|
|
Impact of photocatalytic remediation of pollutants on urban air quality |
Christian GEORGE1,*( ),Anne BEELDENS2,Fotios BARMPAS3,Jean-François DOUSSIN4,Giuseppe MANGANELLI5,Hartmut HERRMANN6,Jörg KLEFFMANN7,Abdelwahid MELLOUKI8 |
1. Université Lyon 1, CNRS, UMR 5256, IRCELYON, Institut de recherches sur la catalyse et l’environnement de Lyon, Villeurbanne F-69626, France
2. Belgian Road Research Centre (BRRC), Woluwedal 42-1200 Brussels, Belgium
3. Laboratory of Heat Transfer and Environmental Engineering (LHTEE), Aristotle University of Thessaloniki, Box 483, GR 54124 Thessaloniki, Greece
4. LISA, UMR CNRS 7583, Université Paris Est Créteil et Université Paris Diderot, Institut Pierre Simon Laplace, Créteil 94010, France
5. CTG Italcementi Group, Via Stezzano 87, 24126 Bergamo, Italy
6. Physikalische und Theoretische Chemie / School of Mathematics and Natural Sciences, Bergische Universität Wuppertal (BUW), 42119 Wuppertal, Germany
7. Leibniz-Institut für Troposphärenforschunge.V. (TROPOS), Atmospheric Chemistry Department, 04318 Leipzig, Germany
8. Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, 1C Avenue de la Recherche Scientifique, Orléans 457071, France |
|
|
Abstract Air pollution remediation using photocatalytic construction materials was tested.
NOx and VOC uptake rates on different materials were measured in the laboratory.
Effective NOx and VOC abatement levels were tested under real conditions.
Recommendations for implementation of photocatalytic materials are provided.
In the recent years, photocatalytic self-cleaning and “depolluting” materials have been suggested as a remediation technology mainly for NOx and aromatic VOCs in urban areas. A number of products incorporating the aforementioned technology have been made commercially available with the aim to improve urban air quality. These commercial products are based on the photocatalytic properties of a thin layer of TiO2 at the surface of the material (such as glass, pavement, etc.) or embedded in paints or concrete. The use of TiO2 photocatalysts as an emerging air pollution control technology has been reported in many locations worldwide. However, up to now, the effectiveness measured in situ and the expected positive impact on air quality of this relatively new technology has only been demonstrated in a limited manner. Assessing and demonstrating the effectiveness of these depolluting techniques in real scale applications aims to create a real added value, in terms of policy making (i.e., implementing air quality strategies) and economics (by providing a demonstration of the actual performance of a new technique).
|
Keywords
Photocatalysis
Air pollution
Depollution efficiency
NOx
VOC
Air quality abatement and management
|
|
Fund: |
Corresponding Author(s):
Christian GEORGE
|
Issue Date: 09 May 2016
|
|
1 |
EEA. Air quality in Europe — Report No 9/2013: ISSN 1725–9177 European Environment Agency, Luxembourg: Publications Office of the European Union, 2013
|
2 |
OECD. OECD Environmental Outlook to 2050: The Consequences of Inaction.Paris: OECD Publishing, 2012
https://doi.org/10.1787/9789264122246-en
|
3 |
Dockery D W, Pope C A, Xu X, Spengler J D, Ware J H, Fay M E, Ferris B GJr, Speizer F E. An association between air pollution and mortality in six U.S. cities. New England Journal of Medicine, 1993, 329(24): 1753–1759
https://doi.org/10.1056/NEJM199312093292401
|
4 |
Finlayson-Pitts B J, Pitts J N. Chemistry of the Upper and Lower Atmosphere: Theory, Experiments, and Applications.San Diego: Academic Press, 2000
|
5 |
Melkonyan A, Kuttler W. Long-term analysis of NO, NO2 and O3 concentrations in North Rhine-Westphalia, Germany. Atmospheric Environment, 2012, 60: 316–326
https://doi.org/10.1016/j.atmosenv.2012.06.048
|
6 |
Carslaw D C, Beevers S D, Bell M C. Risks of exceeding the hourly EU limit value for nitrogen dioxide resulting from increased road transport emissions of primary nitrogen dioxide. Atmospheric Environment, 2007, 41(10): 2073–2082
https://doi.org/10.1016/j.atmosenv.2006.10.074
|
7 |
Kurtenbach R, Kleffmann J, Niedojadlo A, Wiesen P. Primary NO2 emissions and their impact on air quality in traffic environments in Germany. Environmental Sciences Europe, 2012, 24(1): 1–8
https://doi.org/10.1186/2190-4715-24-21
|
8 |
Beevers S D, Westmoreland E, de Jong M C, Williams M L, Carslaw D C. Trends in NOx and NO2 emissions from road traffic in Great Britain. Atmospheric Environment, 2012, 54: 107–116
https://doi.org/10.1016/j.atmosenv.2012.02.028
|
9 |
Kurz C, Orthofer R, Sturm P, Kaiser A, Uhrner U, Reifeltshammer R, Rexeis M. Projection of the air quality in Vienna between 2005 and 2020 for NO2 and PM10. Urban Climate, 2014, 10, Part 4(0): 703–719
|
10 |
Maggos T, Plassais A, Bartzis J G, Vasilakos C, Moussiopoulos N, Bonafous L. Photocatalytic degradation of NOx in a pilot street canyon configuration using TiO2-mortar panels. Environmental Monitoring and Assessment, 2008, 136(1–3): 35–44
|
11 |
Schneider J, Matsuoka M, Takeuchi M, Zhang J, Horiuchi Y, Anpo M, Bahnemann D W. Understanding TiO2 photocatalysis: mechanisms and materials. Chemical Reviews, 2014, 114(19): 9919–9986
https://doi.org/10.1021/cr5001892
|
12 |
Strini A, Cassese S, Schiavi L. Measurement of benzene, toluene, ethylbenzene and o-xylene gas phase photodegradation by titanium dioxide dispersed in cementitious materials using a mixed flow reactor. Applied Catalysis B: Environmental, 2005, 61(1–2): 90–97
https://doi.org/10.1016/j.apcatb.2005.04.009
|
13 |
Hoffmann M R, Martin S T, Choi W, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Environmental Applications of Semiconductor Photocatalysis. Chemical Reviews (Washington, D. C.), 1995, 95(1): 69–96
https://doi.org/10.1021/cr00033a004
|
14 |
Herrmann J M. Heterogeneous photocatalysis: fundamentals and applications to the removal of various types of aqueous pollutants. Catalysis Today, 1999, 53(1): 115–129
https://doi.org/10.1016/S0920-5861(99)00107-8
|
15 |
Chen H, Nanayakkara C E, Grassian V H. Titanium dioxide photocatalysis in atmospheric chemistry. Chemical Reviews, 2012, 112(11): 5919–5948
https://doi.org/10.1021/cr3002092
|
16 |
Goodeve C F, Kitchener J A. Photosensitisation by titanium dioxide. Transactions of the Faraday Society, 1938, 34(0): 570–579
https://doi.org/10.1039/tf9383400570
|
17 |
Renz C. Lichtreaktionen der Oxyde des Titans, Cers und der Erdsäuren. Helvetica ChimicaActa, 1921, 4(1): 961–968 (in German)
https://doi.org/10.1002/hlca.192100401101
|
18 |
Fujishima A, Zhang X, Tryk D A. TiO2 photocatalysis and related surface phenomena. Surface Science Reports, 2008, 63(12): 515–582
https://doi.org/10.1016/j.surfrep.2008.10.001
|
19 |
Henderson M A. A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 2011, 66(6–7): 185–297
https://doi.org/10.1016/j.surfrep.2011.01.001
|
20 |
Auvinen J, Wirtanen L. The influence of photocatalytic interior paints on indoor air quality. Atmospheric Environment, 2008, 42(18): 4101–4112
https://doi.org/10.1016/j.atmosenv.2008.01.031
|
21 |
Beaumont S K, Gustafsson R J, Lambert R M. Heterogeneous photochemistry relevant to the troposphere: H2O2 production during the photochemical reduction of NO2 to HONO on UV-illuminated TiO2 surfaces. ChemPhysChem, 2009, 10(2): 331–333
https://doi.org/10.1002/cphc.200800613
|
22 |
Geiss O, Cacho C, Barrero-Moreno J, Kotzias D. Photocatalytic degradation of organic paint constituents-formation of carbonyls. Building and Environment, 2012, ( 48): 107–112
https://doi.org/10.1016/j.buildenv.2011.08.021
|
23 |
Gustafsson R J, Orlov A, Griffiths P T, Cox R A, Lambert R M. Reduction of NO2 to nitrous acid on illuminated titanium dioxide aerosol surfaces: implications for photocatalysis and atmospheric chemistry. Chemical Communications (Cambridge), 2006, (37): 3936–3938
https://doi.org/10.1039/b609005b
|
24 |
Monge M E, D'Anna B, George C. Nitrogen dioxide removal and nitrous acid formation on titanium oxide surfaces-an air quality remediation process? Physical Chemistry Chemical Physics, 2010, 12(31): 8991–8999
https://doi.org/10.1039/b925785c
|
25 |
Ndour M, D'Anna B, George C, Ka O, Balkanski Y, Kleffmann J, Stemmler K, Ammann M. Photoenhanced uptake of NO2 on mineral dust: laboratory experiments and model simulations. Geophysical Research Letters, 2008, 35(5): L05812, 1–5
https://doi.org/10.1029/2007GL032006
|
26 |
Salthammer T, Fuhrmann F. Photocatalytic surface reactions on indoor wall paint. Environmental Science & Technology, 2007, 41(18): 6573–6578
https://doi.org/10.1021/es070057m
|
27 |
Boonen E, Akylas V, Barmpas F, Boréave A, Bottalico L, Cazaunau M, Chen H, Daële V, De Marco T, Doussin J F, Gaimoz C, Gallus M, George C, Grand N, Grosselin B, Guerrini G L, Herrmann H, Ifang S, Kleffmann J, Kurtenbach R, Maille M, Manganelli G, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Beeldens A. Construction of a photocatalytic de-polluting field site in the Leopold II tunnel in Brussels. Journal of Environmental Management, 2015, 155(0): 136–144
https://doi.org/10.1016/j.jenvman.2015.03.001
|
28 |
Gallus M, Akylas V, Barmpas F, Beeldens A, Boonen E, Boreave A, Cazaunau M, Chen H, Daele V, Doussin J F, Dupart Y, Gaimoz C, George C, Grosselin B, Herrmann H, Ifang S, Kurtenbach R, Maille M, Mellouki A, Miet K, Mothes F, Moussiopoulos N, Poulain L, Rabe R, Zapf P, Kleffmann J. Photocatalytic de-pollution in the Leopold II tunnel in Brussels: NOx abatement results. Building and Environment, 2015, (84): 125–133
https://doi.org/10.1016/j.buildenv.2014.10.032
|
29 |
Crowley J N, Ammann M, Cox R A, Hynes R G, Jenkin M E, Mellouki A, Rossi M J, Troe J, Wallington T J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume V—heterogeneous reactions on solid substrates. Atmospheric Chemistry and Physics, 2010, 10(18): 9059–9223
https://doi.org/10.5194/acp-10-9059-2010
|
30 |
Ammann M, Cox R A, Crowley J N, Jenkin M E, Mellouki A, Rossi M J, Troe J, Wallington T J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume VI—heterogeneous reactions with liquid substrates. Atmospheric Chemistry and Physics, 2013, 13(16): 8045–8228
https://doi.org/10.5194/acp-13-8045-2013
|
31 |
Ammann M, Pöschl U, Rudich Y. Effects of reversible adsorption and Langmuir-Hinshelwood surface reactions on gas uptake by atmospheric particles. Physical Chemistry Chemical Physics, 2003, 5(2): 351–356
https://doi.org/10.1039/b208708a
|
32 |
Hashimoto K, Wasada K, Toukai N, Kominami H, Kera Y. Photocatalytic oxidation of nitrogen monoxide over titanium(IV) oxide nanocrystals large size areas. Journal of Photochemistry and Photobiology A Chemistry, 2000, 136(1–2): 103–109
https://doi.org/10.1016/S1010-6030(00)00329-4
|
33 |
Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Environmental applications of semiconductor photocatalysis. Chemical Reviews, 1995, 95(1): 69–96
https://doi.org/10.1021/cr00033a004
|
34 |
Shang J, Du Y, Xu Z. Photocatalytic oxidation of heptane in the gas-phase over TiO2. Chemosphere, 2002, 46(1): 93–99
https://doi.org/10.1016/S0045-6535(01)00115-1
|
35 |
Rohrer F, Bohn B, Brauers T, Brüning D, Johnen J F, Wahner A, Kleffmann J. Characterisation of the photolytic HONO-source in the atmosphere simulation chamber SAPHIR. Atmospheric Chemistry and Physics Discussion, 2004, 4(6): 7881–7915
https://doi.org/10.5194/acpd-4-7881-2004
|
36 |
Gallus M, Ciuraru R, Mothes F, Akylas V, Barmpas F, Beeldens A, Bernard F, Boonen E, Boréave A, Cazaunau M, Charbonnel N, Chen H, Daële V, Dupart Y, Gaimoz C, Grosselin B, Herrmann H, Ifang S, Kurtenbach R, Maille M, Marjanovic I, Michoud V, Mellouki A, Miet K, Moussiopoulos N, Poulain L, Zapf P, George C, Doussin J F, Kleffmann J. Photocatalytic abatement results from a model street canyon. Environmental Science and Pollution Research International, 2015, 22(22):18185–18196
https://doi.org/10.1007/s11356-015-4926-4.
|
37 |
Ballari M M, Brouwers H J H. Full scale demonstration of air-purifying pavement. Journal of Hazardous Materials, 2013, 254–255: 406–414
https://doi.org/10.1016/j.jhazmat.2013.02.012
|
38 |
Bolte G, Flassak T.Numerische Simulation der Wirksamkeit photo katalytis chaktiver Betonoberflächen. In: Conference Proceedings of Internationale Baustofftagung 18. Ibausil, Weimar.Weimar: Internationale Baustofftagung 18. ibausil, 2012
|
39 |
Guerrini G L, Peccati E. Photocatalytic cementitious roads for depollution. In: Proceedings of International RILEM Symposium on Photocatalysis, Environment and Construction Materials, Florence, Italy. Bagneux: RILEM Publications, 2007
|
40 |
Ifang S, Gallus M, Liedtke S, Kurtenbach R, Wiesen P, Kleffmann J. Standardization methods for testing photo-catalytic air remediation materials: problems and solution. Atmospheric Environment, 2014, (91): 154–161
https://doi.org/10.1016/j.atmosenv.2014.04.001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|