Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (3) : 36    https://doi.org/10.1007/s11783-021-1470-y
RESEARCH ARTICLE
One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B
Shuangyang Zhao, Chengxin Chen, Jie Ding(), Shanshan Yang(), Yani Zang, Nanqi Ren
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(4164 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• BiVO4/Fe3O4/rGO has excellent photocatalytic activity under solar light radiation.

• It can be easily separated and collected from water in an external magnetic field.

• BiVO4/Fe3O4/0.5% rGO exhibited the highest RhB removal efficiency of over 99%.

• Hole (h+) and superoxide radical (O2) dominate RhB photo-decomposition process.

• The reusability of this composite was confirmed by five successive recycling runs.

Fabrication of easily recyclable photocatalyst with excellent photocatalytic activity for degradation of organic pollutants in wastewater is highly desirable for practical application. In this study, a novel ternary magnetic photocatalyst BiVO4/Fe3O4/reduced graphene oxide (BiVO4/Fe3O4/rGO) was synthesized via a facile hydrothermal strategy. The BiVO4/Fe3O4 with 0.5 wt% of rGO (BiVO4/Fe3O4/0.5% rGO) exhibited superior activity, degrading greater than 99% Rhodamine B (RhB) after 120 min solar light radiation. The surface morphology and chemical composition of BiVO4/Fe3O4/rGO were studied by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectroscopy, UV–visible diffuse reflectance spectroscopy, Fourier transform infrared spectroscopy, and Raman spectroscopy. The free radicals scavenging experiments demonstrated that hole (h+) and superoxide radical (O2) were the dominant species for RhB degradation over BiVO4/Fe3O4/rGO under solar light. The reusability of this composite catalyst was also investigated after five successive runs under an external magnetic field. The BiVO4/Fe3O4/rGO composite was easily separated, and the recycled catalyst retained high photocatalytic activity. This study demonstrates that catalyst BiVO4/Fe3O4/rGO possessed high dye removal efficiency in water treatment with excellent recyclability from water after use. The current study provides a possibility for more practical and sustainable photocatalytic process.

Keywords Photocatalysis      Ternary magnetic photocatalyst      Visible-light-driven      Free radicals trapping      Reusability      Recycling     
Corresponding Author(s): Jie Ding,Shanshan Yang   
Issue Date: 13 July 2021
 Cite this article:   
Shuangyang Zhao,Chengxin Chen,Jie Ding, et al. One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B[J]. Front. Environ. Sci. Eng., 2022, 16(3): 36.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1470-y
https://academic.hep.com.cn/fese/EN/Y2022/V16/I3/36
Fig.1  Schematic illustration for the preparation process of BiVO4/Fe3O4/rGO.
Fig.2  SEM images of the as-prepared photocatalysts: (a) pristine BiVO4, (b) BiVO4/Fe3O4 and (c) BiVO4/Fe3O4/rGO; (d) XRD patterns of GO, BiVO4, BiVO4/Fe3O4 and BiVO4/Fe3O4/rGO; (e) FT-IR spectra and (f) Raman spectra of GO, BiVO4, BiVO4/ Fe3O4, and BiVO4/Fe3O4/rGO.
Fig.3  TEM images of BiVO4/Fe3O4/rGO: (a) with a photo scale of 50 nm; (b) with a photo scale of 10 nm; (c) specific image of BiVO4 part; (d) specific image of Fe3O4 part.
Fig.4  (a) XPS survey spectrum of GO, BiVO4, and BiVO4/Fe3O4/rGO; High-resolution XPS spectrum of (b) Bi 4f; (c) V 2p; (d) Fe 2p; (e) C 1s; (f) O 2p of BiVO4/Fe3O4/rGO; (g) C 1s of GO.
Samples Surface area (BET)a) (m2/g) Pore volume (P/P0 = 0.97)b) (cm3/g) Pore size (BJH)c) (nm)
BiVO4 9.116 0.033 3.275
BiVO4/Fe3O4 19.229 0.076 3.729
BiVO4/rGO 21.812 0.085 3.749
BiVO4/Fe3O4/rGO 24.008 0.091 4.814
Tab.1  BET calculation result for BiVO4, BiVO4/Fe3O4, BiVO4/rGO, and BiVO4/ Fe3O4/rGO
Fig.5  UV –vis diffuse reflection spectra (a) and the corresponding band energy diagram (b) of BiVO4, BiVO4/Fe3O4, and BiVO4/ Fe3O4/rGO composite photocatalysts; (c) Magnetic–Hysteresis (M–H) loops of Fe3O4 and BiVO4/Fe3O4/rGO. Inset: Photographs of the magnetic separation process of the composite photocatalyst in aqueous solution.
Fig.6  (a) Plots of Ct/C0 versus t for different catalysts and pure solution; (b) Kinetic data for the degradation of RhB in the presence of different photocatalysts; (c) photocatalytic performance of BiVO4/Fe3O4/rGO composite for the degradation of RhB as measured by UV–vis spectra; (d) Recycling experiments over the BiVO4/Fe3O4/rGO for RhB degradation of under solar light irradiation. Catalyst amount 100 mg; C0 = 10 mg/L; volume 100 mL; (e) FT-IR spectra of solid composite before and after the decoloration reaction; (f) XRD pattern of the solid composite after the reaction.
Photocatalysts samples Rate constant
k (min1)
R2
BiVO4 0.0185 0.9941
BiVO4/Fe3O4 0.0234 0.9961
BiVO4/0.5% rGO 0.036 0.9968
BiVO4/Fe3O4/0.5% rGO 0.0584 0.9963
BiVO4/Fe3O4/1% rGO 0.0462 0.9914
BiVO4/Fe3O4/2% rGO 0.0430 0.9913
Tab.2  The pseudo-first-order rate constants for RhB degradation under solar light irradiation
Composite Light sources Dosage (g/L) Irradiation time Volume Initial RhB concentration RhB Removal (%) M(RhB) versus M(catalyst)
(mg/g)
Ref.
BiVO4/Fe3O4/rGO Sunlight 1 120 min 100 mL 10 mg/L Nearly 100 10 This study
Hierarchically structured m-BiVO4 Sunlight 0.5 280 min 200 mL 5 mg/L About 90 10 Xing et al., 2014
InVO4/BiVO4 Visible light 1 280 min 50 mL 5 mg/L 98 5 Zhang et al., 2019
PANI-GO-BiVO4 Visible light 1 180 min 100 mL 4.8–48 mg/L 62 4.8–48 Biswas et al., 2019
BiVO4/BiPO4 UV light 0.5 120 min 100 mL 10 mg/L 98.8 20 Yan et al., 2018
CdS/BiVO4 Sunlight 1 60 min 50 mL 10 mg/L 80.2 10 Zeng et al., 2017
Gd/BiVO4 Sunlight 1 150 min 50 mL 5 mg/L 95 5 Luo et al., 2016
Rod-like BiVO4 Sunlight 1 240 min 200 mL 5 mg/L About 95 5 Sánchez-Martínez et al., 2015
Peanut-like BiVO4 Sunlight 1 180 min 50 mL 10 mg/L 62.5 10 Wang et al., 2013
BiOCl/BiVO4 Visible light 1 240 min 100 mL 10 mg/L Nearly 100 10 Song et al., 2017
(t-s) BiVO4/g-C3N4 Sunlight 0.5 120 min 300 mL 10 mg/L 97.7 20 Li et al., 2018
Sm3+ doped BiVO4 Sunlight 1 120 min 50 mL 5 mg/L 96 5 Luo et al., 2015
BiVO4 microcrystals Sunlight 1 120 min 50 mL 10 mg/L About 95 10 Zeng et al., 2014
Tab.3  Summary of RhB removal by different BiVO4-based catalysts
Fig.7  (a) The plots of Ct/C0 of phenol versus t for different catalysts; (b) Kinetic data for the degradation of phenol in the presence of different photocatalysts.
Fig.8  (a) PL spectra; (b) EIS spectra; (c) photocurrent response of the as-prepared sample; (d) ESR spectra of BiVO4/Fe3O4/rGO for OH and O2.
Fig.9  (a) Degradation of RhB over the composite in the presence of various scavengers; (b) Schematic illustration of the mechanism for photogenerated charge carriers transfer in BiVO4/Fe3O4/rGO under solar light irradiation.
1 T Ahmed, H Zhang, Y Y Gao, H Xu, Y Zhang (2018). Surfactant-free synthesis of m-BiVO4 nanoribbons and enhanced visible-light photocatalytic properties. Materials Research Bulletin, 99: 298–305
https://doi.org/10.1016/j.materresbull.2017.11.029
2 R B N Baig, S Verma, R S Varma, M N Nadagouda (2016). Magnetic Fe@g-C3N4: A photoactive catalyst for the hydrogenation of alkenes and alkynes. ACS Sustainable Chemistry & Engineering, 4(3): 1661–1664
https://doi.org/10.1021/acssuschemeng.5b01610
3 N Bao, Z Yin, Q Zhang, S He, X Hu, X Miao (2016). Synthesis of flower-like monoclinic BiVO4/surface rough TiO2 ceramic fiber with heterostructures and its photocatalytic property. Ceramics International, 42(1 1, Part B): 1791–1800
https://doi.org/10.1016/j.ceramint.2015.09.142
4 M R U D Biswas, K Y Cho, J D Na, W C Oh (2019). Highly electro-conductive graphene-decorated PANI-BiVO4 polymer-semiconductor nanocomposite with outstanding photocatalytic performance. Materials Science and Engineering B, 251: 114469
https://doi.org/10.1016/j.mseb.2019.114469
5 S Chen, Y Yang, M Ji, W Liu (2011). Preparation, characterisation and activity evaluation of CaCO3/ZnO photocatalyst. Journal of Experimental Nanoscience, 6(3): 324–336
https://doi.org/10.1080/17458080.2010.509873
6 Y Chen, B Zhai, Y Liang (2019). Enhanced degradation performance of organic dyes removal by semiconductor/MOF/graphene oxide composites under visible light irradiation. Diamond and Related Materials, 98: 107508
https://doi.org/10.1016/j.diamond.2019.107508
7 S Dong, Y Cui, Y Wang, Y Li, L Hu, J Sun, J Sun (2014). Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater. Chemical Engineering Journal, 249: 102–110
https://doi.org/10.1016/j.cej.2014.03.071
8 X Feng, H Guo, K Patel, H Zhou, X Lou (2014). High performance, recoverable Fe3O4-ZnO nanoparticles for enhanced photocatalytic degradation of phenol. Chemical Engineering Journal, 244: 327–334
https://doi.org/10.1016/j.cej.2014.01.075
9 Z X Gan, X L Wu, M Meng, X B Zhu, L Yang, P K Chu (2014). Photothermal contribution to enhanced photocatalytic performance of graphene-based nanocomposites. ACS Nano, 8(9): 9304–9310
https://doi.org/10.1021/nn503249c
10 N Gao, Z Lu, X Zhao, Z Zhu, Y Wang, D Wang, Z Hua, C Li, P Huo, M Song (2016). Enhanced photocatalytic activity of a double conductive C/Fe3O4/Bi2O3 composite photocatalyst based on biomass. Chemical Engineering Journal, 304: 351–361
https://doi.org/10.1016/j.cej.2016.06.063
11 S Gao, C Guo, J Lv, Q Wang, Y Zhang, S Hou, J Gao, J Xu (2017). A novel 3D hollow magnetic Fe3O4/BiOI heterojunction with enhanced photocatalytic performance for bisphenol A degradation. Chemical Engineering Journal, 307: 1055–1065
https://doi.org/10.1016/j.cej.2016.09.032
12 G Hu, Z Zhang, Z Zhang, X Zhang, T Li (2021). Size and shape effects of MnFe2O4 nanoparticles as catalysts for reductive degradation of dye pollutants. Frontiers of Environmental Science & Engineering, 15(5): 108
https://doi.org/10.1007/s11783-021-1396-4
13 S Huang, J Zhao, C Wu, X Wang, S Fei, Q Zhang, Q Wang, Z Chen, K Uvdal, Z Hu (2019a). ZIF-assisted construction of magnetic multiple core-shell Fe3O4@ZnO@N-doped carbon composites for effective photocatalysis. Chemical Engineering Science, 209: 115185
https://doi.org/10.1016/j.ces.2019.115185
14 Y Huang, Z Guo, H Liu, S Zhang, P Wang, J Lu, Y Tong (2019b). Heterojunction architecture of N-doped WO3 nanobundles with Ce2S3 nanodots hybridized on a carbon textile enables a highly efficient flexible photocatalyst. Advanced Functional Materials, 29(45): 1903490
https://doi.org/10.1002/adfm.201903490
15 J Jiang, H Li, L Z Zhang (2012). New insight into daylight photocatalysis of AgBr@Ag: Synergistic effect between semiconductor photocatalysis and plasmonic photocatalysis. Chemistry (Weinheim an der Bergstrasse, Germany), 18(20): 6360–6369
https://doi.org/10.1002/chem.201102606
16 R Jiang, D Wu, G Lu, Z Yan, J Liu, R Zhou, M Nkoom (2019). Fabrication of Fe3O4 quantum dots modified BiOCl/BiVO4 p-n heterojunction to enhance photocatalytic activity for removing broad-spectrum antibiotics under visible light. Journal of the Taiwan Institute of Chemical Engineers, 96: 681–690
https://doi.org/10.1016/j.jtice.2019.01.010
17 J H Kim, J S Lee (2019). Elaborately modified BiVO4 photoanodes for solar water splitting. Advanced Materials, 31(20): 1806938
https://doi.org/10.1002/adma.201806938
18 K Li, X Lu, Y Zhang, K Liu, Y Huang, H Liu (2020a). Bi3TaO7/Ti3C2 heterojunctions for enhanced photocatalytic removal of water-borne contaminants. Environmental Research, 185: 109409
https://doi.org/10.1016/j.envres.2020.109409
19 W Li, R Yu, M Li, N Guo, H Yu, Y Yu (2019a). Photocatalytical degradation of diclofenac by Ag-BiOI-rGO: Kinetics, mechanisms and pathways. Chemosphere, 218: 966–973
https://doi.org/10.1016/j.chemosphere.2018.11.185
20 X Li, D Wei, L Ye, Z Li (2019b). Fabrication of Cu2O-RGO/BiVO4 nanocomposite for simultaneous photocatalytic CO2 reduction and benzyl alcohol oxidation under visible light. Inorganic Chemistry Communications, 104: 171–177
https://doi.org/10.1016/j.inoche.2019.04.012
21 Y Li, Y Xia, K Liu, K Ye, Q Wang, S Zhang, Y Huang, H Liu (2020b). Constructing Fe-MOF-derived Z-scheme photocatalysts with enhanced charge transport: Nanointerface and carbon sheath synergistic effect. ACS Applied Materials & Interfaces, 12(22): 25494–25502
https://doi.org/10.1021/acsami.0c06601
22 Y Li, X Y Xiao, Z H Ye (2018). Facile fabrication of tetragonal scheelite (t-s) BiVO4/g-C3N4 composites with enhanced photocatalytic performance. Ceramics International, 44(6): 7067–7076
https://doi.org/10.1016/j.ceramint.2018.01.143
23 Y Li, H Zhang, P Liu, D Wang, Y Li, H Zhao (2013). Cross-linked g-C3N4/rGO nanocomposites with tunable band structure and enhanced visible light photocatalytic activity. Small, 9(19): 3336–3344
https://doi.org/10.1002/smll.201203135
24 Y Luo, G Tan, G Dong, H Ren, A Xia (2016). A comprehensive investigation of tetragonal Gd-doped BiVO4 with enhanced photocatalytic performance under sun-light. Applied Surface Science, 364: 156–165
https://doi.org/10.1016/j.apsusc.2015.12.100
25 Y Luo, G Tan, G Dong, L Zhang, J Huang, W Yang, C Zhao, H Ren (2015). Structural transformation of Sm3+ doped BiVO4 with high photocatalytic activity under simulated sun-light. Applied Surface Science, 324: 505–511
https://doi.org/10.1016/j.apsusc.2014.10.168
26 Y X Ma, P Q La, W J Lei, C P Lu, X Y Du (2016). Adsorption of Hg (II) from aqueous solution using amino-functionalized graphite nanosheets decorated with Fe3O4 nanoparticles. Desalination and Water Treatment, 57(11): 5004–5012
https://doi.org/10.1080/19443994.2014.998292
27 A Malathi, J Madhavan, M Ashokkumar, P Arunachalam (2018). A review on BiVO4 photocatalyst: Activity enhancement methods for solar photocatalytic applications. Applied Catalysis A, General, 555: 47–74
https://doi.org/10.1016/j.apcata.2018.02.010
28 W Mao, L Zhang, T Wang, Y Bai, Y Guan (2021). Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater. Frontiers of Environmental Science & Engineering, 15(4): 52
https://doi.org/10.1007/s11783-020-1344-8
29 A Mclaren, T Valdes-Solis, G Li, S C Tsang (2009). Shape and size effects of ZnO nanocrystals on photocatalytic activity. Journal of the American Chemical Society, 131(35): 12540–12541
https://doi.org/10.1021/ja9052703
30 J Meng, J Pei, Z He, S Wu, Q Lin, X Wei, J Li, Z Zhang (2017). Facile synthesis of g-C3N4 nanosheets loaded with WO3 nanoparticles with enhanced photocatalytic performance under visible light irradiation. RSC Advances, 7(39): 24097–24104
https://doi.org/10.1039/C7RA02297B
31 X C Meng, Z Z Li, Z S Zhang (2018). Palladium nanoparticles and rGO co-modified BiVO4 with greatly improved visible light-induced photocatalytic activity. Chemosphere, 198: 1–12
https://doi.org/10.1016/j.chemosphere.2018.01.070
32 K Nakata, A Fujishima (2012). TiO2 photocatalysis: Design and applications. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 13(3): 169–189
https://doi.org/10.1016/j.jphotochemrev.2012.06.001
33 T D Nguyen-Phan, V H Pham, E W Shin, H D Pham, S Kim, J S Chung, E J Kim, S H Hur (2011). The role of graphene oxide content on the adsorption-enhanced photocatalysis of titanium dioxide/graphene oxide composites. Chemical Engineering Journal, 170(1): 226–232
https://doi.org/10.1016/j.cej.2011.03.060
34 S Nikam, S Joshi (2016). Irreversible phase transition in BiVO4 nanostructures synthesized by a polyol method and enhancement in photo degradation of methylene blue. RSC Advances, 6(109): 107463–107474
https://doi.org/10.1039/C6RA14700C
35 O Quiroz-Cardoso, S Oros Ruiz, A Solis Gomez, R Lopez, R Gomez (2019). Enhanced photocatalytic hydrogen production by CdS nanofibers modified with graphene oxide and nickel nanoparticles under visible light. Fuel, 237: 227–235
https://doi.org/10.1016/j.fuel.2018.10.013
36 X Ren, T Yan, D Wu, R Feng, Q Wei (2014). An excellent-responding ethanol sensor with quasi p-n heterojunction based on the composite material of Fe3O4 and Cu2O. Journal of Molecular Liquids, 198: 388–391
https://doi.org/10.1016/j.molliq.2014.07.040
37 A Roy, P Majumdar, P Sengupta, S Kundu, S Shinde, A Jha, K Pramanik, H Saha (2020). A photoelectrochemical supercapacitor based on a single BiVO4-RGO bilayer photocapacitive electrode. Electrochimica Acta, 329: 135170
https://doi.org/10.1016/j.electacta.2019.135170
38 D Sánchez-Martínez, D B Hernández Uresti, L M Torres Martinez, S Mejia-Rosales (2015). Photocatalytic properties of BiVO4 synthesized by microwave-assisted hydrothermal method under simulated sunlight irradiation. Research on Chemical Intermediates, 41(11): 8839–8854
https://doi.org/10.1007/s11164-015-1932-6
39 Y Sang, Z Zhao, J Tian, P Hao, H Jiang, H Liu, J P Claverie (2014). Enhanced photocatalytic property of reduced graphene oxide/TiO2 nanobelt surface heterostructures constructed by an in situ photochemical reduction method. Small, 10(18): 3775–3782
https://doi.org/10.1002/smll.201303489
40 L J Song, Y Y Pang, Y J Zheng, C F Chen, L Ge (2017). Design, preparation and enhanced photocatalytic activity of porous BiOCl/BiVO4 microspheres via a coprecipitation-hydrothermal method. Journal of Alloys and Compounds, 710: 375–382
https://doi.org/10.1016/j.jallcom.2017.03.283
41 S Stankovich, D A Dikin, G H B Dommett, K M Kohlhaas, E J Zimney, E A Stach, R D Piner, S B T Nguyen, R S Ruoff (2006). Graphene-based composite materials. Nature, 442(7100): 282–286
https://doi.org/10.1038/nature04969
42 S Stankovich, D A Dikin, R D Piner, K A Kohlhaas, A Kleinhammes, Y Jia, Y Wu, S T Nguyen, R S Ruoff (2007). Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 45(7): 1558–1565
https://doi.org/10.1016/j.carbon.2007.02.034
43 J Tauc (1970). Absorption edge and internal electric fields in amorphous semiconductors. Materials Research Bulletin, 5(8): 721–729
https://doi.org/10.1016/0025-5408(70)90112-1
44 W Tu, Y Zhou, Z Zou (2013). Versatile graphene-promoting photocatalytic performance of semiconductors: basic principles, synthesis, solar energy conversion, and environmental applications. Advanced Functional Materials, 23(40): 4996–5008
https://doi.org/10.1002/adfm.201203547
45 J Wang, Y Song, J Hu, Y Li, Z Wang, P Yang, G Wang, Q Ma, Q Che, Y Dai, B Huang (2019). Photocatalytic hydrogen evolution on P-type tetragonal zircon BiVO4. Applied Catalysis B: Environmental, 251: 94–101
https://doi.org/10.1016/j.apcatb.2019.03.049
46 X J Wang, H L Liu, X L Wan, J R Wang, L L Chang (2013). Additive-free solvothermal synthesis of peanut-like BiVO4 powders with enhanced photocatalysis activity. Crystal Research and Technology, 48(12): 1066–1072
https://doi.org/10.1002/crat.201300198
47 X Xing, Y Ma, J Li, G Fan, H Ding, X Ma, L Yang, G Xi (2014). Facile one-pot synthesis and photocatalytic properties of hierarchically structural BiVO4 with different morphologies. CrystEngComm, 16(44): 10218–10226
https://doi.org/10.1039/C4CE01198H
48 S M Xiong, T H Wu, Z H Fan, D Q Zhao, M Du, X Xu (2017). Preparation of a leaf-like BiVO4-Reduced graphene oxide composite and its photocatalytic activity. Journal of Nanomaterials, 2017(12): 1–12
https://doi.org/10.1155/2017/3475248
49 Y Yan, T Ni, J Du, L Li, S Fu, K Li, J Zhou (2018). Green synthesis of balsam pear-shaped BiVO4/BiPO4 nanocomposite for degradation of organic dye and antibiotic metronidazole. Dalton Transactions (Cambridge, England), 47(17): 6089–6101
https://doi.org/10.1039/C8DT00408K
50 R Yang, Z Zhu, C Hu, S Zhong, L Zhang, B Liu, W Wang (2020). One-step preparation (3D/2D/2D) BiVO4/FeVO4@rGO heterojunction composite photocatalyst for the removal of tetracycline and hexavalent chromium ions in water. Chemical Engineering Journal, 390: 124522
https://doi.org/10.1016/j.cej.2020.124522
51 J Yu, A Kudo (2006). Effects of structural variation on the photocatalytic performance of hydrothermally synthesized BiVO4. Advanced Functional Materials, 16(16): 2163–2169
https://doi.org/10.1002/adfm.200500799
52 J Zeng, J Zhong, J Li (2017). Fabrication of CdS modified BiVO4 with enhanced sunlight photocatalytic performance. Inor. Inorganic and Nano-Metal Chemistry, 47(12): 1728–1732
https://doi.org/10.1080/24701556.2017.1357624
53 J Zeng, J Zhong, J Li, Z Xiang, X Liu, J Chen (2014). Improvement of photocatalytic activity under solar light of BiVO4 microcrystals synthesized by surfactant-assisted hydrothermal method. Materials Science in Semiconductor Processing, 27: 41–46
https://doi.org/10.1016/j.mssp.2014.06.014
54 G C Zhang, J L Zhong, M Xu, Y Yang, Y Li, Z X Fang, S F Tang, D L Yuan, B Wen, J M Gu (2019a). Ternary BiVO4/NiS/Au nanocomposites with efficient charge separations for enhanced visible light photocatalytic performance. Chemical Engineering Journal, 375: 122093
https://doi.org/10.1016/j.cej.2019.122093
55 M Zhang, J L Gong, G M Zeng, P Zhang, B Song, W C Cao, H Y Liu, Y Huan (2018). Enhanced degradation performance of organic dyes removal by bismuth vanadate-reduced graphene oxide composites under visible light radiation. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 559: 169–183
56 W Zhang, Y Sun, F Dong, W Zhang, S Duan, Q Zhang (2014). Facile synthesis of organic–inorganic layered nanojunctions of g-C3N4/(BIO)2CO3 as efficient visible light photocatalyst. Dalton Transections, 43(31): 12026–12036
https://doi.org/10.1039/C4DT00513A
57 W Zhang, M Wang, W Zhao, B Wang (2013). Magnetic composite photocatalyst ZnFe2O4/BiVO4: Synthesis, characterization, and visible-light photocatalytic activity. Dalton Transactions (Cambridge, England), 42(43): 15464–15474
https://doi.org/10.1039/c3dt52068d
58 X Zhang, J Zhang, J Yu, Y Zhang, L Yu F, Jia, Y Tan, Y Zhu, B Hou (2019). Enhancement in the photocatalytic antifouling efficiency over cherimoya-like InVO4/BiVO4 with a new vanadium source. Journal of Colloid and Interface Science, 533: 358–368
https://doi.org/10.1016/j.jcis.2018.06.090
59 R Zhu, F Tian, R Yang, J He, J Zhong, B Chen (2019). Z scheme system ZnIn2S4/RGO/BiVO4 for hydrogen generation from water splitting and simultaneous degradation of organic pollutants under visible light. Renewable Energry, 139(AUG): 22–27
https://doi.org/10.1016/j.renene.2019.02.049
60 W Y Zhu, F Q Sun, R Goei, Y Zhou (2017). Facile fabrication of RGO-WO3 composites for effective visible light photocatalytic degradation of sulfamethoxazole. Applied Catalysis B: Environmental, 207: 93–102
https://doi.org/10.1016/j.apcatb.2017.02.012
[1] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[2] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[3] Ting Chen, Yingying Zhao, Xiaopeng Qiu, Xiaoyan Zhu, Xiaojie Liu, Jun Yin, Dongsheng Shen, Huajun Feng. Economics analysis of food waste treatment in China and its influencing factors[J]. Front. Environ. Sci. Eng., 2021, 15(2): 33-.
[4] Wenbing Tan, Dongyu Cui, Xiaohui Zhang, Beidou Xi. Region-gridding recycling of bulk organic waste: Emerging views based on coordinated urban and rural development[J]. Front. Environ. Sci. Eng., 2020, 14(6): 112-.
[5] Jianguo Liu, Shuyao Yu, Yixuan Shang. Toward separation at source: Evolution of Municipal Solid Waste management in China[J]. Front. Environ. Sci. Eng., 2020, 14(2): 36-.
[6] Weihua Zhao, Meixiang Wang, Jianwei Li, Yu Huang, Baikun Li, Cong Pan, Xiyao Li, Yongzhen Peng. Optimization of denitrifying phosphorus removal in a pre-denitrification anaerobic/anoxic/post-aeration+ nitrification sequence batch reactor (pre-A2NSBR) system: Nitrate recycling, carbon/nitrogen ratio and carbon source type[J]. Front. Environ. Sci. Eng., 2018, 12(5): 8-.
[7] Hyunhee Kim, Yong-Chul Jang, Yeonjung Hwang, Youngjae Ko, Hyunmyeong Yun. End-of-life batteries management and material flow analysis in South Korea[J]. Front. Environ. Sci. Eng., 2018, 12(3): 3-.
[8] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[9] Abhishek Kumar, Veena Choudhary, Rita Khanna, Romina Cayumil, Muhammad Ikram-ul-Haq, Veena Sahajwalla, Shiva Kumar I. Angadi, Ganapathy E. Paruthy, Partha S. Mukherjee, Miles Park. Recycling polymeric waste from electronic and automotive sectors into value added products[J]. Front. Environ. Sci. Eng., 2017, 11(5): 4-.
[10] Paul Vanegas, Jef R. Peeters, Dirk Cattrysse, Wim Dewulf, Joost R. Duflou. Improvement potential of today’s WEEE recycling performance: The case of LCD TVs in Belgium[J]. Front. Environ. Sci. Eng., 2017, 11(5): 13-.
[11] Zebing Wu, Wenyi Yuan, Jinhui Li, Xiaoyan Wang, Lili Liu, Jingwei Wang. A critical review on the recycling of copper and precious metals from waste printed circuit boards using hydrometallurgy[J]. Front. Environ. Sci. Eng., 2017, 11(5): 8-.
[12] Mengmeng Wang, Quanyin Tan, Joseph F. Chiang, Jinhui Li. Recovery of rare and precious metals from urban mines—A review[J]. Front. Environ. Sci. Eng., 2017, 11(5): 1-.
[13] Evangelia C. Vouvoudi, Aristea T. Rousi, Dimitris S. Achilias. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment[J]. Front. Environ. Sci. Eng., 2017, 11(5): 9-.
[14] John C. Radcliffe, Declan Page, Bruce Naumann, Peter Dillon. Fifty Years of Water Sensitive Urban Design, Salisbury, South Australia[J]. Front. Environ. Sci. Eng., 2017, 11(4): 7-.
[15] Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed