Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (5) : 9    https://doi.org/10.1007/s11783-017-0996-5
RESEARCH ARTICLE
Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment
Evangelia C. Vouvoudi, Aristea T. Rousi, Dimitris S. Achilias()
Laboratory of Chemistry and Technology of Polymers and Dyes, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki GR-54 124, Greece
 Download: PDF(267 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Pyrolysis of plastics from WEEE is a promising technique for the production of fuel.

Pyrolysis of different types of polymers results in very different products.

Existence of different polymers in a blend act synergistically.

Thermal degradation characteristics of a blend are different compared to neat polymers.

Modern societies strongly support the recycling practices over simple waste accumulation due to environmental harm caused. In the framework of sustainable recycling of plastics from WEEE, pyrolysis is proposed here as a means of obtaining secondary value-added products. The aim of this study was to investigate the thermal degradation and the products obtained after pyrolysis of specific polymers found in the plastic part of WEEE, using thermogravimetric analysis and a pyrolizer equipped with a GC/MS. Polymers studied include ABS, HIPS, PC and a blend having a composition similar to that appearing in WEEE. It was found that, PC shows greater heat endurance compared to the other polymers, whereas ABS depolymerizes in three-steps. The existence of several polymers in the blend results in synergistic effects which decrease the onset and final temperature of degradation. Moreover, the fragmentation occurred in the pyrolyzer, at certain temperatures, resulted in a great variety of compounds, depending on the polymer type, such as monomers, aromatic products, phenolic compounds and hydrocarbons. The main conclusion from this investigation is that pyrolysis could be an effective method for the sustainable recycling of the plastic part of WEEE resulting in a mixture of chemicals with varying composition but being excellent to be used as fuel retrieved from secondary recycling sources.

Keywords Pyrolysis      WEEE recycling      ABS      HIPS      PC      Py-GC/MS      TGA     
Corresponding Author(s): Dimitris S. Achilias   
Issue Date: 31 October 2017
 Cite this article:   
Evangelia C. Vouvoudi,Aristea T. Rousi,Dimitris S. Achilias. Thermal degradation characteristics and products obtained after pyrolysis of specific polymers found in Waste Electrical and Electronic Equipment[J]. Front. Environ. Sci. Eng., 2017, 11(5): 9.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0996-5
https://academic.hep.com.cn/fese/EN/Y2017/V11/I5/9
Fig.1  Repeated structural units of the studied polymers: ABS (a), HIPS (b), PC (c), PP (d)
SectionModelAuxiliary partsRunning program EGA
(30 min)
Running program SS
(30 min)
Multi-shot PyrolyzerFrontier Laboratories, EGA/PY-3030D Carrier gas selector: CGS-1050Ex
(Japan)
cups of 50 μL
short sticks
Heating from 100℃ to 700℃ at 20℃/min
Purge gas: He
Cooling gas: air
flash pyrolysis (0.5 min) at preset temperature
Purge gas: He
Cooling gas: air
Gas chromatographerShimadzu, QP-2010 Ultra Plus (Japan)Frontier deactivated metal capillary tube (6 m × 0.25 mm)
or
Ultra Alloy-5 capillary column:
5% diphenyl–95% dimethyl polysiloxane filled metal (30 m ×, 0.25 mm × 0.25 μm)
Injection temperature: 300℃
Column oven temperature: 50℃
Carrier gas: He
Pressure: 53.5 kPa
Total flow: 104 mL/min
Purge flow: 3 mL/min
Column flow: 1 mL/min
Linear flow velocity: 36.3 cm/s
Split ratio: 100
Injection temperature: 300℃
Column oven temperature: 50℃
Column oven program:
Hold 1 min at 50℃
Heat 50℃–300℃ at 10℃/min
Hold 4 min at 300℃
Carrier gas: He
Pressure: 53.6 kPa
Total flow: 104 mL/min
Purge flow: 3 mL/min
Column flow: 1 mL/min
Linear flow velocity: 36.3 cm/s
Split ratio: 100
Mass spectrometerIon source heater: 200℃
Interface temperature: 300℃
Vacuum: 10-4–100 Pa
m/z range: 10–500 amu
scan speed: 10.000
acquisition time: 0.1 s
detector voltage: 1.2 kV
Tab.1  Detailed method description for the Py-GC/MS array
Fig.2  Comparative thermal degradation (a) and differential, dTGA (b) curves of ABS, HIPS and PC obtained from TGA measurements
Fig.3  Thermal degradation, TGA and differential, dTGA curves measured for the polymer blend
PolymerDegradation stepTin (℃)Tpeak (℃)Tfin (℃)Residual mass (%)
ABS1st18226931796.1
2nd3774315166.2
3rd5406096440.8
HIPS3784475100.0
PC43851355625.7
Blend1st18025732187.7
2nd3424384944.7
Tab.2  Thermal degradation characteristics of polymers found in WEEE, (ABS, HIPS and PC) and the polymer blend via TGA
PolymerTon (℃)Tp (℃)Te (℃)
ABS360425510
HIPS370445500
PC435515570
Blend, 1st step170235310
2nd step360440490
Tab.3  Characteristic temperatures of degradation peak onset, Ton, peak point,Tp and peak end, Te, of EGA curves, chosen as SS flash pyrolysis temperatures
Fig.4  Pyrograms produced after SS pyrolysis of ABS at 425℃ (a), HIPS at 445℃ (b), PC at 515℃ (c), and the blend at 440℃ (d)
PolymerRt (min)CompoundMW% similarity
ABS0.50Acetonitrile5780
1.85acrylonitrile5380
3.95–4.64Styrene10497
11.402-methylene-4-phenylbutanenitrile15794
15.341,3-diphenyl-propane19696
16.123-butene-1,3-diyldibenzene20896
17.572-methylene(diazophenyl)-4-phenylheptanedinitrile21095
20.152-methylene(azo-diphenyl)-4,6-dipenylhexanenitrile26198
20.574,6-diphenyl(azo-diphenyl)hept-6-enenitrile26195
20.812-phenyl-4-phenyl(azo-diphenyl)pent-4-enenitrile26193
23.075-hexane(triphenyl)-1,3,5-triyltribenzene31295
HIPS1.33ethane3077
15.361,3-diphenylpropane19692
16.133-butene(diphenyl)-1,3-diyldibenzene20897
23.145-hexane(triphenyl)-1,3,5-triyltribenzene31296
26.73triphenylbenzene30692
PC0.48CH3OH3278
1.33CO2882
1.46–1.77CO24491
6.42phenol9497
7.68p-cresol10898
9.03p-ethylpenol12298
9.90p-isopropylphenol13695
11.04p-isopropenylphenol13498
15.86diphenylcarbonate21492
17.72p-hydroxy-2,2-diphenylpropane21297
21.19Bisphenol A22894
Blend1.28CO2883
4.63styrene10495
16.093-butene(diphenyl)-1,3-diyldibenzene20879
17.552-methylene(diazophenyl)-4phenylheptanedinitrile21050
19.71n-dodecane-1-heneicosene20895
20.092-methylene(azodiphenyl)-4,6-dipenylhexanenitrile26185
20.514,6-diphenyl(azodiphenyl)hept-6-enenitrile26168
21.05Bisphenol-A22884
22.995-hexane(triphenyl)-1,3,5-triyltribenzene31299
23.93hexacosane36690
24.52heptacosane38091
25.40octacosane39489
26.82n-heptadecane24030
Tab.4  Main products identified after pyrolysis of ABS at 425℃, HIPS at 445℃, PC at 515℃ and the blend at 440℃
16 Karayannidis G P, Achilias D S. Chemical recycling of poly(ethylene terephthalate). Macromolecular Materials and Engineering, 2007, 292(2): 128–146
https://doi.org/10.1002/mame.200600341
17 Siddiqui M N, Redhwi H H, Achilias D S. Recycling of poly(ethylene terephthalate) waste through methanolic pyrolysis in a microwave reactor. Journal of Analytical and Applied Pyrolysis, 2012, 98: 214–220
https://doi.org/10.1016/j.jaap.2012.09.007
18 Yang X, Sun L, Xiang J, Hu S, Su S. Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review. Waste Management (New York, N.Y.), 2013, 33(2): 462–473
https://doi.org/10.1016/j.wasman.2012.07.025 pmid: 22951495
19 Martinho G, Pires A, Saraiva L, Ribeiro R. Composition of plastics from waste electrical and electronic equipment (WEEE) by direct sampling. Waste Management (New York, N.Y.), 2012, 32(6): 1213–1217
https://doi.org/10.1016/j.wasman.2012.02.010 pmid: 22424707
20 Sharuddin S D A, Abnisa F, Daud W M A, Aroua M K. A review on pyrolysis of plastic wastes. Energy Conversion and Management, 2016, 115: 308–326
https://doi.org/10.1016/j.enconman.2016.02.037
21 Achilias D, Antonakou E. Chemical and Thermochemical Recycling of Polymers from Waste Electrical and Electronic Equipment, Recycling Materials Based on Environmentally Friendly Techniques.Rijeka, Croatia: InTech, 2015 DOI: 10.5772/59960
22 Frontier Laboratories Ltd.Frontier Lab Ltd Operating Manuals Ver.1.60. Fukushima, Japan: Frontier Laboratories, 2010
1 Waste statistics-electrical and electronic equipment. 2017. Available online at  (accessed  March 24, 2017)
23 Balart R, López J, Garçia D, Salvador M D. Recycling of ABS and PC from electrical and electronic waste. Effect of miscibility and previous degradation on final performance of industrial blends. European Polymer Journal, 2005, 41(9): 2150–2160
https://doi.org/10.1016/j.eurpolymj.2005.04.001
24 Achilias D S, Antonakou E V, Koutsokosta E, Lappas A A. Chemical recycling of polymers from waste electric and electronicequipment. Journal of Applied Polymer Science, 2009, 114(1): 212–221
https://doi.org/10.1002/app.30533
25 Antonakou E V, Kalogiannis K G, Stephanidis S D, Triantafyllidis K S, Lappas A A, Achilias D S. Pyrolysis and catalytic pyrolysis as a recycling method of waste CDs originating from polycarbonate and HIPS. Waste Management (New York, N.Y.), 2014, 34(12): 2487–2493
https://doi.org/10.1016/j.wasman.2014.08.014 pmid: 25246066
26 Tarantili P A, Mitsakaki A N, Petoussi M A. Processing and properties of engineering plastics recycled from waste electrical and electronic equipment (WEEE). Polymer Degradation & Stability, 2010, 95(3): 405–410
https://doi.org/10.1016/j.polymdegradstab.2009.11.029
27 Vazquez Y V, Barbosa S E. Recycling of mixed plastic waste from electrical and electronic equipment. Added value by compatibilization. Waste Management (New York, N.Y.), 2016, 53: 196–203
https://doi.org/10.1016/j.wasman.2016.04.022 pmid: 27140655
2 Baldé C P, Wang F, Kuehr R, Huisman J. The global e-waste monitor: Quantities, flows and resources.Bonn, Germany: United Nations University, UNU-IAS – SCYCLE, 2015
3 Dimitrakakis E, Janz A, Bilitewski B, Gidarakos E. Small WEEE: determining recyclables and hazardous substances in plastics. Journal of Hazardous Materials, 2009, 161(2–3): 913–919
https://doi.org/10.1016/j.jhazmat.2008.04.054 pmid: 18513864
4 Maris E, Botané P, Wavrer P, Froelich F. Characterizing plastics originating from WEEE: A case study in France. Minerals Engineering, 2015, 76: 28–37
https://doi.org/10.1016/j.mineng.2014.12.034
5 Evangelopoulos P. Pyrolysis of Waste Electrical and Electric Equipment (WEEE) for energy production and material recovery. Dissertation for the Doctoral Degree.Stockholm: Royal Institute of Technology, 2012
6 Waste Electrical and Electronic Equpment (WEEE). Available online at (accessed  March 24, 2017)
7 Duan H, Hu J, Tan Q, Liu L, Wang Y, Li J. Systematic characterization of generation and management of e-waste in China. Environmental Science and Pollution Research International, 2016, 23(2): 1929–1943
https://doi.org/10.1007/s11356-015-5428-0 pmid: 26408118
8 Li J, Tian B, Liu T, Liu H, Wen X, Honda S. Status quo of e-waste management in mainland of China. Journal of Material Cycles and Waste Management, 2006, 8(1): 13–20
https://doi.org/10.1007/s10163-005-0144-3
9 Li J, Zeng X, Chen M, Ogunseitan O A, Stevels A. “Control-alt-delete”: Rebooting solutions for the E-waste problem. Environmental Science & Technology, 2015, 49(12): 7095–7108
https://doi.org/10.1021/acs.est.5b00449 pmid: 26007633
10 Scheirs J, Kaminsky W, eds. Feedstock Recycling and Pyrolysis of Waste Plastics.Sussex, UK: Wiley & Sons, 2006
11 Buekens A, Yang J J. Recycling of WEEE plastics: A review. Journal of Material Cycles and Waste Management, 2014, 16(3): 415–434
https://doi.org/10.1007/s10163-014-0241-2
12 Stenvall E, Tostar S, Boldizar A, Foreman M R, Möller K. An analysis of the composition and metal contamination of plastics from waste electrical and electronic equipment (WEEE). Waste Management (New York, N.Y.), 2013, 33(4): 915–922
https://doi.org/10.1016/j.wasman.2012.12.022 pmid: 23360773
13 Achilias D S, Andriotis L, Koutsidis I, Louka D, Nianias N, Siafaka P, Tsagkalias I, Tsintzou G. Recent Advances in the chemical Recycling of Polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA). In: Achilias D S, editor. Material Recycling – Trends and Perspectives. Rijeka, Croatia: InTech, 2012
14 Achilias D S. Chemical recycling of poly(methyl methacrylate) by pyrolysis. Potential use of the liquid fraction as a raw material for the reproduction of the polymer. European Polymer Journal, 2007, 43(6): 2564–2575
https://doi.org/10.1016/j.eurpolymj.2007.02.044
15 Achilias D S, Karayannidis G P. The chemical recycling of PET in the framework of sustainable development. Water Air and Soil Pollution Focus, 2004, 4(4/5): 385–396
https://doi.org/10.1023/B:WAFO.0000044812.47185.0f
[1] Shiguan Yang, Xinrui Fan, Ji Liu, Wei Zhao, Bin Hu, Qiang Lu. Mechanism insight into the formation of H2S from thiophene pyrolysis: A theoretical study[J]. Front. Environ. Sci. Eng., 2021, 15(6): 120-.
[2] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[3] Shanwei Ma, Hang Li, Guan Zhang, Tahir Iqbal, Kai Li, Qiang Lu. Catalytic fast pyrolysis of walnut shell for alkylphenols production with nitrogen-doped activated carbon catalyst[J]. Front. Environ. Sci. Eng., 2021, 15(2): 25-.
[4] Jing Ding, Wanyi Seow, Jizhong Zhou, Raymond Jianxiong Zeng, Jun Gu, Yan Zhou. Effects of Fe(II) on anammox community activity and physiologic response[J]. Front. Environ. Sci. Eng., 2021, 15(1): 7-.
[5] Marzieh Mokarram, Hamid Reza Pourghasemi, Huichun Zhang. Predicting non-carcinogenic hazard quotients of heavy metals in pepper (Capsicum annum L.) utilizing electromagnetic waves[J]. Front. Environ. Sci. Eng., 2020, 14(6): 114-.
[6] Jiaxue Yu, Junqing Xu, Zhenchen Li, Wenzhi He, Juwen Huang, Junshi Xu, Guangming Li. Upgrading pyrolytic carbon-blacks (CBp) from end-of-life tires: Characteristics and modification methodologies[J]. Front. Environ. Sci. Eng., 2020, 14(2): 19-.
[7] Chao Yang, Wenjun Sun, Xiuwei Ao. Bacterial inactivation, DNA damage, and faster ATP degradation induced by ultraviolet disinfection[J]. Front. Environ. Sci. Eng., 2020, 14(1): 13-.
[8] Xueqi Fan, Jie Gao, Wenchao Li, Jun Huang, Gang Yu. Determination of 27 pharmaceuticals and personal care products (PPCPs) in water: The benefit of isotope dilution[J]. Front. Environ. Sci. Eng., 2020, 14(1): 8-.
[9] Xuan Zhu, Chengsong Ye, Yuxin Wang, Lihua Chen, Lin Feng. Assessment of antibiotic resistance genes in dialysis water treatment processes[J]. Front. Environ. Sci. Eng., 2019, 13(3): 45-.
[10] Xinshu Jiang, Yingxi Qu, Liquan Liu, Yuan He, Wenchao Li, Jun Huang, Hongwei Yang, Gang Yu. PPCPs in a drinking water treatment plant in the Yangtze River Delta of China: Occurrence, removal and risk assessment[J]. Front. Environ. Sci. Eng., 2019, 13(2): 27-.
[11] V. Edwin Geo, Ankit Sonthalia, Fethi Aloui, Femilda Josephin J. S.. Study of engine performance, emission and combustion characteristics fueled with diesel-like fuel produced from waste engine oil and waste plastics[J]. Front. Environ. Sci. Eng., 2018, 12(4): 8-.
[12] Dawei Liang, Shanquan Wang. Development and characterization of an anaerobic microcosm for reductive dechlorination of PCBs[J]. Front. Environ. Sci. Eng., 2017, 11(6): 2-.
[13] Abhishek Kumar, Veena Choudhary, Rita Khanna, Romina Cayumil, Muhammad Ikram-ul-Haq, Veena Sahajwalla, Shiva Kumar I. Angadi, Ganapathy E. Paruthy, Partha S. Mukherjee, Miles Park. Recycling polymeric waste from electronic and automotive sectors into value added products[J]. Front. Environ. Sci. Eng., 2017, 11(5): 4-.
[14] Marika Benedetti, Lorenzo Cafiero, Doina De Angelis, Alessandro Dell’Era, Mauro Pasquali, Stefano Stendardo, Riccardo Tuffi, Stefano Vecchio Ciprioti. Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification[J]. Front. Environ. Sci. Eng., 2017, 11(5): 11-.
[15] Xiaonan Liu, Qiuxia Tan, Yungui Li, Zhonghui Xu, Mengjun Chen. Copper recovery from waste printed circuit boards concentrated metal scraps by electrolysis[J]. Front. Environ. Sci. Eng., 2017, 11(5): 10-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed