Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (8) : 99    https://doi.org/10.1007/s11783-024-1859-5
Synthesis of carbon nitride in potassium hydroxide molten salt for efficient uranium extraction from radioactive wastewater
Shuang Liu1,2, Junhan Luo1, Daniel-James Maguire3, Liyuan Zheng4, Zhe Wang1(), Yuexiang Lu1()
1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
2. Nuclear Research Institute for Future Technology and Policy, Seoul National University, Seoul 08826, Republic of Korea
3. Department of Earth Sciences, University of Cambridge, Cambridge CB23EQ, UK
4. The MOE Key Laboratory of Resources and Environmental System Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
 Download: PDF(11787 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Develop a one-step unary KOH molten salt carbon nitride synthesis method.

● Enhance light absorption and separation efficiency of electron-hole pair of K-CN-80.

● Improve photocatalytic activity and kinetics of U(VI) extraction onto K-CN-80.

● Separated U(VI) from wastewater as metastudtite by the photocatalytic extraction.

Photocatalysis-assisted removal of uranium has been proven as an effective method for the elimination of radioactive pollution from wastewater. In this work, carbon nitride materials were synthesized in potassium hydroxide (KOH) molten salt and applied to photocatalytic uranyl extraction. Obtained materials were confirmed to possess the triazine-s-heptazine structure by NMR, XPS and UV-Vis characterization, and exhibited a wider visible light absorption than graphitic carbon nitride (g-C3N4). The photocatalytic activity of the carbon nitride materials was tailored by varying the precursor mass fractions. The carbon nitride obtained at 80% melamine as precursor (K-CN-80) exhibited the highest photocatalytic extraction ability and its photocatalytic reaction rate is 6.6 times faster than that of g-C3N4. The influence of sacrificial agents was studied and the results showed that triethanolamine inhibited U(VI) photoreduction, but methanol can accelerate U(VI) photoreduction by consuming photogenerated holes. This unary KOH molten salt synthesis method has exceptional potential applications in the preparation of carbon nitrides, and the obtained products showed potential in extracting U(VI) from aqueous solutions for use in nuclear fuel industry and for U(VI) environmental pollution cleanup.

Keywords Uranium      Carbon nitride      Molten salt      Photocatalysis      Radioactive wastewater     
Corresponding Author(s): Zhe Wang,Yuexiang Lu   
Issue Date: 17 June 2024
 Cite this article:   
Shuang Liu,Junhan Luo,Daniel-James Maguire, et al. Synthesis of carbon nitride in potassium hydroxide molten salt for efficient uranium extraction from radioactive wastewater[J]. Front. Environ. Sci. Eng., 2024, 18(8): 99.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1859-5
https://academic.hep.com.cn/fese/EN/Y2024/V18/I8/99
  Scheme1 The formation of K-CN-w from melamine and picture of the synthesized K-CN-w.
Fig.1  The photos and SEM images of (a) g-C3N4, (b) K-CN-70, (c) K-CN-80, and (d) K-CN-90.
Fig.2  N2 adsorption-desorption curves of (a) g-C3N4, (b) K-CN-70, (c) K-CN-80, and (d) K-CN-90.
Fig.3  (a) The XRD patterns, (b) local enlarged XRD image and fitting of FWHM, (c) solid-state 13C NMR spectra and (d) FT-IR spectra of the synthetic g-C3N4, K-CN-70, K-CN-80, and K-CN-90.
Fig.4  (a) XPS survey spectra of g-C3N4, K-CN-70, K-CN-80, and K-CN-90; (b) high resolution C 1s of g-C3N4, K-CN-70, K-CN-80, and K-CN-90; (c) high resolution N 1s of g-C3N4, K-CN-70, K-CN-80, and K-CN-90; (d) high resolution K 2p of g-C3N4, K-CN-70, K-CN-80, and K-CN-90.
Elements g-C3N4 K-CN-70 K-CN-80 K-CN-90
C 46.93 43.95 43.53 43.712
N 50.23 46.46 48.19 52.81
O 2.84 6.69 6.15 3.44
K - 2.91 2.13 0.63
Tab.1  The element composition of g-C3N4, K-CN-70, K-CN-80, and K-CN-90
Fig.5  (a) PL spectra, (b) TR-PL fitting, (c) UV-vis absorption spectra, (d) illustration of energy level diagrams, (e) the time dependent photocurrent responses under light irradiation, (f) EIS Nyquist plots of g-C3N4, K-CN-70, K-CN-80, and K-CN-90.
Fig.6  (a) The photocatalytic U(VI) extraction performance using g-C3N4, K-CN-70, K-CN-80, and K-CN-90 as catalysts with initial uranium concentration of 200 mg/L, solid/liquid = 0.75, pH = 4.0 and (b) the calculated first-order kinetics rate constant for the photocatalytic reaction, (c) the powder XRD pattern and (d) U 4f XPS spectrum after uranium photocatalytic reaction.
Fig.7  The photocatalytic performance of K-CN-80 for the uranium extraction with different sacrificial agent compared with blank.
1 E Alwin, M Zieliński, A Suchora, I Gulaczyk, Z Piskuła, M Pietrowski. (2022). High surface area, spongy graphitic carbon nitride derived by selective etching by Pt and Ru nanoparticles in hydrogen. Journal of Materials Science, 57(33): 15705–15721
https://doi.org/10.1007/s10853-022-07621-x
2 X Bai, R Zong, C Li, D Liu, Y Liu, Y Zhu. (2014). Enhancement of visible photocatalytic activity via Ag@C3N4 core-shell plasmonic composite. Applied Catalysis B: Environmental, 147: 82–91
https://doi.org/10.1016/j.apcatb.2013.08.007
3 M K Bhunia, K Yamauchi, K Takanabe. (2014). Harvesting solar light with crystalline carbon nitrides for efficient photocatalytic hydrogen evolution. Angewandte Chemie International Edition, 53(41): 11001–11005
https://doi.org/10.1002/anie.201405161
4 M J Bojdys, J O Müller, M Antonietti, A Thomas. (2008). Ionothermal synthesis of crystalline, condensed, graphitic carbon nitride. Chemistry, 14(27): 8177–8182
https://doi.org/10.1002/chem.200800190
5 L Borges Silverio, Q Lamas W de. (2011). An analysis of development and research on spent nuclear fuel reprocessing. Energy Policy, 39(1): 281–289
https://doi.org/10.1016/j.enpol.2010.09.040
6 X Chen, S Liu, T Xie, C Zhang, S Xu. (2023). Facile preparation of carbon nitride by binary eutectic KNO3/KCl molten salt and its photocatalytic performance evaluation. RSC Advances, 13(51): 36107–36116
https://doi.org/10.1039/D3RA06718A
7 Y GuoP Yao D ZhuC (2015) Gu. A novel method for the development of a carbon quantum dot/carbon nitride hybrid photocatalyst that responds to infrared light irradiation. Journal of Materials Chemistry A, 25(3), 13189–13192
8 L Heymann, B Schiller, H Noei, A Stierle, C Klinke. (2018). A new synthesis approach for carbon nitrides: poly(triazine imide) and its photocatalytic properties. ACS Omega, 3(4): 3892–3900
https://doi.org/10.1021/acsomega.8b00294
9 Hu E, Chen Q, Gao Q, Fan X, Luo X, Wei Y, Wu G, Deng H, Xu S, Wang P, et al. (2024). Cyano-functionalized graphitic carbon nitride with adsorption and photoreduction isosite achieving efficient uranium extraction from seawater. Advanced Functional Materials, 2312215
10 Y Hu, Y Shim, J Oh, S Park, S Park, Y Ishii. (2017). Synthesis of 13C-, 15N-labeled graphitic carbon nitrides and NMR-based evidence of hydrogen-bonding assisted two-dimensional assembly. Chemistry of Materials, 29(12): 5080–5089
https://doi.org/10.1021/acs.chemmater.7b00069
11 Z F Huang, J Song, L Pan, Z Wang, X Zhang, J J Zou, W Mi, X Zhang, L Wang. (2015). Carbon nitride with simultaneous porous network and O-doping for efficient solar-energy-driven hydrogen evolution. Nano Energy, 12: 646–656
https://doi.org/10.1016/j.nanoen.2015.01.043
12 S H Huh. (2014). X-ray diffraction of multi-layer graphenes: instant measurement and determination of the number of layers. Carbon, 78: 617–621
https://doi.org/10.1016/j.carbon.2014.07.034
13 Z Jiang, W Wan, H Li, S Yuan, H Zhao, P K Wong. (2018). A hierarchical Z-scheme α-Fe2O3/g-C3N4 hybrid for enhanced photocatalytic CO2 reduction. Advanced Materials, 30(10): 1706108
https://doi.org/10.1002/adma.201706108
14 A Jin, X Liu, M Li, Y Jia, C Chen, X Chen. (2019). One-pot ionothermal synthesized carbon nitride heterojunction nanorods for simultaneous photocatalytic reduction and oxidation reactions: synergistic effect and mechanism insight. ACS Sustainable Chemistry & Engineering, 7(5): 5122–5133
https://doi.org/10.1021/acssuschemeng.8b05969
15 J Khan, Y Sun, L Han. (2022). A comprehensive review on graphitic carbon nitride for carbon dioxide photoreduction. Small Methods, 6(12): 2201013
https://doi.org/10.1002/smtd.202201013
16 K S Lakhi, D H Park, G Singh, S N Talapaneni, U Ravon, K Al-Bahily, A Vinu. (2017). Energy efficient synthesis of highly ordered mesoporous carbon nitrides with uniform rods and their superior CO2 adsorption capacity. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 5(31): 16220–16230
https://doi.org/10.1039/C6TA10716H
17 S Li, X Yang, Z Cui, Y Xu, Z Niu, P Li, D Pan, W Wu. (2021). Efficient photoreduction strategy for uranium immobilization based on graphite carbon nitride/perovskite oxide heterojunction nanocomposites. Applied Catalysis B: Environmental, 298: 120625
https://doi.org/10.1016/j.apcatb.2021.120625
18 P Liang, L Yuan, H Deng, X Wang, L Wang, Z Li, S Luo, W Shi. (2020). Photocatalytic reduction of uranium(VI) by magnetic ZnFe2O4 under visible light. Applied Catalysis B: Environmental, 267: 118688
https://doi.org/10.1016/j.apcatb.2020.118688
19 Y C Lin, C T Lo. (2023). Crucial structural parameters affecting electrochemical properties of activated electrospun carbon fibers as solid-state supercapacitor electrodes. Journal of Materials Science, 58(38): 15144–15161
https://doi.org/10.1007/s10853-023-08970-x
20 C Liu, P C Hsu, J Xie, J Zhao, T Wu, H Wang, W Liu, J Zhang, S Chu, Y Cui. (2017). A half-wave rectified alternating current electrochemical method for uranium extraction from seawater. Nature Energy, 2(4): 1–8
https://doi.org/10.1038/nenergy.2017.7
21 S Liu, X Li, L Huang, Q Qing, D J Maguire, N Chae, Z Wang, J Chen, Y Lu. (2023). Molten salt synthesis of carbon nitride nanostructures at different temperatures for extracting uranium from seawater. ACS Applied Nano Materials, 6(6): 4782–4792
https://doi.org/10.1021/acsanm.3c00301
22 S Liu, Z Wang, Y Lu, H Li, X Chen, G Wei, T Wu, D J Maguire, G Ye, J Chen. (2021). Sunlight-induced uranium extraction with triazine-based carbon nitride as both photocatalyst and adsorbent. Applied Catalysis B: Environmental, 282: 119523
https://doi.org/10.1016/j.apcatb.2020.119523
23 C Ma, R Wang, Z Xie, H Zhang, Z Li, J Shi. (2017). Preparation and molten salt-assisted KOH activation of porous carbon nanofibers for use as supercapacitor electrodes. Journal of Porous Materials, 24(6): 1437–1445
https://doi.org/10.1007/s10934-017-0384-3
24 P Paschalidou, I Pashalidis. (2019). Recovery of uranium from phosphate rock with EDTA-mediated dissolution and cation exchange. Hydrometallurgy, 189: 105118
https://doi.org/10.1016/j.hydromet.2019.105118
25 K Schwinghammer, M B Mesch, V Duppel, C Ziegler, J Senker, B V Lotsch. (2014). Crystalline carbon nitride nanosheets for improved visible-light hydrogen evolution. Journal of the American Chemical Society, 136(5): 1730–1733
https://doi.org/10.1021/ja411321s
26 R P Seward, K E Martin. (1949). The melting point of potassium hydroxide. Journal of the American Chemical Society, 71(10): 3564–3565
https://doi.org/10.1021/ja01178a530
27 Q Sun, B Aguila, L D Earl, C W Abney, L Wojtas, P K Thallapally, S Ma. (2018). Covalent organic frameworks as a decorating platform for utilization and affinity enhancement of chelating sites for radionuclide sequestration. Advanced Materials, 30(20): 1705479
https://doi.org/10.1002/adma.201705479
28 Q Tay, P Kanhere, C F Ng, S Chen, S Chakraborty, A C H Huan, T C Sum, R Ahuja, Z Chen. (2015). Defect engineered g-C3N4 for efficient visible light photocatalytic hydrogen production. Chemistry of Materials, 27(14): 4930–4933
https://doi.org/10.1021/acs.chemmater.5b02344
29 M Thommes, K Kaneko, A V Neimark, J P Olivier, F Rodriguez-Reinoso, J Rouquerol, K S W Sing. (2015). Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure and Applied Chemistry, 87(9–10): 1052–1069
https://doi.org/10.1515/pac-2014-1117
30 X Wang, K Maeda, A Thomas, K Takanabe, G Xin, J M Carlsson, K Domen, M Antonietti. (2009). A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nature Materials, 8(1): 76–80
https://doi.org/10.1038/nmat2317
31 Z Wang, B Li, H Shang, X Dong, L Huang, Q Qing, C Xu, J Chen, H Liu, X Wang. et al.. (2022). Photo-induced removal of uranium under air without external photocatalysts. Green Chemistry, 24(18): 7092–7099
https://doi.org/10.1039/D2GC02739A
32 C Xu, H Liu, D Wang, D Li, Y Zhang, X Liu, J Huang, S Wu, D Fan, H Liu. et al.. (2023). Molten-salt assisted synthesis of polymeric carbon nitride-based photocatalyst for enhanced photocatalytic activity under green light irradiation. Applied Catalysis B: Environmental, 334: 122835
https://doi.org/10.1016/j.apcatb.2023.122835
33 H Yang, X Liu, M Hao, Y Xie, X Wang, H Tian, G I N Waterhouse, P E Kruger, S G Telfer, S Ma. (2021). Functionalized iron–nitrogen–carbon electrocatalyst provides a reversible electron transfer platform for efficient uranium extraction from seawater. Advanced Materials, 33(51): 2106621
https://doi.org/10.1002/adma.202106621
34 Yang Y, Guo Y, Liu F, Yuan X, Guo Y, Zhang S, Guo W, Huo M (2013). Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Applied Catalysis B: Environmental, 142−143: 828−837
35 Y Ye, J Jin, W Han, S Miao, Y Feng, Z Qin, X Tang, C Li, Y Chen, F Chen. et al.. (2023). Spontaneous electrochemical uranium extraction from wastewater with net electrical energy production. Nat. Water, 1(10): 887–898
https://doi.org/10.21203/rs.3.rs-1715307/v1
36 F Zhang, Y Liu, K Q Ma, H Yan, Y Luo, F C Wu, C T Yang, S Hu, S M Peng. (2022). Highly selective extraction of uranium from wastewater using amine-bridged diacetamide-functionalized silica. Journal of Hazardous Materials, 435: 129022
https://doi.org/10.1016/j.jhazmat.2022.129022
37 G Zhang, L Lin, G Li, Y Zhang, A Savateev, S Zafeiratos, X Wang, M Antonietti. (2018). Ionothermal synthesis of triazine–heptazine-based copolymers with apparent quantum yields of 60% at 420 nm for solar hydrogen production from “sea water”. Angewandte Chemie International Edition, 57(30): 9372–9376
https://doi.org/10.1002/anie.201804702
38 C Zhao, Y Guo, J Yan, J Sun, W Li, P Lu. (2019). Enhanced CO2 sorption capacity of amine-tethered fly ash residues derived from co-firing of coal and biomass blends. Applied Energy, 242: 453–461
https://doi.org/10.1016/j.apenergy.2019.03.143
39 J Zhao, L Ma, H Wang, Y Zhao, J Zhang, S Hu. (2015). Novel band gap-tunable K–Na co-doped graphitic carbon nitride prepared by molten salt method. Applied Surface Science, 332: 625–630
https://doi.org/10.1016/j.apsusc.2015.01.233
40 Z Zhou, Q Liu, J Zhu, J Liu, H Zhang, J Yu, R Chen, Y Li, J Wang. (2022). Defective carbon nitride ultrathin nanosheets enriched with amidoxime groups for enhanced visible light-driven reduction of hexavalent uranium. Journal of Colloid and Interface Science, 628: 840–848
https://doi.org/10.1016/j.jcis.2022.07.191
41 Y Zou, P Wang, W Yao, X Wang, Y Liu, D Yang, L Wang, J Hou, A Alsaedi, T Hayat. et al.. (2017). Synergistic immobilization of UO22+ by novel graphitic carbon nitride @ layered double hydroxide nanocomposites from wastewater. Chemical Engineering Journal, 330: 573–584
https://doi.org/10.1016/j.cej.2017.07.135
[1] FSE-24040-OF-LS_suppl_1 Download
[1] Xin Tang, Yin Ye, Chunlin Wang, Bingqian Wang, Zemin Qin, Cui Li, Yanlong Chen, Yuheng Wang, Zhiling Li, Miao Lv, Aijie Wang, Fan Chen. Microbial-driven ectopic uranium extraction with net electrical energy production[J]. Front. Environ. Sci. Eng., 2024, 18(1): 4-.
[2] Chen Zhou, Ermias Gebrekrstos Tesfamariam, Youneng Tang, Ang Li. Contributions of adsorption, bioreduction and desorption to uranium immobilization by extracellular polymeric substances[J]. Front. Environ. Sci. Eng., 2023, 17(9): 107-.
[3] Zhou Zhang, Kai Huo, Tingxuan Yan, Xuwen Liu, Maocong Hu, Zhenhua Yao, Xuguang Liu, Tao Ye. Mechanistic insights into the selective photocatalytic degradation of dyes over TiO2/ZSM-11[J]. Front. Environ. Sci. Eng., 2023, 17(8): 101-.
[4] Xianjun Tan, Zhenying Jiang, Yuxiong Huang. Photo-induced surface frustrated Lewis pairs for promoted photocatalytic decomposition of perfluorooctanoic acid[J]. Front. Environ. Sci. Eng., 2023, 17(1): 3-.
[5] Shuangyang Zhao, Chengxin Chen, Jie Ding, Shanshan Yang, Yani Zang, Nanqi Ren. One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B[J]. Front. Environ. Sci. Eng., 2022, 16(3): 36-.
[6] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[7] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[8] Om Prakash, Stefan J. Green, Pooja Singh, Puja Jasrotia, Joel E. Kostka. Stress-related ecophysiology of members of the genus Rhodanobacter isolated from a mixed waste contaminated subsurface[J]. Front. Environ. Sci. Eng., 2021, 15(2): 23-.
[9] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[10] Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2-.
[11] Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 211-218.
[12] Mary Beth LEIGH,Wei-Min WU,Erick CARDENAS,Ondrej UHLIK,Sue CARROLL,Terry GENTRY,Terence L. MARSH,Jizhong ZHOU,Philip JARDINE,Craig S. CRIDDLE,James M. TIEDJE. Microbial communities biostimulated by ethanol during uranium (VI) bioremediation in contaminated sediment as shown by stable isotope probing[J]. Front. Environ. Sci. Eng., 2015, 9(3): 453-464.
[13] Gholamreza GHASEMZADEH,Mahdiye MOMENPOUR,Fakhriye OMIDI,Mohammad R. HOSSEINI,Monireh AHANI,Abolfazl BARZEGARI. Applications of nanomaterials in water treatment and environmental remediation[J]. Front.Environ.Sci.Eng., 2014, 8(4): 471-482.
[14] Lei LI, Jian XU, Changsheng GUO, Yuan ZHANG. Removal of rhodamine B from aqueous solution by BiPO4 hierarchical architecture[J]. Front Envir Sci Eng, 2013, 7(3): 382-387.
[15] Yongming ZHANG, Rong YAN, Zhen ZOU, Jiewei WANG, Bruce E. RITTMANN. Improved nitrogen removal in dual-contaminated surface water by photocatalysis[J]. Front Envir Sci Eng, 2012, 6(3): 428-436.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed