NOx      Chlorobenzene      Simultaneous removal      Kinetic study      Performance prediction      V2O5/TiO2      Graphical abstract     
Corresponding Author(s): Hejingying Niu,Jianjun Chen   
Issue Date: 10 November 2020
 Cite this article:   
Lina Gan,Kezhi Li,Hejingying Niu, et al. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1363-5
https://academic.hep.com.cn/fese/EN/Y2021/V15/I4/70
Fig.1  (a) NO and CB conversions, and (b) the selectivity of N2 and COx of the NH4VO3-VTi and VO(acac)2-VTi granular catalysts. Reaction conditions: NO 500 mg/L, CB 50 mg/L, NH3 500 mg/L, O2 10 vol.%, N2 as balance gas, GHSV 60,000 mL/(g?h).
Fig.2  The stability test of NH4VO3-VTi and VO(acac)2-VTi granular catalysts at 350 °C (a) without and (b) with 10 vol.% H2O. Reaction conditions: NO 500 mg/L, CB 50 mg/L, NH3 500 mg/L, O2 10 vol.%, H2O 10 vol.% (when used), N2 as balance gas, GHSV 60,000 mL/(g?h).
Catalyst BET
(m2/g)
Pore volume
(cm3/g)
Pore size
(nm)
V2O5a
(wt.%)
V/Tib
(at.%)
V4+/Vb
(%)
Oads/(Olatt + Oads)
(%)
TiO2 97 0.40 7.70
NH4VO3-VTi 51 0.30 17.35 5.53 10.7 14.9 6.7
VO(acac)2-VTi 68 0.31 9.52 5.69 11.9 20.4 13.8
Tab.1  The physical, chemical and surface properties of the catalysts
Fig.3  (a) V 2p and (b) O 1s XPS spectra of the NH4VO3-VTi and VO(acac)2-VTi granular catalysts.
Fig.4  (a) H2-TPR profiles and (b) Arrhenius plots of the rate of H2 consumption versus inverse temperature of the NH4VO3-VTi and VO(acac)2-VTi catalysts from 100°C?1000 °C.
Parameter NO reduction CB oxidation
Without CB With CB Without NO+NH3 With NO+NH3
Ea (kJ/mol) 37.90 39.17 55.27 73.25
?/η 0.90±0.06 0.80±0.06 1.23±0.08 1.01±0.03
Tab.2  Kinetic parameters for NO and CB conversion.
Fig.5  Dependences of NOx conversion rate on NO concentration (a) and (c) without CB, (b) and (d) with CB. Reaction conditions: NO 200-500 mg/L, CB 50 mg/L (when used), NH3 500 mg/L, O2 10 vol.%, N2 as balance gas, GHSV 240,000?960,000 mL/(g?h).
Fig.6  (a) Experimental and predicted NO conversion at different temperatures, (b) the response surface and (c) contour map of NO conversion as a function of temperature and space velocity.
Fig.7  Experimental and predicted CB conversion at different temperatures, (b) the response surface and (c) contour map of CB conversion as a function of temperature and space velocity.
1 R Addink, K Olie (1995). Mechanisms of formation and destruction of polychlorinated dibenzo-p-dioxins and dibenzofurans in heterogeneous systems. Environmental Science & Technology, 29(6): 1425–1435
https://doi.org/10.1021/es00006a002
2 L J Alemany, L Lietti, N Ferlazzo, P Forzatti, G Busca, E Giamello, F Bregani (1995). Reactivity and physicochemical characterization of V2O5-WO3/TiO2 De-NOx catalysts. Journal of Catalysis, 155(1): 117–130
https://doi.org/10.1006/jcat.1995.1193
3 C Du, S Lu, Q Wang, A G Buekens, M Ni, D P Debecker (2018). A review on catalytic oxidation of chloroaromatics from flue gas. Chemical Engineering Journal, 334: 519–544
https://doi.org/10.1016/j.cej.2017.09.018
4 E Finocchio, G Busca, M Notaro (2006a). A review of catalytic processes for the destruction of PCDD and PCDF from waste gases. Applied Catalysis B: Environmental, 62(1–2): 12–20
https://doi.org/10.1016/j.apcatb.2005.06.010
5 E Finocchio, G Busca, M Notaro (2006b). A review of catalytic processes for the destruction of PCDD and PCDF from waste gases. Applied Catalysis B: Environmental, 62(1–2): 12–20
https://doi.org/10.1016/j.apcatb.2005.06.010
6 P Forzatti (2001). Present status and perspectives in de-NOx SCR catalysis. Applied Catalysis A, General, 222(1-2): 221–236
https://doi.org/10.1016/S0926-860X(01)00832-8
7 L Gan, J Chen, Y Peng, J Yu, T Tran, K Li, D Wang, G Xu, J Li (2018a). NOx removal over V2O5/WO3–TiO2 prepared by a grinding method: influence of the precursor on vanadium dispersion. Industrial & Engineering Chemistry Research, 57(1): 150–157
https://doi.org/10.1021/acs.iecr.7b04060
8 L Gan, F Guo, J Yu, G Xu (2016). Improved low-temperature activity of V2O5-WO3/TiO2 for denitration using different vanadium precursors. Catalysts, 6(2): 25
https://doi.org/10.3390/catal6020025
9 L Gan, S Lei, J Yu, H Ma, Y Yamamoto, Y Suzuki, G Xu, Z Zhang (2015). Development of highly active coated monolith SCR catalyst with strong abrasion resistance for low-temperature application. Frontiers of Environmental Science & Engineering, 9(6): 979–987
https://doi.org/10.1007/s11783-015-0824-8
10 L Gan, K Li, S Xiong, Y Zhang, J Chen, Y Peng, J Li (2018b). MnOx-CeO2 catalysts for effective NOx reduction in the presence of chlorobenzene. Catalysis Communications, 117: 1–4
https://doi.org/10.1016/j.catcom.2018.08.008
11 L Gan, W Shi, K Li, J Chen, Y Peng, J Li (2018c). Synergistic promotion effect between NOx and chlorobenzene removal on MnOx–CeO2 catalyst. ACS Applied Materials & Interfaces, 10(36): 30426–30432
https://doi.org/10.1021/acsami.8b10636
12 L Gan, Y Wang, J Chen, T Yan, J Li, J Crittenden, Y Peng (2019). The synergistic mechanism of NOx and chlorobenzene degradation in municipal solid waste incinerators. Catalysis Science & Technology, 9(16): 4286–4292
https://doi.org/10.1039/C9CY01157A
13 M Goemans, P Clarysse, J Joannès, P De Clercq, S Lenaerts, K Matthys, K Boels (2003). Catalytic NOx reduction with simultaneous dioxin and furan oxidation. Chemosphere, 50(4): 489–497
https://doi.org/10.1016/S0045-6535(02)00554-4
14 Y Hashimoto, Y Uemichi, A Ayame (2005). Low-temperature hydrodechlorination mechanism of chlorobenzenes over platinum-supported and palladium-supported alumina catalysts. Applied Catalysis A, General, 287(1): 89–97
https://doi.org/10.1016/j.apcata.2005.03.039
15 G J Hutchings, C S Heneghan, I D Hudson, S H Taylor (1996). Uranium-oxide-based catalysts for the destruction of volatile chloro-organic compounds. Nature, 384(6607): 341–343
https://doi.org/10.1038/384341a0
16 P G W A Kompio, A Brückner, F Hipler, G Auer, E Löffler, W Grünert (2012). A new view on the relations between tungsten and vanadium in V2O5-WO3/TiO2 catalysts for the selective reduction of NO with NH3. Journal of Catalysis, 286: 237–247
https://doi.org/10.1016/j.jcat.2011.11.008
17 S Krishnamoorthy, J P Baker, M D Amiridis (1998). Catalytic oxidation of 1,2-dichlorobenzene over V2O5/TiO2-based catalysts. Catalysis Today, 40(1): 39–46
https://doi.org/10.1016/S0920-5861(97)00117-X
18 P S Kulkarni, J G Crespo, C A M Afonso (2008). Dioxins sources and current remediation technologies: A review. Environment International, 34(1): 139–153
https://doi.org/10.1016/j.envint.2007.07.009
19 J Li, H He, C Hu, J Zhao (2013). The abatement of major pollutants in air and water by environmental catalysis. Frontiers of Environmental Science & Engineering, 7(3): 302–325
https://doi.org/10.1007/s11783-013-0511-6
20 C Liu, L Chen, J Li, L Ma, H Arandiyan, Y Du, J Xu, J Hao (2012). Enhancement of activity and sulfur resistance of CeO2 supported on TiO2-SiO2 for the selective catalytic reduction of NO by NH3. Environmental Science & Technology, 46(11): 6182–6189
https://doi.org/10.1021/es3001773
21 Y M Liu, Y Cao, N Yi, W L Feng, W L Dai, S R Yan, H Y He, K N Fan (2004). Vanadium oxide supported on mesoporous SBA-15 as highly selective catalysts in the oxidative dehydrogenation of propane. Journal of Catalysis, 224(2): 417–428
https://doi.org/10.1016/j.jcat.2004.03.010
22 Z M Liu, Y Li, T L Zhu, H Su, J Z Zhu (2014a). Selective catalytic reduction of NOx by NH3 over Mn-promoted V2O5/TiO2 catalyst. Industrial & Engineering Chemistry Research, 53(33): 12964–12970
https://doi.org/10.1021/ie501887f
23 Z Liu, S I Woo (2006). Recent advances in catalytic DeNOx science and technology. Catalysis Reviews. Science and Engineering, 48(1): 43–89
https://doi.org/10.1080/01614940500439891
24 Z M Liu, S X Zhang, J H Li, J Z Zhu, L L Ma (2014b). Novel V2O5-CeO2/TiO2 catalyst with low vanadium loading for the selective catalytic reduction of NOx by NH3. Applied Catalysis B: Environmental, 158-159: 11–19
https://doi.org/10.1016/j.apcatb.2014.03.049
25 Y Peng, J Chen, S Lu, J Huang, M Zhang, A Buekens, X Li, J Yan (2016). Chlorophenols in municipal solid waste incineration: A review. Chemical Engineering Journal, 292: 398–414
https://doi.org/10.1016/j.cej.2016.01.102
26 H H Phil, M P Reddy, P A Kumar, L K Ju, J S Hyo (2008). SO2 resistant antimony promoted V2O5/TiO2 catalyst for NH3-SCR of NOx at low temperatures. Applied Catalysis B: Environmental, 78(3-4): 301–308
https://doi.org/10.1016/j.apcatb.2007.09.012
27 M Reiche, M Maciejewski, A Baiker (2000). Characterization by temperature programmed reduction. Catalysis Today, 56(4): 347–355
https://doi.org/10.1016/S0920-5861(99)00294-1
28 B Roduit, A A Wokaun, A Baiker (1998). Global kinetic modeling of reactions occurring during selective catalytic reduction of NO by NH3 over vanadia/titania-based catalysts. Industrial & Engineering Chemistry Research, 37(12): 4577–4590
https://doi.org/10.1021/ie980310e
29 Z Sui, Y Zhang, Y Peng, P Norris, Y Cao, W P Pan (2016). Fine particulate matter emission and size distribution characteristics in an ultra-low emission power plant. Fuel, 185: 863–871
https://doi.org/10.1016/j.fuel.2016.08.051
30 T Valdés-Solís, G Marbán, A B Fuertes (2004). Kinetics and mechanism of low-temperature SCR of NOx with NH3 over vanadium oxide supported on carbon-ceramic cellular monoliths. Industrial & Engineering Chemistry Research, 43(10): 2349–2355
https://doi.org/10.1021/ie034199a
31 C Wang, J Wang, J Wang, M Shen (2021). Promotional effect of ion-exchanged K on the low-temperature hydrothermal stability of Cu/SAPO-34 and its synergic application with Fe/Beta catalysts. Frontiers of Environmental Science & Engineering, 15(2): 30
https://doi.org/10.1007/s11783-020-1322-1
32 J Wang, X Wang, X Liu, J Zeng, Y Guo, T Zhu (2015). Kinetics and mechanism study on catalytic oxidation of chlorobenzene over V2O5/TiO2 catalysts. Journal of Molecular Catalysis A Chemical, 402: 1–9
https://doi.org/10.1016/j.molcata.2015.03.003
33 R Willi, M Maciejewski, U Göbel, R A Köppel, A Baiker (1997). Selective reduction of NO by NH3 over chromia on titania catalyst: investigation and modeling of the kinetic behavior. Journal of Catalysis, 166(2): 356–367
https://doi.org/10.1006/jcat.1997.1499
34 S Wu, J Zhou, Y Pan, J Zhang, L Zhang, N Ohtsuka, M Motegi, S Yonemochi, K Oh, S Hosono, G Qian (2016). Dioxin distribution characteristics and health risk assessment in different size particles of fly ash from MSWIs in China. Waste Management (New York, N.Y.), 50: 113–120
https://doi.org/10.1016/j.wasman.2016.01.038
35 J Yang, H Ma, Y Yamamoto, J Yu, G Xu, Z Zhang, Y Suzuki (2013). SCR catalyst coated on low-cost monolith support for flue gas denitration of industrial furnaces. Chemical Engineering Journal, 230: 513–521
https://doi.org/10.1016/j.cej.2013.06.114
36 H C Yao, Y F Y Yao (1984). Ceria in automotive exhaust catalysts: I. Oxygen storage. Journal of Catalysis, 86(2): 254–265
https://doi.org/10.1016/0021-9517(84)90371-3
37 K Zhang, J Xu, Q Huang, L Zhou, Q Fu, Y Duan, G Xiu (2020). Precursors and potential sources of ground-level ozone in suburban Shanghai. Frontiers of Environmental Science & Engineering, 14(6): 92
https://doi.org/10.1007/s11783-020-1271-8
38 S Zhang, H Li, Q Zhong (2012). Promotional effect of F-doped V2O5–WO3/TiO2 catalyst for NH3-SCR of NO at low-temperature. Applied Catalysis A, General, 435-436: 156–162
https://doi.org/10.1016/j.apcata.2012.05.049
39 S Zhang, Q Zhong, W Zhao, Y Li (2014). Surface characterization studies on F-doped V2O5/TiO2 catalyst for NO reduction with NH3 at low-temperature. Chemical Engineering Journal, 253: 207–216
https://doi.org/10.1016/j.cej.2014.04.045
[1] FSE-20130-OF-GLN_suppl_1 Download
[1] Yingwu Wang, Ping Ning, Ruheng Zhao, Kai Li, Chi Wang, Xin Sun, Xin Song, Qiang Lin. A Cu-modified active carbon fiber significantly promoted H2S and PH3 simultaneous removal at a low reaction temperature[J]. Front. Environ. Sci. Eng., 2021, 15(6): 132-.
[2] Shaoyi Xu, Xiaolong Wu, Huijie Lu. Overlooked nitrogen-cycling microorganisms in biological wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(6): 133-.
[3] Qiuzhun Chen, Xiang Zhang, Bing Li, Shengli Niu, Gaiju Zhao, Dong Wang, Yue Peng, Junhua Li, Chunmei Lu, John Crittenden. Insight into the promotion mechanism of activated carbon on the monolithic honeycomb red mud catalyst for selective catalytic reduction of NOx[J]. Front. Environ. Sci. Eng., 2021, 15(5): 92-.
[4] Minxiang Wang, Lili Yang, Xiaoyun Liu, Zheng Wang, Guorui Liu, Minghui Zheng. Hexachlorobutadiene emissions from typical chemical plants[J]. Front. Environ. Sci. Eng., 2021, 15(4): 60-.
[5] Pol Masclans Abelló, Vicente Medina Iglesias, M. Antonia de los Santos López, Jesús Álvarez-Flórez. Real drive cycles analysis by ordered power methodology applied to fuel consumption, CO2, NOx and PM emissions estimation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 4-.
[6] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[7] Dian Ding, Jia Xing, Shuxiao Wang, Xing Chang, Jiming Hao. Impacts of emissions and meteorological changes on China’s ozone pollution in the warm seasons of 2013 and 2017[J]. Front. Environ. Sci. Eng., 2019, 13(5): 76-.
[8] Xiaotu Liu, Heidelore Fiedler, Wenwen Gong, Bin Wang, Gang Yu. Potential sources of unintentionally produced PCB, HCB, and PeCBz in China: A preliminary overview[J]. Front. Environ. Sci. Eng., 2018, 12(6): 1-.
[9] Mingxin Dong, Jun Wang, Jinxin Zhu, Jianqiang Wang, Wulin Wang, Meiqing Shen. Effects of Pd doping on N2O formation over Pt/BaO/Al2O3 during NOx storage and reduction process[J]. Front. Environ. Sci. Eng., 2017, 11(6): 11-.
[10] Quanming Liang, Jian Li, Hong He, Wenjun Liang, Tiejun Zhang, Xing Fan. Effects of SO2 on the low temperature selective catalytic reduction of NO by NH3 over CeO2-V2O5-WO3/TiO2 catalysts[J]. Front. Environ. Sci. Eng., 2017, 11(4): 4-.
[11] Junhua LI,Yue PENG,Huazhen CHANG,Xiang LI,John C. CRITTENDEN,Jiming HAO. Chemical poison and regeneration of SCR catalysts for NOx removal from stationary sources[J]. Front. Environ. Sci. Eng., 2016, 10(3): 413-427.
[12] Qishi LUO. Oxidative treatment of aqueous monochlorobenzene with thermally-activated persulfate[J]. Front Envir Sci Eng, 2014, 8(2): 188-194.
[13] SONG Lei, WANG Hui, SHI Hanchang, HU Hongying. Isolation of a strain that degrades 1,2,4-trichlorobenzene and characterization of its degradative plasmid[J]. Front.Environ.Sci.Eng., 2008, 2(1): 69-72.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed