|
|
Decomposition of perfluorooctanoic acid by microwave-activated persulfate: Effects of temperature, pH, and chloride ions |
Yuchi LEE1, Shanglien LO1( ), Jeff KUO2, Chinghong HSIEH1 |
1. Research Center for Environmental Pollution Prevention and Control Technology, Graduate Institute of Environmental Engineering, Taiwan University, Taipei 10672, China; 2. Department of Civil and Environmental Engineering, California State University, Fullerton, CA 92834-6870, USA |
|
|
Abstract Microwave-hydrothermal treatment of persistent and bioaccumulative perfluorooctanoic acid (PFOA) in water with persulfate (S2O82-) has been found effective. However, applications of this process to effectively remediate PFOA pollution require a better understanding on free-radical scavenging reactions that also take place. The objectives of this study were to investigate the effects of pH (pH= 2.5, 6.6, 8.8, and 10.5), chloride concentrations (0.01–0.15 mol·L-1), and temperature (60°C, 90°C, and 130°C) on persulfate oxidation of PFOA under microwave irradiation. Maximum PFOA degradation occurred at pH 2.5, while little or no degradation at pH 10.5. Lowering system pH resulted in an increase in PFOA degradation rate. Both high pH and chloride concentrations would result in more scavenging of sulfate free radicals and slow down PFOA degradation. When chloride concentrations were less than 0.04 mol·L-1 at 90°C and 0.06 mol·L-1 at 60°C, presence of chloride ions had insignificant impacts on PFOA degradation. However, beyond these concentration levels, PFOA degradation rates reduced significantly with an increase in chloride concentrations, especially under the higher temperature.
|
Keywords
microwave
perfluorooctanoic acid
pH
persulfate
chloride ions
perfluorocarboxylic acids
|
Corresponding Author(s):
LO Shanglien,Email:sllo@ntu.edu.tw
|
Issue Date: 01 February 2012
|
|
1 |
Prevedouros K, Cousins I T, Buck R C, Korzeniowski S H. Sources, fate and transport of perfluorocarboxylates. Environmental Science & Technology , 2006, 40(1): 32-44 doi: 10.1021/es0512475 pmid:16433330
|
2 |
Renner R. Growing concern over perfluorinated chemicals. Environmental Science & Technology , 2001, 35(7): 154A-160A doi: 10.1021/es012317k pmid:11348100
|
3 |
So M K, Taniyasu S, Yamashita N, Giesy J P, Zheng J, Fang Z, Im S H, Lam P K S. Perfluorinated compounds in coastal waters of Hong Kong, South China, and Korea. Environmental Science & Technology , 2004, 38(15): 4056-4063 doi: 10.1021/es049441z pmid:15352441
|
4 |
Takagi S, Adachi F, Miyano K, Koizumi Y, Tanaka H, Mimura M, Watanabe I, Tanabe S, Kannan K. Perfluorooctanesulfonate and perfluorooctanoate in raw and treated tap water from Osaka, Japan. Chemosphere , 2008, 72(10): 1409-1412 doi: 10.1016/j.chemosphere.2008.05.034 pmid:18602659
|
5 |
Kannan K, Perrotta E, Thomas N J. Association between perfluorinated compounds and pathological conditions in southern sea otters. Environmental Science & Technology , 2006, 40(16): 4943-4948 doi: 10.1021/es060932o pmid:16955890
|
6 |
Tao L, Ma J, Kunisue T, Libelo E L, Tanabe S, Kannan K. Perfluorinated compounds in human breast milk from several Asian countries, and in infant formula and dairy milk from the United States. Environmental Science & Technology , 2008, 42(22): 8597-8602 doi: 10.1021/es801875v pmid:19068854
|
7 |
Brooke D, Footitt A, Nwaogu T A. Environmental Risk Evaluation Report: Perfluorooctane Sulfonate (PFOS). Building Research Establishment Ltd., Risk and Policy Analysts Ltd., and UK Environment Agency’s Science Group ; 2004 (Available at URL: http://www.environmentagency.gov.uk/commondata/105385/pfos_rer_sept04_864557.pdf)
|
8 |
Key B D, Howell R D, Criddle C S. Fluorinated organics in the biosphere. Environmental Science & Technology , 1997, 31(9): 2445-2454 doi: 10.1021/es961007c
|
9 |
Cheng J, Vecitis C D, Park H, Mader B T, Hoffmann M R. Sonochemical degradation of peerfluorooctane sulfonate (PFOS) and perfluorooctanoate (PFOA) in landfill groundwater: environmental matrix effects. Environmental Science & Technology , 2008, 42(21): 8057-8063 doi: 10.1021/es8013858 pmid:19031902
|
10 |
Wang Y, Zhang P, Pan G, Chen H. Ferric ion mediated photochemical decomposition of perfluorooctanoic acid (PFOA) by 254nm UV light. Journal of Hazardous Materials , 2008, 160(1): 181-186 doi: 10.1016/j.jhazmat.2008.02.105 pmid:18400382
|
11 |
Lee Y C, Lo S L, Chiueh P T, Chang D G. Efficient decomposition of perfluorocarboxylic acids in aqueous solution using microwave-induced persulfate. Water Research , 2009, 43(11): 2811-2816 doi: 10.1016/j.watres.2009.03.052 pmid:19443010
|
12 |
Lee Y C, Lo S L, Chiueh P T, Liou Y H, Chen M L. Microwave-hydrothermal decomposition of perfluorooctanoic acid in water by iron-activated persulfate oxidation. Water Research , 2010, 44(3): 886-892 doi: 10.1016/j.watres.2009.09.055 pmid:19879622
|
13 |
Yang S, Wang P, Yang X, Wei G, Zhang W, Shan L. A novel advanced oxidation process to degrade organic pollutants in wastewater: microwave-activated persulfate oxidation. Journal of Environmental Sciences (China) , 2009, 21(9): 1175-1180 doi: 10.1016/S1001-0742(08)62399-2 pmid:19999962
|
14 |
Huang K C, Couttenye R A, Hoag G E. Kinetics of heat-assisted persulfate oxidation of methyl tert-butyl ether (MTBE). Chemosphere , 2002, 49(4): 413-420 doi: 10.1016/S0045-6535(02)00330-2 pmid:12365838
|
15 |
House D A. Kinetics and mechanism of oxidations by peroxydisulfate. Chemical Reviews , 1962, 62(3): 185-203 doi: 10.1021/cr60217a001
|
16 |
Norman R O C, Storey P M, West P R. Electron spin resonance studies. Part XXV. Reactions of sulphate radical anion with organic compounds. Journal of the Chemical Society, Section B: Physical Organic , 1970, 1087-1095 doi: 10.1039/j29700001087
|
17 |
Peyton G R. The free-radical chemistry of persulfate based total organic carbon analyzers. Marine Chemistry , 1993, 41(1-3): 91-103 doi: 10.1016/0304-4203(93)90108-Z
|
18 |
Yu X Y, Bao Z C, Baker J R. Free radical reaction involving Cl·, Cl2· and SO4-· in the 248 nm photolysis of aqueous solutions containing SO42- and Cl-. Journal of Physical Chemistry A , 2004, 108(2): 295-308 doi: 10.1021/jp036211i
|
19 |
Goulden P D, Anthony D H J. Kinetics of uncatalyzed peroxydisulfate oxidation of organic material in fresh water. Analytical Chemistry , 1978, 50(7): 953-958 doi: 10.1021/ac50029a032
|
20 |
Hori H, Hayakawa E, Einaga H, Kutsuna S, Koike K, Ibusuki T, Kiatagawa H, Arakawa R. Decomposition of environmentally persistent perfluorooctanoic acid in water by photochemical approaches. Environmental Science & Technology , 2004, 38(22): 6118-6124 doi: 10.1021/es049719n pmid:15573615
|
21 |
Furukawa Y, Kim J W, Watkins J, Wilkin R T. Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron. Environmental Science & Technology , 2002, 36(24): 5469-5475 doi: 10.1021/es025533h pmid:12521177
|
22 |
Hori H, Nagaoka Y, Yamamoto A, Sano T, Yamashita N, Taniyasu S, Kutsuna S, Osaka I, Arakawa R. Efficient decomposition of environmentally persistent perfluorooctanesulfonate and related fluorochemicals using zerovalent iron in subcritical water. Environmental Science & Technology , 2006, 40(3): 1049-1054 doi: 10.1021/es0517419 pmid:16509356
|
23 |
Matheson L J, Tratnydk P G. Reductive dehalogenation of chlorinated methanes by Iron Metal. Environmental Science & Technology , 1994, 28(12): 2045-2053 doi: 10.1021/es00061a012
|
24 |
Anipsitakis G P, Tufano T P, Dionysiou D D. Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate. Water Research , 2008, 42(12): 2899-2910 doi: 10.1016/j.watres.2008.03.002 pmid:18384835
|
25 |
McKenna J H, Doering P H. Measurement of dissolved organic carbon by wet chemical oxidention with persulfate: Influence of chloride concentration and reagent volume. Marine Chemistry , 1995, 48(2): 109-114 doi: 10.1016/0304-4203(94)00049-J
|
26 |
Liang C, Wang Z S, Mohanty N. Influences of carbonate and chloride ions on persulfate oxidation of trichloroethylene at 20°C. The Science of the Total Environment , 2006, 370(2-3): 271-277 doi: 10.1016/j.scitotenv.2006.08.028 pmid:17014891
|
27 |
Buxton G V, Bydder M, Salmon G. The reactivity of chlorine atoms in aqueous solution. PartII The equilibrium SO4-·+Cl-→Cl·+SO42- Physical Chemistry Chemical Physics , 1999, 1(2): 269-273 doi: 10.1039/a807808d
|
28 |
Nohara K, Toma M, Kutsuna S, Takeuchi K, Ibusuki T. Cl atom-initiated oxidation of three homologous methyl perfluoroalkyl ethers. Environmental Science & Technology , 2001, 35(1): 114-120 doi: 10.1021/es000895f pmid:11351993
|
29 |
de Bruyn W J, Shorter J A, Davidovits P, Worsnop D R, Zahniser M S, Kolb C E. Uptake of haloacetyl and carbonyl halides by water surfaces. Environmental Science & Technology , 1995, 29(5): 1179-1185 doi: 10.1021/es00005a007
|
30 |
Vecitis C D, Park H, Cheng J, Mader B T, Hoffmann M R. Treatment technologies for aqueous perfuorooctanesulfonate (PFOS) and perfuorooctanoate (PFOA). Frontiers of Environmental Science & Engineering in China , 2009, 3(2): 129-151 doi: 10.1007/s11783-009-0022-7
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|