Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (6) : 133    https://doi.org/10.1007/s11783-021-1426-2
REVIEW ARTICLE
Overlooked nitrogen-cycling microorganisms in biological wastewater treatment
Shaoyi Xu, Xiaolong Wu, Huijie Lu()
Key Laboratory of Environment Remediation and Ecological Health (Ministry of Education), College of Environmental Resource Sciences, Zhejiang University, Hangzhou 310058, China
 Download: PDF(740 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• AOA and comammox bacteria can be more abundant and active than AOB/NOB at WWTPs.

• Coupled DNRA/anammox and NOx-DAMO/anammox/comammox processes are demonstrated.

• Substrate level, SRT and stressors determine the niches of overlooked microbes.

• Applications of overlooked microbes in enhancing nitrogen removal are promising.

Nitrogen-cycling microorganisms play key roles at the intersection of microbiology and wastewater engineering. In addition to the well-studied ammonia oxidizing bacteria, nitrite oxidizing bacteria, heterotrophic denitrifiers, and anammox bacteria, there are some other N-cycling microorganisms that are less abundant but functionally important in wastewater nitrogen removal. These microbes include, but not limited to ammonia oxidizing archaea (AOA), complete ammonia oxidation (comammox) bacteria, dissimilatory nitrate reduction to ammonia (DNRA) bacteria, and nitrate/nitrite-dependent anaerobic methane oxidizing (NOx-DAMO) microorganisms. In the past decade, the development of high-throughput molecular technologies has enabled the detection, quantification, and characterization of these minor populations. The aim of this review is therefore to synthesize the current knowledge on the distribution, ecological niche, and kinetic properties of these “overlooked” N-cycling microbes at wastewater treatment plants. Their potential applications in novel wastewater nitrogen removal processes are also discussed. A comprehensive understanding of these overlooked N-cycling microbes from microbiology, ecology, and engineering perspectives will facilitate the design and operation of more efficient and sustainable biological nitrogen removal processes.

Keywords Ammonia oxidizing archaea (AOA)      Complete ammonia oxidizing (comammox) bacteria      Dissimilatory nitrate reduction to ammonium (DNRA) bacteria      Nitrate/nitrite-dependent anaerobic methane oxidizing (NOx-DAMO) microorganisms      Engineering application     
Corresponding Author(s): Huijie Lu   
Issue Date: 26 March 2021
 Cite this article:   
Shaoyi Xu,Xiaolong Wu,Huijie Lu. Overlooked nitrogen-cycling microorganisms in biological wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(6): 133.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1426-2
https://academic.hep.com.cn/fese/EN/Y2021/V15/I6/133
Fig.1  Overlooked microorganisms in the wastewater microbial nitrogen cycle.
Microbes Reaction equation Key characteristics Representative species at WWTPs Reference
AOA NH4+ + 1.5O2 = NO2 + H2O+ 2H+
(DG°′ = - 274.7 kJ/mol)
Aerobic, Thaumarchaeota Nitrosopumilus maritimus
Candidatus Nitrosocosmicus exaquare
Candidatus Nitrosotenuis cloacae
Martens-Habbena et al., 2009
Comammox bacteria NH4+ + 2O2 = NO3 + H2O+ 2H+
(DG°′ = - 348.9 kJ/mol)
Aerobic, Nitrospira lineage II
Mixotrophic (e.g., formate, urea)
Nitrospira inopinata
Canditatus Nitrospira nitrosa/ nitrificans/ kreftii
Daims et al., 2015; Van Kessel et al., 2015
DNRA bacteria C6H12O6 + 3 NO3 + 6H+
= 6 CO2 + 3NH4+ + H2O
(DG°′ = - 623 kJ/mol NO3-N)
Respiratory/Fermentative
Electron donors: organics, H2, HS
Enzymes: Nar/Nir, or Nap/Nrf
Wolinella succinogenes
Serratia marcescens
Salmonella typhimurium
Escherichia coli
Tiedje, 1988; Holmes et al., 2019; Pandey et al., 2020
N-DAMO archaea 4NO3 + CH4 = 4NO2 + CO2 + 2H2O
(DG°′ = - 503 kJ/mol CH4)
Reverse methanogenesis, ANME-2D lineage
Enzymes: NarGH, MCR
Candidatus Methanoperedens nitroreducens Haroon et al., 2013
n-DAMO bacteria 8NO2 + 3CH4 + 8H+ = 4N2 + 3CO2 +
10H2O
(DG°′ = - 928 kJ/mol CH4)
Inter-aerobic pathway, NC10 phylum
Enzymes: NirSJFD/GH/L, pMMO
Candidatus Methylomirabilis oxyfera/sinica/
limnetica/ lanthanidiphila
Ettwig et al., 2010; He et al., 2016; Graf et al., 2018
Tab.1  Basic characteristics of the four overlooked nitrogen-cycling microorganisms
Microbes Electron donor/acceptor Half saturation
constant of
electron donors Km,d (µmol/L)
Half saturation
constant of
electron acceptors Km,a (µmol/L)
Maximum specific growth rate µmax (/h) Cell yield
(mg Protein /mol
NH3 or NO2)
Reference
Ammonia oxidizers NH4+-N/O2 (bacteria) 1.9–200 6.9–17.4 0.007–0.088 250 Laanbroek et al., 1994; Jiang and Bakken, 1999; Lawson and Lücker, 2018
NH4+-N/O2 (archaea) 0.003–4.4 2.01–10.38 0.010–0.050 298.4–304.3 Martens-Habbena et al., 2009; Qin et al., 2014; Kits et al., 2017; Lawson and Lücker, 2018
Nitrite oxidizers NO2-N/O2
(Nitrobacter)
49–1380 5.31–165.63 0.0115–0.125 83–108 Laanbroek et al., 1994; Blackburne et al., 2007; Nowka et al., 2015; Lawson and Lücker, 2018
NO2-N/O2
(Nitrospira)
9–27 2.19–5.94 0.027–0.083 120–213
Comammox bacteria NH4+-N/O2 0.049, 0.040 NA 0.0061 394.7 Kits et al., 2017; Sakoula et al., 2020
NO2-N/O2 449.2, 12.5 NA NA NA
DNRA bacteria Organic/ (NO3, NO2) NA NA 0.11–0.5 NA Simon, 2002
Inorganics/(NO3, NO2) NA NA 0.091 NA
N-DAMO archaea
n-DAMO bacteria
CH4/NO3 500 150±28.6 NA 73–85*
CH4/NO2 2.6–5.9, 91.8±5 4.28–7 0.0015–0.0583 NA He et al., 2013; Winkler et al., 2015; Guerrero-Cruz et al., 2019; Lu et al., 2019
Anammox bacteria NH4+-N/ NO2-N 2.54–673.90 0.22–361.35 0.0022–0.014 30–70# Ali et al., 2015; Zhang and Okabe, 2020
Tab.2  Kinetic parameters of the conventional and overlooked nitrogen-cycling microorganisms
Fig.2  Abundances of AOA, comammox bacteria, DNRA bacteria and NOx-DAMO microorganisms in wastewater treatment. Data are collected from published results, representing samples from municipal WWTPs, industrial WWTPs, recirculating aquaculture systems, and drinking water treatment systems.
Fig.3  Potential applications of AOA (a), comammox bacteria (b), DNRA bacteria (c) and NOx-DAMO microorganisms (d) in novel wastewater nitrogen removal processes.
1 J C Akunna, C Bizeau, R Moletta (1993). Nitrate and nitrite reductions with anaerobic sludge using various carbon sources: Glucose, glycerol, acetic acid, lactic acid and methanol. Water Research, 27(8): 1303–1312
https://doi.org/10.1016/0043-1354(93)90217-6
2 M Ali, M Oshiki, T Awata, K Isobe, Z Kimura, H Yoshikawa, D Hira, T Kindaichi, H Satoh, T Fujii, S Okabe (2015). Physiological characterization of anaerobic ammonium oxidizing bacterium ‘Candidatus Jettenia caeni’. Environmental Microbiology, 17(6): 2172–2189
https://doi.org/10.1111/1462-2920.12674
3 M K Annavajhala, V Kapoor, J Santo-Domingo, K Chandran (2018). Comammox functionality identified in diverse engineered biological wastewater treatment systems. Environmental Science & Technology Letters, 5(2): 110–116
https://doi.org/10.1021/acs.estlett.7b00577
4 A Arshad, D R Speth, R M De Graaf, H J M Op Den Camp, M S M Jetten, C U Welte (2015). A metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by methanoperedens-like archaea. Frontiers in Microbiology, 6: 1423
https://doi.org/10.3389/fmicb.2015.01423
5 R P Bartelme, S L Mclellan, R J Newton (2017). Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and comammox Nitrospira. Frontiers in Microbiology, 8: 101
https://doi.org/10.3389/fmicb.2017.00101
6 F Beeckman, H Motte, T Beeckman (2018). Nitrification in agricultural soils: impact, actors and mitigation. Current Opinion in Biotechnology, 50: 166–173
https://doi.org/10.1016/j.copbio.2018.01.014
7 R Blackburne, V M Vadivelu, Z Yuan, J Keller (2007). Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter. Water Research, 41(14): 3033–3042
https://doi.org/10.1016/j.watres.2007.01.043
8 P Y Camejo, J Santo Domingo, K D Mcmahon, D R Noguera (2017). Genome-enabled insights into the ecophysiology of the comammox bacterium “Candidatus Nitrospira nitrosa”. mSystems, 2(5): e00059-17
https://doi.org/10.1128/mSystems.00059-17
9 H K Carlson, L M Lui, M N Price, A E Kazakov, A V Carr, J V Kuehl, T K Owens, T Nielsen, A P Arkin, A M Deutschbauer (2020). Selective carbon sources influence the end products of microbial nitrate respiration. ISME Journal, 14(8): 2034–2045
https://doi.org/10.1038/s41396-020-0666-7
10 C M Castro-Barros, M Jia, M C M Van Loosdrecht, E I P Volcke, M K H Winkler (2017). Evaluating the potential for dissimilatory nitrate reduction by anammox bacteria for municipal wastewater treatment. Bioresource Technology, 233: 363–372
https://doi.org/10.1016/j.biortech.2017.02.063
11 H Chen, W Jin, Z Liang, A E F Abomohra, X Zhou, R Tu, S Han (2017). Abundance and diversity of ammonia-oxidizing archaea in a biological aerated filter process. Annals of Microbiology, 67(6): 405–416
https://doi.org/10.1007/s13213-017-1272-4
12 H Chen, M Wang, S Chang (2020). Disentangling community structure of ecological system in activated sludge: core communities, functionality, and functional redundancy. Microbial Ecology, 80(2): 296–308
https://doi.org/10.1007/s00248-020-01492-y
13 I Cotto, Z Dai, L Huo, C L Anderson, K J Vilardi, U Ijaz, W Khunjar, C Wilson, H De Clippeleir, K Gilmore, E Bailey, A J Pinto (2020). Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems. Water Research, 169: 115268
https://doi.org/10.1016/j.watres.2019.115268
14 H Daims, E V Lebedeva, P Pjevac, P Han, C Herbold, M Albertsen, N Jehmlich, M Palatinszky, J Vierheilig, A Bulaev, R H Kirkegaard, M Von Bergen, T Rattei, B Bendinger, P H Nielsen, M Wagner (2015). Complete nitrification by Nitrospira bacteria. Nature, 528(7583): 504–509
https://doi.org/10.1038/nature16461
15 K F Ettwig, M K Butler, D Le Paslier, E Pelletier, S Mangenot, M M M Kuypers, F Schreiber, B E Dutilh, J Zedelius, D De Beer, J Gloerich, H J C T Wessels, T Van Alen, F Luesken, M L Wu, K T Van De Pas-Schoonen, H J M O Op Den Camp, E M Janssen-Megens, K J Francoijs, H Stunnenberg, J Weissenbach, M S M Jetten, M Strous (2010). Nitrite-driven anaerobic methane oxidation by oxygenic bacteria. Nature, 464(7288): 543–548
https://doi.org/10.1038/nature08883
16 S Q Fan, G J Xie, Y Lu, B F Liu, D F Xing, H J Han, Z Yuan, N Q Ren (2020). Granular sludge coupling nitrate/nitrite dependent anaerobic methane oxidation with anammox: from proof-of-concept to high rate nitrogen removal. Environmental Science & Technology, 54(1): 297–305
https://doi.org/10.1021/acs.est.9b02528
17 X Y Fan, J F Gao, K L Pan, D C Li, H H Dai, X Li (2019). Temporal heterogeneity and temperature response of active ammonia-oxidizing microorganisms in winter in full-scale wastewater treatment plants. Chemical Engineering Journal, 360: 1542–1552
https://doi.org/10.1016/j.cej.2018.10.234
18 S J Fowler, A Palomo, A Dechesne, P D Mines, B F Smets (2018). Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environmental Microbiology, 20(3): 1002–1015
https://doi.org/10.1111/1462-2920.14033
19 J Gao, Y Duan, Y Liu, X Zhuang, Y Liu, Z Bai, W Ma, G Zhuang (2019). Long- and short-chain AHLs affect AOA and AOB microbial community composition and ammonia oxidation rate in activated sludge. Journal of Environmental Sciences-China, 78: 53–62
https://doi.org/10.1016/j.jes.2018.06.022
20 J Gao, X Luo, G Wu, T Li, Y Peng (2014). Abundance and diversity based on amoA genes of ammonia-oxidizing archaea and bacteria in ten wastewater treatment systems. Applied Microbiology and Biotechnology, 98(7): 3339–3354
https://doi.org/10.1007/s00253-013-5428-2
21 E Y Gottshall, S J Bryson, K I Cogert, M Landreau, C J Sedlacek, D A Stahl, H Daims, M Winkler (2020). Sustained nitrogen loss in a symbiotic association of comammox Nitrospira and anammox bacteria. bioRxiv.
https://doi.org/10.1101/2020.10.12.336248
22 J S Graf, M J Mayr, H K Marchant, D Tienken, P F Hach, A Brand, C J Schubert, M M M Kuypers, J Milucka (2018). Bloom of a denitrifying methanotroph, ‘Candidatus Methylomirabilis limnetica’, in a deep stratified lake. Environmental Microbiology, 20(7): 2598–2614
https://doi.org/10.1111/1462-2920.14285
23 S Guerrero-Cruz, K Stultiens, M a H J Van Kessel, W Versantvoort, M S M Jetten, H J M Op den Camp, B Kartal (2019). Key physiology of a nitrite-dependent methane-oxidizing enrichment culture. Applied and Environmental Microbiology, 85(8): e00124-19
https://doi.org/10.1128/AEM.00124-19
24 J H Gwak, M Y Jung, H Hong, J G Kim, Z X Quan, J R Reinfelder, E Spasov, J D Neufeld, M Wagner, S K Rhee (2020). Archaeal nitrification is constrained by copper complexation with organic matter in municipal wastewater treatment plants. ISME Journal, 14(2): 335–346
https://doi.org/10.1038/s41396-019-0538-1
25 P Han, Y Yu, L J Zhou, Z Tian, Z Li, L Hou, M Liu, Q Wu, M Wagner, Y Men (2019). Specific micropollutant biotransformation pattern by the comammox bacterium Nitrospira inopinata. Environment Science & Technology, 53(15): 8695–8705
https://doi.org/10.1021/acs.est.9b01037
26 M F, Haroon S H Hu , Y Shi , M Imelfort , J, Keller P, Hugenholtz Z G, Yuan G W Tyson ( 2013). Anaerobic oxidation of methane coupled to nitrate reduction in a novel archaeal lineage. Nature, 500(7464): 567
https://doi.org/10.1038/nature12375
27 R Hatzenpichler (2012). Diversity, physiology, and niche differentiation of ammonia-oxidizing archaea. Applied and Environmental Microbiology, 78(21): 7501–7510
https://doi.org/10.1128/AEM.01960-12
28 Z He, C Cai, S Geng, L Lou, X Xu, P Zheng, B Hu (2013). Modelling a nitrite-dependent anaerobic methane oxidation process: parameters identification and model evaluation. Bioresource Technology, 147: 315–320
https://doi.org/10.1016/j.biortech.2013.08.001
29 Z He, C Cai, J Wang, X Xu, P Zheng, M S M Jetten, B Hu (2016). A novel denitrifying methanotroph of the NC10 phylum and its microcolony. Scientific Reports, 6(1): 32241
https://doi.org/10.1038/srep32241
30 Z He, S Geng, Y Pan, C Cai, J Wang, L Wang, S Liu, P Zheng, X Xu, B Hu (2015a). Improvement of the trace metal composition of medium for nitrite-dependent anaerobic methane oxidation bacteria: Iron (II) and copper (II) make a difference. Water Research, 85: 235–243
https://doi.org/10.1016/j.watres.2015.08.040
31 Z He, S Geng, L Shen, L Lou, P Zheng, X Xu, B Hu (2015b). The short- and long-term effects of environmental conditions on anaerobic methane oxidation coupled to nitrite reduction. Water Research, 68: 554–562
https://doi.org/10.1016/j.watres.2014.09.055
32 J B Holman, D G Wareham (2005). COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process. Biochemical Engineering Journal, 22(2): 125–133
https://doi.org/10.1016/j.bej.2004.09.001
33 D E Holmes, Y Dang, J A Smith (2019). Chapter Four- Nitrogen cycling during wastewater treatment. In: Gadd G M, Sariaslani S, ed. Advances in Applied Microbiology. Salt Lake City: Academic Press, 106: 113–192
34 B Hu, Z He, S Geng, C Cai, L Lou, P Zheng, X Xu (2014). Cultivation of nitrite-dependent anaerobic methane-oxidizing bacteria: impact of reactor configuration. Applied Microbiology and Biotechnology, 98(18): 7983–7991
https://doi.org/10.1007/s00253-014-5835-z
35 Z Hu, R Ma (2016). Distribution and characteristic of nitrite-dependent anaerobic methane oxidation bacteria by comparative analysis of wastewater treatment plants and agriculture fields in northern China. PeerJ, 4: e2766
https://doi.org/10.7717/peerj.2766
36 G Insel (2007). Effects of design and aeration control parameters on Simultaneous nitrification and denitrification (SNdN) performance for activated sludge process. Environmental Engineering Science, 24(5): 675–686
https://doi.org/10.1089/ees.2006.0029
37 Q Q Jiang, L R Bakken (1999). Comparison of Nitrosospira strains isolated from terrestrial environments. FEMS Microbiology Ecology, 30(2): 171–186
https://doi.org/10.1111/j.1574-6941.1999.tb00646.x
38 C Kampman, H Temmink, T L G Hendrickx, G Zeeman, C J N Buisman (2014). Enrichment of denitrifying methanotrophic bacteria from municipal wastewater sludge in a membrane bioreactor at 20°C. Journal of Hazardous Materials, 274: 428–435
https://doi.org/10.1016/j.jhazmat.2014.04.031
39 B Kartal, J G Kuenen, M C M Van Loosdrecht (2010). Sewage treatment with anammox. Science, 328(5979): 702–703
https://doi.org/10.1126/science.1185941
40 R Keren, J E Lawrence, W Zhuang, D Jenkins, J F Banfield, L Alvarez-Cohen, L Zhou, K Yu (2020). Increased replication of dissimilatory nitrate-reducing bacteria leads to decreased anammox bioreactor performance. Microbiome, 8(1): 7
https://doi.org/10.1186/s40168-020-0786-3
41 H Kim, D Park, S Yoon (2017). pH control enables simultaneous enhancement of nitrogen retention and N2O reduction in Shewanella loihica Strain PV-4. Frontiers in Microbiology, 8: 1820
https://doi.org/10.3389/fmicb.2017.01820
42 K D Kits, M Y Jung, J Vierheilig, P Pjevac, C J Sedlacek, S Liu, C Herbold, L Y Stein, A Richter, H Wissel, N Brüggemann, M Wagner, H Daims (2019). Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nature Communications, 10(1): 1836
https://doi.org/10.1038/s41467-019-09790-x
43 K D Kits, C J Sedlacek, E V Lebedeva, P Han, A Bulaev, P Pjevac, A Daebeler, S Romano, M Albertsen, L Y Stein, H Daims, M Wagner (2017). Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature, 549(7671): 269–272
https://doi.org/10.1038/nature23679
44 H Koch, M a H J Van Kessel, S Lücker (2019). Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Applied Microbiology and Biotechnology, 103(1): 177–189
https://doi.org/10.1007/s00253-018-9486-3
45 M Könneke, A E Bernhard, J R De La Torre, C B Walker, J B Waterbury, D A Stahl (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058): 543–546
https://doi.org/10.1038/nature03911
46 B Kraft, H E Tegetmeyer, R Sharma, M G Klotz, T G Ferdelman, R L Hettich, J S Geelhoed, M Strous (2014). The environmental controls that govern the end product of bacterial nitrate respiration. Science, 345(6197): 676–679
https://doi.org/10.1126/science.1254070
47 H J Laanbroek, P L E Bodelier, S Gerards (1994). Oxygen consumption kinetics of Nitrosomonas europaea and Nitrobacter hamburgensis grown in mixed continuous cultures at different oxygen concentrations. Archives of Microbiology, 161(2): 156–162
https://doi.org/10.1007/BF00276477
48 C E Lawson, S Lücker (2018). Complete ammonia oxidation: an important control on nitrification in engineered ecosystems? Current Opinion in Biotechnology, 50: 158–165
https://doi.org/10.1016/j.copbio.2018.01.015
49 C E Lawson, S Wu, A S Bhattacharjee, J J Hamilton, K D Mcmahon, R Goel, D R Noguera (2017). Metabolic network analysis reveals microbial community interactions in anammox granules. Nature Communications, 8(1): 15416
https://doi.org/10.1038/ncomms15416
50 M Li, C Du, J Liu, X Quan, M Lan, B Li (2018). Mathematical modeling on the nitrogen removal inside the membrane-aerated biofilm dominated by ammonia-oxidizing archaea (AOA): Effects of temperature, aeration pressure and COD/N ratio. Chemical Engineering Journal, 338: 680–687
https://doi.org/10.1016/j.cej.2018.01.040
51 Z Li, Y Peng, H Gao (2020). Enhanced long-term advanced denitrogenation from nitrate wastewater by anammox consortia: Dissimilatory nitrate reduction to ammonium (DNRA) coupling with anammox in an upflow biofilter reactor equipped with EDTA-2Na/Fe(II) ratio and pH control. Bioresource Technology, 305: 123083
https://doi.org/10.1016/j.biortech.2020.123083
52 T Limpiyakorn, P Sonthiphand, C Rongsayamanont, C Polprasert (2011). Abundance of amoA genes of ammonia-oxidizing archaea and bacteria in activated sludge of full-scale wastewater treatment plants. Bioresource Technology, 102(4): 3694–3701
https://doi.org/10.1016/j.biortech.2010.11.085
53 Z Lin, W Huang, J Zhou, X He, J Wang, X Wang, J Zhou (2020). The variation on nitrogen removal mechanisms and the succession of ammonia oxidizing archaea and ammonia oxidizing bacteria with temperature in biofilm reactors treating saline wastewater. Bioresource Technology, 314: 123760
https://doi.org/doi10.1016/j.biortech.2020.123760
54 Y Liu, H H Ngo, W Guo, L Peng, Y Pan, J Guo, X Chen, B J Ni (2016). Autotrophic nitrogen removal in membrane-aerated biofilms: Archaeal ammonia oxidation versus bacterial ammonia oxidation. Chemical Engineering Journal, 302: 535–544
https://doi.org/10.1016/j.cej.2016.05.078
55 H Lu, K Chandran, D Stensel (2014). Microbial ecology of denitrification in biological wastewater treatment. Water Research, 64: 237–254
https://doi.org/10.1016/j.watres.2014.06.042
56 P Lu, T Liu, B J Ni, J Guo, Z Yuan, S Hu (2019). Growth kinetics of ‘Candidatus Methanoperedens nitroreducens’ enriched in a laboratory reactor. Science of the Total Environment, 659: 442–450
https://doi.org/10.1016/j.scitotenv.2018.12.351
57 F A Luesken, M L Wu, H J M Op Den Camp, J T Keltjens, H Stunnenberg, K J Francoijs, M Strous, M S M Jetten (2012). Effect of oxygen on the anaerobic methanotroph ‘Candidatus Methylomirabilis oxyfera’: kinetic and transcriptional analysis. Environmental Microbiology, 14(4): 1024–1034
https://doi.org/10.1111/j.1462-2920.2011.02682.x
58 F A Luesken, B Zhu, T A Van Alen, M K Butler, M R Diaz, B Song, H J M Op Den Camp, M S M Jetten, K F Ettwig (2011). pmoA primers for detection of anaerobic methanotrophs. Applied and Environmental Microbiology, 77(11): 3877–3880
https://doi.org/10.1128/AEM.02960-10
59 R Ma, Z Hu, J Zhang, H Ma, L Jiang, D Ru (2017). Reduction of greenhouse gases emissions during anoxic wastewater treatment by strengthening nitrite-dependent anaerobic methane oxidation process. Bioresource Technology, 235: 211–218
https://doi.org/10.1016/j.biortech.2017.03.094
60 W Martens-Habbena, P M Berube, H Urakawa, J R De La Torre, D A Stahl (2009). Ammonia oxidation kinetics determine niche separation of nitrifying archaea and bacteria. Nature, 461(7266): 976–979
https://doi.org/10.1038/nature08465
61 H Meng, X Zhang, Z Zhou, L Luo, W Lan, J G Lin, X Y Li, J D Gu (2021). Simultaneous occurrence and analysis of both anammox and n-damo bacteria in five full-scale wastewater treatment plants. International Biodeterioration & Biodegradation, 156: 105112
https://doi.org/10.1016/j.ibiod.2020.105112
62 B Nowka, H Daims, E Spieck (2015). Comparison of oxidation kinetics of nitrite-oxidizing bacteria: nitrite availability as a key factor in niche differentiation. Applied and Environmental Microbiology, 81(2): 745–753
https://doi.org/10.1128/AEM.02734-14
63 A Palomo, A G Pedersen, S J Fowler, A Dechesne, T Sicheritz-Ponten, B F Smets (2018). Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME Journal, 12(7): 1779–1793
https://doi.org/10.1038/s41396-018-0083-3
64 K L Pan, J F Gao, X Y Fan, D C Li, H H Dai (2018). The more important role of archaea than bacteria in nitrification of wastewater treatment plants in cold season despite their numerical relationships. Water Research, 145: 552–561
https://doi.org/10.1016/j.watres.2018.08.066
65 Y Pan, B J Ni, Y Liu, J Guo (2016). Modeling of the interaction among aerobic ammonium-oxidizing archaea/bacteria and anaerobic ammonium-oxidizing bacteria. Chemical Engineering Science, 150: 35–40
https://doi.org/10.1016/j.ces.2016.05.002
66 C B Pandey, U Kumar, M Kaviraj, K J Minick, A K Mishra, J S Singh (2020). DNRA: A short-circuit in biological N-cycling to conserve nitrogen in terrestrial ecosystems. Science of the Total Environment, 738: 139710
https://doi.org/10.1016/j.scitotenv.2020.139710
67 H Park, A C Brotto, M C M Van Loosdrecht, K Chandran (2017). Discovery and metagenomic analysis of an anammox bacterial enrichment related to “Candidatus Brocadia caroliniensis” in a full-scale glycerol-fed nitritation-denitritation separate centrate treatment process. Water Research, 111: 265–273
https://doi.org/10.1016/j.watres.2017.01.011
68 H D Park, G F Wells, H Bae, C S Criddle, C A Francis (2006). Occurrence of ammonia-oxidizing archaea in wastewater treatment plant bioreactors. Applied and Environmental Microbiology, 72(8): 5643–5647
https://doi.org/10.1128/AEM.00402-06
69 P Pjevac, C Schauberger, L Poghosyan, C W Herbold, M A Van Kessel, A Daebeler, M Steinberger, M S Jetten, S Lücker, M Wagner, H Daims (2017). AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Frontiers in Microbiology, 8: 1508
https://doi.org/10.3389/fmicb.2017.01508
70 J I Prosser, L Hink, C Gubry Rangin, G W Nicol (2020). Nitrous oxide production by ammonia oxidizers: Physiological diversity, niche differentiation and potential mitigation strategies. Global Change Biology, 26(1): 103–118
https://doi.org/10.1111/gcb.14877
71 W Qin, S A Amin, W Martens-Habbena, C B Walker, H Urakawa, A H Devol, A E Ingalls, J W Moffett, E V Armbrust, D A Stahl (2014). Marine ammonia-oxidizing archaeal isolates display obligate mixotrophy and wide ecotypic variation. Proceedings of the National Academy of Sciences of the United States of America, 111(34): 12504–12509
https://doi.org/10.1073/pnas.1324115111
72 Y Ren, N Huu Hao, W Guo, D Wang, L Peng, B J Ni, W Wei, Y Liu (2020). New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems. Bioresource Technology, 297: 122491
https://doi.org/10.1016/j.biortech.2019.122491
73 P Roots, Y Wang, A F Rosenthal, J S Griffin, F Sabba, M Petrovich, F Yang, J A Kozak, H Zhang, G F Wells (2019). Comammox Nitrospira are the dominant ammonia oxidizers in a mainstream low dissolved oxygen nitrification reactor. Water Research, 157: 396–405
https://doi.org/10.1016/j.watres.2019.03.060
74 D Sakoula, H Koch, J Frank, M S M Jetten, M a H J Van Kessel , S Lücker (2020). Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification. The ISME Journal, doi: 10.1038/s41396-020-00827-4
75 L A Sauder , M Albertsen, K Engel, J, Schwarz P H Nielsen, M Wagner , J D Neufeld (2017). Cultivation and characterization of Candidatus Nitrosocosmicus exaquare, an ammonia-oxidizing archaeon from a municipal wastewater treatment system. ISME Journal, 11(5): 1142–1157
https://doi.org/10.1038/ismej.2016.192
76 L A Sauder, F Peterse, S Schouten, J D Neufeld (2012). Low-ammonia niche of ammonia-oxidizing archaea in rotating biological contactors of a municipal wastewater treatment plant. Environmental Microbiology, 14(9): 2589–2600
https://doi.org/10.1111/j.1462-2920.2012.02786.x
77 S Schouten, E C Hopmans, J S Sinninghe Damsté (2013). The organic geochemistry of glycerol dialkyl glycerol tetraether lipids: A review. Organic Geochemistry, 54: 19–61
https://doi.org/10.1016/j.orggeochem.2012.09.006
78 Y Shi, S Hu, J Lou, P Lu, J Keller, Z Yuan (2013). Nitrogen removal from wastewater by coupling anammox and methane-dependent denitrification in a membrane biofilm reactor. Environmental Science & Technology, 47(20): 11577–11583
https://doi.org/10.1021/es402775z
79 J Simon (2002). Enzymology and bioenergetics of respiratory nitrite ammonification. FEMS Microbiology Reviews, 26(3): 285–309
https://doi.org/10.1111/j.1574-6976.2002.tb00616.x
80 M Soliman, A Eldyasti (2018). Ammonia-Oxidizing Bacteria (AOB): opportunities and applications: A review. Reviews in Environmental Science and Biotechnology, 17(2): 285–321
https://doi.org/10.1007/s11157-018-9463-4
81 E Spasov, J M Tsuji, L A Hug, A C Doxey, L A Sauder, W J Parker, J D Neufeld (2020). High functional diversity among Nitrospira populations that dominate rotating biological contactor microbial communities in a municipal wastewater treatment plant. ISME Journal, 14(7): 1857–1872
https://doi.org/10.1038/s41396-020-0650-2
82 D A Stahl, J R De La Torre (2012). Physiology and diversity of ammonia-oxidizing archaea. Annual Review of Microbiology, 66(1): 83–101
https://doi.org/10.1146/annurev-micro-092611-150128
83 L Y Stein, M G Klotz (2016). The nitrogen cycle. Current Biology, 26(3): R94–R98
https://doi.org/10.1016/j.cub.2015.12.021
84 L L Straka, K A Meinhardt, A Bollmann, D A Stahl, M K H Winkler (2019). Affinity informs environmental cooperation between ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (anammox) bacteria. ISME Journal, 13(8): 1997–2004
https://doi.org/10.1038/s41396-019-0408-x
85 J M Tiedje (1988). Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Sehnder A J B, ed. Biology of Anaerobic Miroorganisms.New York: Wiley, 179–244
86 E M Van Den Berg, M Boleij, J G Kuenen, R Kleerebezem, M C M Van Loosdrecht (2016). DNRA and denitrification coexist over a broad range of acetate/N-NO3− ratios, in a chemostat enrichment culture. Frontiers in Microbiology, 7: 1842–1842
https://doi.org/10.3389/fmicb.2016.01842
87 E M Van Den Berg, M P Elisário, J G Kuenen, R Kleerebezem, M C M Van Loosdrecht (2017). Fermentative bacteria influence the competition between denitrifiers and DNRA bacteria. Frontiers in Microbiology, 8: 1684–1684
https://doi.org/10.3389/fmicb.2017.01684
88 M a H J Van Kessel, D R Speth , M Albertsen , P H Nielsen , H J M Op Den Camp, B, Kartal M S M Jetten , S Lücker (2015). Complete nitrification by a single microorganism. Nature, 528(7583): 555–559
https://doi.org/10.1038/nature16459
89 M a H J Van Kessel , K, Stultiens M F W, Slegers S G, Cruz M S M Jetten, B Kartal , H J M Op Den Camp (2018). Current perspectives on the application of N-damo and anammox in wastewater treatment. Current Opinion in Biotechnology, 50: 222–227
https://doi.org/10.1016/j.copbio.2018.01.031
90 Y Wan, Z Huang, L Zhou, T Li, C Liao, X Yan, N Li, X Wang (2020). Bioelectrochemical ammoniation coupled with microbial electrolysis for nitrogen recovery from nitrate in wastewater. Environmental Science & Technology, 54(5): 3002–3011
https://doi.org/10.1021/acs.est.9b05290
91 J Wang, J Zhou, Y Wang, Y Wen, L He, Q He (2020a). Efficient nitrogen removal in a modified sequencing batch biofilm reactor treating hypersaline mustard tuber wastewater: The potential multiple pathways and key microorganisms. Water Research, 177: 115734
https://doi.org/10.1016/j.watres.2020.115734
92 M Wang, G Huang, Z Zhao, C Dang, W Liu, M Zheng (2018). Newly designed primer pair revealed dominant and diverse comammox amoA gene in full-scale wastewater treatment plants. Bioresource Technology, 270: 580–587
https://doi.org/10.1016/j.biortech.2018.09.089
93 Q Wang, Q Chen (2016). Simultaneous denitrification and denitrifying phosphorus removal in a full-scale anoxic–oxic process without internal recycle treating low strength wastewater. Journal of Environmental Sciences-China, 39: 175–183
https://doi.org/10.1016/j.jes.2015.10.012
94 Q Wang, J Liang, C Zhao, Y Bai, R Liu, H Liu, J Qu (2020b). Wastewater treatment plant upgrade induces the receiving river retaining bioavailable nitrogen sources. Environmental Pollution, 263: 114478
https://doi.org/10.1016/j.envpol.2020.114478
95 S Wang, C Liu, X Wang, D Yuan, G Zhu (2020c). Dissimilatory nitrate reduction to ammonium (DNRA) in traditional municipal wastewater treatment plants in China: Widespread but low contribution. Water Research, 179: 115877
https://doi.org/10.1016/j.watres.2020.115877
96 Y Wang, L Ma, Y Mao, X Jiang, Y Xia, K Yu, B Li, T Zhang (2017). Comammox in drinking water systems. Water Research, 116: 332–341
https://doi.org/10.1016/j.watres.2017.03.042
97 Z Wang, L Zhang, F Zhang, H Jiang, S Ren, W Wang, Y Peng (2020d). Nitrite accumulation in comammox-dominated nitrification-denitrification reactors: Effects of DO concentration and hydroxylamine addition. Journal of Hazardous Materials, 384: 121375
https://doi.org/10.1016/j.jhazmat.2019.121375
98 U Wiesmann (1994). Biological nitrogen removal from wastewater. In: Wiesmann U, ed. Biotechnics/Wastewater. Berlin,Heidelberg: Springer, 113–154
99 M K H Winkler, K F Ettwig, T P W Vannecke, K Stultiens, A Bogdan, B Kartal, E I P Volcke (2015). Modelling simultaneous anaerobic methane and ammonium removal in a granular sludge reactor. Water Research, 73: 323–331
https://doi.org/10.1016/j.watres.2015.01.039
100 C L Wright, A Schatteman, A T Crombie, J C Murrell, L E Lehtovirta-Morley (2020). Inhibition of ammonia monooxygenase from ammonia-oxidizing archaea by linear and aromatic alkynes. Applied and Environmental Microbiology, 86(9): e02388–19
https://doi.org/10.1128/AEM.02388-19
101 Y J Wu, L M Whang, T Fukushima, Y J Huang (2020). Abundance, community structures, and nitrification inhibition on ammonia-oxidizing archaea enriched under high and low salinity. International Biodeterioration & Biodegradation, 153: 105040
https://doi.org/10.1016/j.ibiod.2020.105040
102 Y Xiang, Z Shao, H Chai, F Ji, Q He (2020). Functional microorganisms and enzymes related nitrogen cycle in the biofilm performing simultaneous nitrification and denitrification. Bioresource Technology, 314: 123697
https://doi.org/10.1016/j.biortech.2020.123697
103 G J Xie, T Liu, C Cai, S Hu, Z Yuan (2018). Achieving high-level nitrogen removal in mainstream by coupling anammox with denitrifying anaerobic methane oxidation in a membrane biofilm reactor. Water Research, 131: 196–204
https://doi.org/10.1016/j.watres.2017.12.037
104 Y Yang, C W Herbold, M Y Jung, W Qin, M Cai, H Du, J G Lin, X Li, M Li, J D Gu (2020). Survival strategies of ammonia-oxidizing archaea (AOA) in a full-scale WWTP treating mixed landfill leachate containing copper ions and operating at low-intensity of aeration. Water Research, 191: 116798
https://doi.org/10.1016/j.watres.2020.116798
105 Z Yin, X Bi, C Xu (2018). Ammonia-oxidizing archaea (AOA) play with ammonia-oxidizing bacteria (AOB) in nitrogen removal from wastewater. Archaea-an International Microbiological Journal, 2018
https://doi.org/10.1155/2018/8429145
106 Z Yin, L Xie, Q Zhou (2015). Effects of sulfide on the integration of denitrification with anaerobic digestion. Journal of Bioscience and Bioengineering, 120(4): 426–431
https://doi.org/10.1016/j.jbiosc.2015.02.004
107 S Yoon, C Cruz-García, R Sanford, K M Ritalahti, F E Löffler (2015). Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3-/NO2- reduction pathways in Shewanella loihica strain PV-4. ISME Journal, 9(5): 1093–1104
https://doi.org/10.1038/ismej.2014.201
108 L Zhang, S Okabe (2020). Ecological niche differentiation among anammox bacteria. Water Research, 171: 115468
https://doi.org/10.1016/j.watres.2020.115468
109 Y Zhang, Z Tian, M Liu, Z J Shi, L Hale, J Zhou, M Yang (2015). High concentrations of the antibiotic spiramycin in wastewater lead to high abundance of ammonia-oxidizing archaea in nitrifying populations. Environmental Science & Technology, 49(15): 9124–9132
https://doi.org/10.1021/acs.est.5b01293
[1] Shaoping Luo, Yi Peng, Ying Liu, Yongzhen Peng. Research progress and prospects of complete ammonia oxidizing bacteria in wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(9): 123-.
[2] Kang XIAO, Ying XU, Shuai LIANG, Ting LEI, Jianyu SUN, Xianghua WEN, Hongxun ZHANG, Chunsheng CHEN, Xia HUANG. Engineering application of membrane bioreactor for wastewater treatment in China: Current state and future prospect[J]. Front. Environ. Sci. Eng., 2014, 8(6): 805-819.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed