|
|
Oxidative treatment of aqueous monochlorobenzene with thermally-activated persulfate |
Qishi LUO( ) |
State Environmental Protection Engineering Center for Urban Soil Contamination Control and Remediation, Shanghai Academy of Environmental Science, Shanghai 200233, China |
|
|
Abstract The oxidation of aqueous monochlorobenzene (MCB) solutions using thermally- activated persulfate has been investigated. The influence of reaction temperature on the kinetics of MCB oxidation was examined, and the Arrenhius Equation rate constants at 20°C, 30°C, 40°C, 50°C, and 60°C for MCB oxidation performance were calculated as 0, 0.001, 0.002, 0.015, 0.057 min-1, which indicates that elevated temperature accelerated the rate. The most efficient molar ratio of persulfate/MCB for MCB oxidation was determined to be 200 to 1 and an increase in the rate constants suggests that the oxidation process proceeded more rapidly with increasing persulfate/MCB molar ratios. In addition, the reactivity of persulfate in contaminated water is partly influenced by the presence of background ions such as Cl-, HCO3-, SO42-, and NO3-. Importantly, a scavenging effect in rate constant was observed for both Cl- and CO32- but not for other ions. The effective thermally activated persulfate oxidation of MCB in groundwater from a real contaminated site was achieved using both elevated reaction temperature and increased persulfate/MCB molar ratio.
|
Keywords
persulfate
monochlorobenzene
advanced oxidation process
|
Corresponding Author(s):
LUO Qishi,Email:luoqs@saes.sh.cn
|
Issue Date: 01 April 2014
|
|
1 |
Xu Z, Deng S, Yang Y, Zhang T, Cao Q, Huang J, Yu G. Catalytic destruction of pentachlorobenzene in simulated flue gas by a V2O5-WO3/TiO2 catalyst. Chemosphere , 2012, 87(9): 1032-1038 doi: 10.1016/j.chemosphere.2012.01.004 pmid:22280981
|
2 |
Song Y, Wang F, Bian Y, Zhang Y, Jiang X. Chlorobenzenes and organochlorinated pesticides in vegetable soils from an industrial site, China. Journal of Environmental Sciences-China , 2012, 24(3): 362-368 doi: 10.1016/S1001-0742(11)60720-1 pmid:22655347
|
3 |
Lee C L, Lee H Y, Tseng K H, Hong P K, Jou C J G.Enhanced dechlorination of chlorobenzene by microwave-induced zero-valent iron: particle effects and activation energy. Environmental Chemistry Letters , 2011, 9(3): 355-359 doi: 10.1007/s10311-010-0286-y
|
4 |
Lee C L, Jou C J G, Huang H G. Degradation of chlorobenzene in water using nanoscale Cu coupled with microwave irradiation. Journal of Environmental Engineering , 2010, 136(4): 412-416 doi: 10.1061/(ASCE)EE.1943-7870.0000163
|
5 |
Wang K H, Hsieh Y H, Chou M Y, Chang C Y. Photocalytic degradation of 2-chloro and 2-nitrophenol by titanium dioxide suspensions in aqueous solution. Applied Catalysis B: Environmental , 1999, 21(1): 1-8 doi: 10.1016/S0926-3373(98)00116-7
|
6 |
Pagano M, Volpe A, Lopez A, Mascolo G, Ciannarella R. Degradation of chlorobenzene by Fenton-like processes using zero-valent iron in the presence of Fe3+ and Cu2+. Environmental Technology , 2011, 32(1-2): 155-165 doi: 10.1080/09593330.2010.490855 pmid:21473278
|
7 |
Hollige C, Schraa G, Stams A J M, Zehnder A J B. Enrichment and properties of an anaerobic mixed culture reductively dechlorinating 1,2,3-trichlorobenzene to 1,3-dichlorobenzene. Applied and Environmental Microbiology , 1992, 58(5): 1636-1644 pmid:1622233
|
8 |
Chen X, Christopher A, Jones J P, Bell S G, Guo Q, Xu F, Rao Z, Wong L L. Crystal structure of the F87W/Y96F/V247L mutant of cytochrome P-450cam with 1,3,5-trichlorobenzene bound and further protein engineering for the oxidation of pentachlorobenzene and hexachlorobenzene. The Journal of Biological Chemistry , 2002, 277(40): 37519-37526 doi: 10.1074/jbc.M203762200 pmid:12114516
|
9 |
Tsitonaki A, Petri B, Crimi M, Mosb?k H, Siegrist R, Bjerg P. In situ oxidation of contaminated soil and ground water using persulfate. Critical Reviews in Environmental Science and Technology , 2010, 40(1): 55-91 doi: 10.1080/10643380802039303
|
10 |
Watts R J, Teel A L. Chemistry of modified Fenton’s reagent (catalysed H2O2 propagations-CHP) for in situ soil and ground water remediation. Journal of Environmental Engineering , 2005, 131(4): 612-622 doi: 10.1061/(ASCE)0733-9372(2005)131:4(612)
|
11 |
Huang K C, Couttenye R A, Hoag G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere , 2002, 49(4): 413-420 doi: 10.1016/S0045-6535(02)00330-2 pmid:12365838
|
12 |
Huang K C, Zhao Z, Hoag G E, Dahmani A, Block P A. Degradation of volatile organic compounds with thermally activated persulfate oxidation. Chemosphere , 2005, 61(4): 551-560 doi: 10.1016/j.chemosphere.2005.02.032 pmid:16202809
|
13 |
Liang C J, Bruell C J, Marley M C, Sperry K L. Thermally activated persulfate oxidation of trichloroethylene (TCE) and 1,1,1-trichloroethane (TCA) in aqueous systems and soil slurries. Soil and Sediment Contamination , 2003, 12(2): 207-228 doi: 10.1080/713610970
|
14 |
Liang C, Wang Z S, Bruell C J. Influence of pH on persulfate oxidation of TCE at ambient temperatures. Chemosphere , 2007, 66(1): 106-113 doi: 10.1016/j.chemosphere.2006.05.026 pmid:16814844
|
15 |
Waldemer R H, Tratnyek P G, Johnson R L, Nurmi J T. Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environmental Science & Technology , 2007, 41(3): 1010-1015 doi: 10.1021/es062237m pmid:17328217
|
16 |
Anipsitakis G P, Dionysiou D D. Radical generation by the interaction of transition metals with common oxidants. Environmental Science & Technology , 2004, 38(13): 3705-3712 doi: 10.1021/es035121o pmid:15296324
|
17 |
Anipsitakis G P, Dionysiou D D. Transition metal/UV-based advanced oxidation technologies for water decontamination. Applied Catalysis , 2004, 54(3): 155-163 doi: 10.1016/j.apcatb.2004.05.025
|
18 |
Liang C, Bruell C J, Marley M C, Sperry K L. Persulfate oxidation for in situ remediation of TCE. I. Activated by ferrous ion with and without a persulfate-thiosulfate redox couple. Chemosphere , 2004, 55(9): 1213-1223 doi: 10.1016/j.chemosphere.2004.01.029 pmid:15081762
|
19 |
Liang C, Bruell C J, Marley M C, Sperry K L. Persulfate oxidation for in situ remediation of TCE. II. Activated by chelated ferrous ion. Chemosphere , 2004, 55(9): 1225-1233 doi: 10.1016/j.chemosphere.2004.01.030 pmid:15081763
|
20 |
Rastogi A, Al-Abed S R, Dionysiou D D. Sulfate radical-based ferrous peroxymonosulfate oxidative system for PCBs degradation in aqueous and sediment systems. Applied Catalysis B: Environmental , 2009, 85(3-4): 171-179 doi: 10.1016/j.apcatb.2008.07.010
|
21 |
Rastogi A, Al-Abed S R, Dionysiou D D. Effect of inorganic, synthetic and naturally occurring chelating agents on Fe(II) mediated advanced oxidation of chlorophenols. Water Research , 2009, 43(3): 684-694 doi: 10.1016/j.watres.2008.10.045 pmid:19038413
|
22 |
Kolthoff I M, Medalia A I, Raaen H P. The reaction between ferrous iron and peroxides. IV. Reaction with potassium persulfate. Journal of American Chemical Society , 1951, 73(4): 1733-1739 doi: 10.1021/ja01148a089
|
23 |
House D A. Kinetics and mechanism of oxidation by peroxydisulfate. Chemical Reviews , 1962, 62(3): 185-203 doi: 10.1021/cr60217a001
|
24 |
Gu X, Lu S, Li L, Qiu Z, Sui Q, Lin K, Luo Q. Oxidation of 1,1,1-trichloroethane stimulated by thermally activated persulfate. Industrial & Engineering Chemistry , 2011, 50(19): 11029-11036 doi: 10.1021/ie201059x
|
25 |
Liang C J, Huang C F, Chen Y J. Potential for activated persulfate degradation of BTEX contamination. Water Research , 2008, 42(15): 4091-4100 doi: 10.1016/j.watres.2008.06.022 pmid:18718627
|
26 |
Huie R E, Clifton C L, Neta P. Electron transfer reaction and equilibria of the carbonate and sulphate radical anions. IRadiation Physics and Chemistry , 1991, 38(5): 477-481
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|