Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (9) : 123    https://doi.org/10.1007/s11783-022-1555-2
REVIEW ARTICLE
Research progress and prospects of complete ammonia oxidizing bacteria in wastewater treatment
Shaoping Luo1, Yi Peng2, Ying Liu3, Yongzhen Peng1()
1. National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
2. Xinkai Water Environmental Investment Co. Ltd., Beijing 101101, China
3. Zhongshan Public Utilities Water Co. Ltd., Zhongshan 528400, China
 Download: PDF(1061 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Comammox bacteria have unique physiological characteristics.

• Comammox bacteria are widely distributed in natural and artificial systems.

• Comammox bacteria have the potential to reduce N2O emissions.

• Coupling comammox bacteria with DEAMOX can be promoted in wastewater treatment.

• Comammox bacteria have significant potential for enhancing total nitrogen removal.

Complete ammonia oxidizing bacteria, or comammox bacteria (CAOB), can oxidize ammonium to nitrate on its own. Its discovery revolutionized our understanding of biological nitrification, and its distribution in both natural and artificial systems has enabled a reevaluation of the relative contribution of microorganisms to the nitrogen cycle. Its wide distribution, adaptation to oligotrophic medium, and diverse metabolic pathways, means extensive research on CAOB and its application in water treatment can be promoted. Furthermore, the energy-saving characteristics of high oxygen affinity and low sludge production may also become frontier directions for wastewater treatment. This paper provides an overview of the discovery and environmental distribution of CAOB, as well as the physiological characteristics of the microorganisms, such as nutrient medium, environmental factors, enzymes, and metabolism, focusing on future research and the application of CAOB in wastewater treatment. Further research should be carried out on the physiological characteristics of CAOB, to analyze its ecological niche and impact factors, and explore its application potential in wastewater treatment nitrogen cycle improvement.

Keywords Complete ammonia oxidizing (comammox) bacteria      Nitrogen cycle      Physiological characteristics      Wastewater treatment     
Corresponding Author(s): Yongzhen Peng   
About author: Tongcan Cui and Yizhe Hou contributed equally to this work.
Issue Date: 10 September 2022
 Cite this article:   
Shaoping Luo,Yi Peng,Ying Liu, et al. Research progress and prospects of complete ammonia oxidizing bacteria in wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(9): 123.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1555-2
https://academic.hep.com.cn/fese/EN/Y2022/V16/I9/123
Fig.1  Differences between traditional microbial nitrification and comammox bacteria nitrification.
Growth environment Country Strains Research method Key finding Reference
Atmospheric fine particles China N. inopinata PCRa)
Clone sequencing
The abundance of comammox bacteria in the atmosphere is less than AOA and greater than AOB. Gao et al., 2016
Forest soil, lake sediments, freshwater organisms, etc. Austria; Netherlands / Metagenome A PCR primer set was developed specifically for the subunit amoA gene encoding the unique amoA of comammox bacteria. Pjevac et al., 2017
Forest soil China / qPCR The abundance of comammox bacteria is very high. When the pH is 4.0–9.0, the abundance exceeds AOB and NOB. Hu and He, 2017
Sediments from the Yangtze River Estuary China N. inopinata
N. nitrosa
N. nitrificans
Metagenome; Macrotranscriptome; qPCR The presence of comammox bacteria was detected, and a primer set for clade A was designed to quantitatively detect the amoA gene of comammox bacteria. Yu et al., 2018
Riparian soil China N. nitrosa
N. nitrificans
qPCR;
Correlation analysis
The microbial abundance of comammox in the riparian soil was 108 copies/g, and the abundance of comammox and Nitrospira was significantly correlated under certain conditions. Wang et al, 2019
Tab.1  Comammox bacteria partial distribution in natural ecosystems
Growth environment Country Species Research method Key finding Reference
Wastewater treatment plants (WWTPs) China N. inopinata Metagenome;
16S rRNA
Comammox bacteria abundance accounts for≤0.1%. It is speculated that the contribution of comammox bacteria nitrification is small in the sewage treatment process. Chao et al., 2016
Drinking water systems Singapore;
China;
United States
N. inopinata
N. nitrosa
N. nitrificans
Metagenome Comammox bacteria are widely distributed in drinking water systems and coexist with traditional AOM. The nitrification of drinking water systems may be mainly completed by comammox bacteria. Wang et al., 2017
WWTPs United States N. nitrosa Metagenome To achieve enrichment of Ca. N. nitrosa, it has a higher affinity for urea. Kits et al., 2017
WWTPs United States
United Kingdom
N. inopinata
N. nitrosa
N. nitrificans
Metagenome;
qPCR
A primer set and qPCR targeting clade A were designed; comammox bacteria prefer long sludge age and attached growth, and the increase in abundance in the same habitat has no correlation with the decrease in AOB and NOB abundance. Camejo et al., 2017
Urban lake China / 16S rRNA Comammox bacteria are widely distributed in urban lakes, eutrophication may inhibit its growth. Xu et al., 2020
Acidic soils Japan / 16S rRNA When the pH is 3–4, nitrification activity of comammox bacteria is still detected. Takahashi et al., 2020
A continuous membrane bioreactor Netherlands N. Kreftii FISH;
Metagenome;
They obtained a novel comammox bacteria species, Ca. N. kreftti. Moreover, they think differences in ammonium tolerance could potentially be a niche-determining factor for different comammox Nitrospira. Sakoula et al., 2021
Lab-scale PN/A SBR Reactor China / 16S rRNA
qPCR
The amoA gene of comammox bacteria in the PN/A system that has been running stably for more than 1,000 days accounted for 89.2±7.9%, achieving synergistic denitrification under hypoxic conditions. Shao and Wu, 2021
Aquaponic system Germany / 16S rRNA Comammox bacteria are found in the high-efficiency aquaponic symbiosis system, which participate in the removal of NH4+-N at low steady-state NH4+-N concentrations. Heise et al., 2021
Tab.2  Comammox bacteria partial distribution in artificial systems
Fig.2  Ternary plot of the proportions of comammox, AOB, and AOA in 111 metagenomic data sets of different environmental samples from the NCBI SRA database (Xia et al. 2018).
Fig.3  Common microbial denitrification processes in wastewater treatment plants. (DNRA: dissimilatory nitrate reduction to ammonium).
Fig.4  Application of comammox bacteria in wastewater treatment. (DB: denitrifying bacteria).
1 M K Annavajhala, V Kapoor, J Santo-Domingo, K Chandran (2018). Comammox functionality identified in diverse engineered biological wastewater treatment systems. Environmental Science & Technology Letters, 5(2): 110–116
https://doi.org/10.1021/acs.estlett.7b00577 pmid: 31338378
2 D J Arp, L A Sayavedra-Soto, N G Hommes (2002). Molecular biology and biochemistry of ammonia oxidation by Nitrosomonas europaea. Archives of Microbiology, 178(4): 250–255
https://doi.org/10.1007/s00203-002-0452-0 pmid: 12209257
3 V B Borisov, R B Gennis, J Hemp, M I Verkhovsky (2011). The cytochrome bd respiratory oxygen reductases. Biochimica et Biophysica Acta (BBA) - Bioenergetics, 1807(11): 1398–1413
https://doi.org/10.1016/j.bbabio.2011.06.016
4 P Y Camejo, J Santo Domingo, K D McMahon, D R Noguera (2017). Genome-enabled insights into the ecophysiology of the comammox bacterium “Candidatus Nitrospira nitrosa”. mSystems, 2(5): e00059–e17
https://doi.org/10.1128/mSystems.00059-17 pmid: 28905001
5 Y Q Chao, Y P Mao, K Yu, T Zhang (2016). Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach. Applied Microbiology and Biotechnology, 100(18): 8225–8237
6 E Costa, J Pérez, J U Kreft (2006). Why is metabolic labour divided in nitrification? Trends in Microbiology, 14(5): 213–219
https://doi.org/10.1016/j.tim.2006.03.006 pmid: 16621570
7 H Daims, E V Lebedeva, P Pjevac, P Han, C Herbold, M Albertsen, N Jehmlich, M Palatinszky, J Vierheilig, A Bulaev, R H Kirkegaard, M von Bergen, T Rattei, B Bendinger, P H Nielsen, M Wagner (2015). Complete nitrification by Nitrospira bacteria. Nature, 528(7583): 504–509
https://doi.org/10.1038/nature16461 pmid: 26610024
8 D P Erwin, I K Erickson, M E Delwiche, F S Colwell, J L Strap, R L Crawford (2005). Diversity of oxygenase genes from methane- and ammonia-oxidizing bacteria in the Eastern Snake River Plain aquifer. Applied and Environmental Microbiology, 71(4): 2016–2025
https://doi.org/10.1128/AEM.71.4.2016-2025.2005 pmid: 15812034
9 J F Gao, X Y Fan, K L Pan, H Y Li, L X Sun (2016). Diversity, abundance and activity of ammonia-oxidizing microorganisms in fine particulate matter. Scientific Reports, 6(1): 38785
https://doi.org/10.1038/srep38785 pmid: 27941955
10 E Y Gottshall, S J Bryson, K I Cogert, M Landreau, C J Sedlacek, D A Stahl, H Daims, M Winkler (2021). Sustained nitrogen loss in a symbiotic association of comammox Nitrospira and anammox bacteria. Water Research, 202(1): 117426
https://doi.org/10.1016/j.watres.2021.117426 pmid: 34274897
11 P Han, Y Yu, L Zhou, Z Tian, Z Li, L Hou, M Liu, Q Wu, M Wagner, Y Men (2019). Specific micropollutant biotransformation pattern by the comammox bacterium Nitrospira inopinata. Environmental Science & Technology, 53(15): 8695–8705
https://doi.org/10.1021/acs.est.9b01037 pmid: 31294971
12 J Heise, H Müller, A J Probst, R U Meckenstock (2021). Ammonium removal in aquaponics indicates participation of comammox Nitrospira. Current Microbiology, 78(3): 894–903
https://doi.org/10.1007/s00284-021-02358-3 pmid: 33544185
13 J B Holman, D G Wareham (2005). COD, ammonia and dissolved oxygen time profiles in the simultaneous nitrification/denitrification process. Biochemical Engineering Journal, 22(2): 125–133
https://doi.org/10.1016/j.bej.2004.09.001
14 H W Hu, J Z He (2017). Comammox−A newly discovered nitrification process in the terrestrial nitrogen cycle. Journal of Soils and Sediments, 17(12): 2709–2717
https://doi.org/10.1007/s11368-017-1851-9
15 Z J Jia, H Kikuchi, T Watanabe, S Asakawa, M Kimura (2007). Molecular identification of methane oxidizing bacteria in a Japanese rice field soil. Biology and Fertility of Soils, 44(1): 121–130
https://doi.org/10.1007/s00374-007-0186-x
16 K D Kits, M Y Jung, J Vierheilig, P Pjevac, C J Sedlacek, S Liu, C Herbold, L Y Stein, A Richter, H Wissel, N Brüggemann, M Wagner, H Daims (2019). Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nature Communications, 10(1): 1836
https://doi.org/10.1038/s41467-019-09790-x pmid: 31015413
17 K D Kits, C J Sedlacek, E V Lebedeva, P Han, A Bulaev, P Pjevac, A Daebeler, S Romano, M Albertsen, L Y Stein, H Daims, M Wagner (2017). Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature, 549(7671): 269–272
https://doi.org/10.1038/nature23679 pmid: 28847001
18 C Knief, S Kolb, P L E Bodelier, A Lipski, P F Dunfield (2006). The active methanotrophic community in hydromorphic soils changes in response to changing methane concentration. Environmental Microbiology, 8(2): 321–333
https://doi.org/10.1111/j.1462-2920.2005.00898.x pmid: 16423018
19 H Koch, M A H J van Kessel, S Lücker (2019). Complete nitrification: insights into the ecophysiology of comammox Nitrospira. Applied Microbiology and Biotechnology, 103(1): 177–189
https://doi.org/10.1007/s00253-018-9486-3 pmid: 30415428
20 M Könneke, A E Bernhard, J R de la Torre, C B Walker, J B Waterbury, D A Stahl (2005). Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature, 437(7058): 543–546
https://doi.org/10.1038/nature03911 pmid: 16177789
21 M M M Kuypers (2017). Microbiology: A fight for scraps of ammonia. Nature, 549(7671): 162–163
https://doi.org/10.1038/549162a pmid: 28905910
22 M M M Kuypers, H K Marchant, B Kartal (2018). The microbial nitrogen-cycling network. Nature Reviews. Microbiology, 16(5): 263–276
https://doi.org/10.1038/nrmicro.2018.9 pmid: 29398704
23 C E Lawson, S Lücker (2018). Complete ammonia oxidation: An important control on nitrification in engineered ecosystems? Current Opinion in Biotechnology, 50: 158–165
https://doi.org/10.1016/j.copbio.2018.01.015 pmid: 29414055
24 S Liu, H Wang, L Chen, J Wang, M Zheng, S Liu, Q Chen, J Ni (2020a). Comammox Nitrospira within the Yangtze River continuum: community, biogeography, and ecological drivers. The ISME Journal, 14(10): 2488–2504
https://doi.org/10.1038/s41396-020-0701-8 pmid: 32555502
25 Z Liu, C Zhang, Q Wei, S Zhang, Z Quan, M Li (2020b). Temperature and salinity drive comammox community composition in mangrove ecosystems across southeastern China. The Science of the total environment, 742: 140456
https://doi.org/10.1016/j.scitotenv.2020.140456 pmid: 32629251
26 S Lücker, M Wagner, F Maixner, E Pelletier, H Koch, B Vacherie, T Rattei, J S Damsté, E Spieck, D Le Paslier, H Daims (2010). A Nitrospira metagenome illuminates the physiology and evolution of globally important nitrite-oxidizing bacteria. Proceedings of the National Academy of Sciences of the United States of America, 107(30): 13479–13484
https://doi.org/10.1073/pnas.1003860107 pmid: 20624973
27 A Palomo, A G Pedersen, S J Fowler, A Dechesne, T Sicheritz-Pontén, B F Smets (2018). Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. The ISME Journal, 12(7): 1779–1793
https://doi.org/10.1038/s41396-018-0083-3 pmid: 29515170
28 A J Pinto, D N Marcus, U Z Ijaz, Q M Bautista-de Lose Santos, G J Dick, L Raskin (2015). Metagenomic evidence for the presence of comammox Nitrospira-like bacteria in a drinking water system. MSphere, 1(1): e00054–e15
pmid: 27303675
29 P Pjevac, C Schauberger, L Poghosyan, C W Herbold, M A H J van Kessel, A Daebeler, M Steinberger, M S M Jetten, S Lücker, M Wagner, H Daims (2017). AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox Nitrospira in the environment. Frontiers in Microbiology, 8: 1508
https://doi.org/10.3389/fmicb.2017.01508 pmid: 28824606
30 P Roots, Y Wang, A F Rosenthal, J S Griffin, F Sabba, M Petrovich, F Yang, J A Kozak, H Zhang, G F Wells (2019). Comammox Nitrospira are the dominant ammonia oxidizers in a mainstream low dissolved oxygen nitrification reactor. Water Research, 157: 396–405
https://doi.org/10.1016/j.watres.2019.03.060 pmid: 30974288
31 D Sakoula, H Koch, J Frank, M S M Jetten, M A H J van Kessel, S Lücker (2021). Enrichment and physiological characterization of a novel comammox Nitrospira indicates ammonium inhibition of complete nitrification. The ISME journal, 15(4): 1010–1024
https://doi.org/10.1038/s41396-020-00827-4 pmid: 33188298
32 Y Sato, E Tanaka, T Hori, H Futamata, K Murofushi, H Takagi, T Akachi, T Miwa, T Inaba, T Aoyagi, H Habe (2021). Efficient conversion of organic nitrogenous wastewater to nitrate solution driven by comammox Nitrospira. Water Research, 197: 117088
https://doi.org/10.1016/j.watres.2021.117088 pmid: 33813172
33 Y H Shao, J H Wu (2021). comammox Nitrospira species dominate in an efficient partial nitrification-anammox bioreactor for treating ammonium at low loadings. Environmental Science & Technology, 55(3): 2087–2098
https://doi.org/10.1021/acs.est.0c05777 pmid: 33440936
34 Y C Shen, Y N Hu, G C Shaw (2016). Expressions of alkaline phosphatase genes during phosphate starvation are under positive influences of multiple cell wall hydrolase genes in Bacillus subtilis. The Journal of General and Applied Microbiology, 62(2): 106–109
https://doi.org/10.2323/jgam.62.106 pmid: 27118079
35 Y Shi, Y Y Jiang, S Y Wang, X M Wang, G B Zhu (2020). Biogeographic distribution of comammox bacteria in diverse terrestrial habitats. Science of the Total Environment, 717: 137257 doi.org/10.1016/j.scitotenv.2020.137257. PMID:32065897
36 A K Steenbergh, M M Meima, M Kamst, P L E Bodelier (2010). Biphasic kinetics of a methanotrophic community is a combination of growth and increased activity per cell. FEMS Microbiology Ecology, 71(1): 12–22
https://doi.org/10.1111/j.1574-6941.2009.00782.x pmid: 19799630
37 D Y Sun, X F Tang, M Y Zhao, Z X Zhang, L J Hou, M Liu, B Z Wang, U Klümper, P Han (2020). Distribution and diversity of comammox Nitrospira in coastal wetlands of China. Frontiers in Microbiology, 11: 589268
https://doi.org/10.3389/fmicb.2020.589268 pmid: 33123118
38 D Y Sun, M Y Zhao, X F Tang, M Liu, L J Hou, Q Zhao, J Li, J D Gu, P Han (2021). Niche adaptation strategies of different clades of comammox Nitrospira in the Yangtze Estuary. International Biodeterioration & Biodegradation, 164: 105286
https://doi.org/10.1016/j.ibiod.2021.105286
39 Y Takahashi, H Fujitani, Y Hirono, K Tago, Y Wang, M Hayatsu, S Tsuneda (2020). Enrichment of comammox and nitrite-oxidizing Nitrospira from acidic soils. Frontiers in Microbiology, 11: 1737
https://doi.org/10.3389/fmicb.2020.01737 pmid: 32849373
40 K Tatari, S Musovic, A Gülay, A Dechesne, H Albrechtsen, B F Smets (2017). Density and distribution of nitrifying guilds in rapid sand filters for drinking water production: Dominance of Nitrospira spp. Water Research, 127: 239–248
https://doi.org/10.1016/j.watres.2017.10.023 pmid: 29055829
41 A Teske, E Alm, J M Regan, S Toze, B E Rittmann, D A Stahl (1994). Evolutionary relationships among ammonia- and nitrite-oxidizing bacteria. Journal of Bacteriology, 176(21): 6623–6630
https://doi.org/10.1128/jb.176.21.6623-6630.1994 pmid: 7961414
42 M A H J Van Kessel, D R Speth, M Albertsen, P H Nielsen, H J M Op den Camp, B Kartal, M S M Jetten, S Lücker (2015). Complete nitrification by a single microorganism. Nature, 528(7583): 555–559
https://doi.org/10.1038/nature16459 pmid: 26610025
43 G Vigliotta, E Nutricati, E Carata, S M Tredici, M De Stefano, P Pontieri, D R Massardo, M V Prati, L De Bellis, P Alifano (2007). Clonothrix fusca Roze 1896, a filamentous, sheathed, methanotrophic γ-proteobacterium. Applied and Environmental Microbiology, 73(11): 3556–3565
https://doi.org/10.1128/AEM.02678-06 pmid: 17416684
44 M Y Wang, G H Huang, Z R Zhao, C Y Dang, W Liu, M S Zheng (2018). Newly designed primer pair revealed dominant and diverse comammox amoA gene in full-scale wastewater treatment plants. Bioresource Technology, 270: 580–587
https://doi.org/10.1016/j.biortech.2018.09.089 pmid: 30261485
45 S Y Wang, Y L Pi, Y Y Jiang, H W Pan, X X Wang, X M Wang, Z M Zhou, G B Zhu (2019). Nitrate reduction in the reed rhizosphere of a riparian zone: From functional genes to activity and contribution. Environmental Research, 180(6): 108867
https://doi.org/10.1016/j.envres.2019.108867 pmid: 31708170
46 Y Wang, L Ma, Y Mao, X Jiang, Y Xia, K Yu, B Li, T Zhang (2017). Comammox in drinking water systems. Water Research, 116: 332–341
https://doi.org/10.1016/j.watres.2017.03.042 pmid: 28390307
47 Y L Wang, R X Zhao, L Liu, B Li, T Zhang (2021). Selective enrichment of comammox from activated sludge using antibiotics. Water Research, 197: 117087
https://doi.org/10.1016/j.watres.2021.117087 pmid: 33819658
48 Z Wang, L Zhang, F Z Zhang, H Jiang, S Ren, W Wang, Y Z Peng (2020). Nitrite accumulation in comammox-dominated nitrification-denitrification reactors: Effects of DO concentration and hydroxylamine addition. Journal of Hazardous Materials, 384: 121375
https://doi.org/10.1016/j.jhazmat.2019.121375 pmid: 31629588
49 M K Winkler, J P Bassin, R Kleerebezem, D Y Sorokin, M C van Loosdrecht (2012). Unravelling the reasons for disproportion in the ratio of AOB and NOB in aerobic granular sludge. Applied Microbiology and Biotechnology, 94(6): 1657–1666
https://doi.org/10.1007/s00253-012-4126-9 pmid: 22573276
50 S Winogradsky (1890). The morphology of the contributions of nitrification system. Archives of Biological Sciences, 4: 257–275
51 F Xia, J G Wang, T Zhu, B Zou, S K Rhee, Z X Quan (2018). Ubiquity and diversity of complete ammonia oxidizers (comammox). Applied and Environmental Microbiology, 84(24): e01390–e18
https://doi.org/10.1128/AEM.01390-18 pmid: 30315079
52 S Y Xu, X L Wu, H J Lu (2021). Overlooked nitrogen-cycling microorganisms in biological wastewater treatment. Frontiers of Environmental Science & Engineering, 15(6): 133
https://doi.org/10.1007/s11783-021-1426-2 pmid: 33686360
53 Y F Xu, J Lu, Y C Wang, G L Liu, X Q Wan, Y M Hua, D W Zhu, J W Zhao (2020). Diversity and abundance of comammox bacteria in the sediments of an urban lake. Journal of Applied Microbiology, 128(6): 1647–1657
https://doi.org/10.1111/jam.14593 pmid: 31989773
54 C Yu, L Hou, Y Zheng, M Liu, G Yin, J Gao, C Liu, Y Chang, P Han (2018). Evidence for complete nitrification in enrichment culture of tidal sediments and diversity analysis of clade a comammox Nitrospira in natural environments. Applied Microbiology and Biotechnology, 102(21): 9363–9377
https://doi.org/10.1007/s00253-018-9274-0 pmid: 30094589
55 W Zeng, L M Zhang, A Q Wang, J Zhang, Y Z Peng, J L Duan (2015). Community structures and population dynamics of nitrifying bacteria in activated sludges of wastewater treatment plants. China Environmental Science, 35(11): 3257–3265 (in Chinese)
56 Y X Zhao, J J Hu, W L Yang, J Q Wang, Z J Jia, P Zheng, B L Hu (2021). The long-term effects of using nitrite and urea on the enrichment of comammox bacteria. Science of the Total Environment, 755(Pt 2): 142580
https://doi.org/10.1016/j.scitotenv.2020.142580 pmid: 33059137
57 Z Zhao, G Huang, S He, N Zhou, M Wang, C Dang, J Wang, M Zheng (2019). Abundance and community composition of comammox bacteria in different ecosystems by a universal primer set. Science of the Total Environment , 691: 146–155
https://doi.org/10.1016/j.scitotenv.2019.07.131 pmid: 31319252
58 X Zhou, B Li, J Wei, Y Ye, J Xu, L Chen, C Lu (2021). Temperature influenced the comammox community composition in drinking water and wastewater treatment plants. Microbial Ecology, 82(4): 870–884
https://doi.org/10.1007/s00248-021-01724-9 pmid: 33665721
[1] Yabing Meng, Depeng Wang, Zhong Yu, Qingyun Yan, Zhili He, Fangang Meng. Genome-resolved metagenomic analysis reveals different functional potentials of multiple Candidatus Brocadia species in a full-scale swine wastewater treatment system[J]. Front. Environ. Sci. Eng., 2023, 17(1): 2-.
[2] Runyao Huang, Jin Xu, Li Xie, Hongtao Wang, Xiaohang Ni. Energy neutrality potential of wastewater treatment plants: A novel evaluation framework integrating energy efficiency and recovery[J]. Front. Environ. Sci. Eng., 2022, 16(9): 117-.
[3] Yuqing Yan, Xin Wang. Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation[J]. Front. Environ. Sci. Eng., 2022, 16(4): 52-.
[4] Zhida Li, Lu Lu. Wastewater treatment meets artificial photosynthesis: Solar to green fuel production, water remediation and carbon emission reduction[J]. Front. Environ. Sci. Eng., 2022, 16(4): 53-.
[5] Zhike Li, Jie Chi, Zhenyu Wu, Yiyan Zhang, Yiran Liu, Lanlan Huang, Yiren Lu, Minhaz Uddin, Wei Zhang, Xuejun Wang, Yan Lin, Yindong Tong. Characteristics of plankton Hg bioaccumulations based on a global data set and the implications for aquatic systems with aggravating nutrient imbalance[J]. Front. Environ. Sci. Eng., 2022, 16(3): 37-.
[6] Sen Dong, Peng Gao, Benhang Li, Li Feng, Yongze Liu, Ziwen Du, Liqiu Zhang. Occurrence and migration of microplastics and plasticizers in different wastewater and sludge treatment units in municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2022, 16(11): 142-.
[7] Yindong Tong, Xuejun Wang, James J. Elser. Unintended nutrient imbalance induced by wastewater effluent inputs to receiving water and its ecological consequences[J]. Front. Environ. Sci. Eng., 2022, 16(11): 149-.
[8] Wei Shan, Bingbing Li, Haichuan Zhang, Zhenghao Zhang, Yan Wang, Zhiyang Gao, Ji Li. Distribution, characteristics and daily fluctuations of microplastics throughout wastewater treatment plants with mixed domestic–industrial influents in Wuxi City, China[J]. Front. Environ. Sci. Eng., 2022, 16(1): 6-.
[9] Shaoyi Xu, Xiaolong Wu, Huijie Lu. Overlooked nitrogen-cycling microorganisms in biological wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(6): 133-.
[10] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[11] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[12] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[13] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[14] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[15] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed