Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (8) : 101    https://doi.org/10.1007/s11783-023-1701-5
RESEARCH ARTICLE
Mechanistic insights into the selective photocatalytic degradation of dyes over TiO2/ZSM-11
Zhou Zhang1, Kai Huo2, Tingxuan Yan1, Xuwen Liu4, Maocong Hu1, Zhenhua Yao1(), Xuguang Liu2(), Tao Ye3()
1. Department of Chemical Engineering, Jianghan University, Wuhan 430056, China
2. College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
3. Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
4. State Key Laboratory of Precision Blasting, Jianghan University, Wuhan 430056, China
 Download: PDF(4226 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● TiO2/ZSM-11 was prepared by a facile solid state dispersion method.

● Mechanism for photocatalytic degradation of dyes was investigated.

● Both experimental and MD simulations were conducted.

● Chemisorption instead of electrostatic interaction played a critical role.

Photocatalytic degradation is a promising way to eliminate dye contaminants. In this work, a series of TiO2/ZSM-11 (TZ) nanocomposites were prepared using a facile solid state dispersion method. Methyl orange (MO), methylene blue (MB), and rhodamine B (RhB) were intentionally chosen as target substrates in the photocatalytic degradation reactions. Compared to pristine TiO2, negative effect was observed on MO degradation while promoted kinetics were collected on MB and RhB over TZ composites. Moreover, a much higher photocatalytic rate was interestingly achieved on RhB than MB, which indicated that a new factor has to be included other than the widely accepted electrostatic interaction mechanism to fully understand the selective photodegradation reactions. Systematic characterizations showed that TiO2 and ZSM-11 physically mixed and maintained both the whole framework and local structure without chemical interaction. The different trends observed in surface area and the photo-absorption ability of TZ composites with reaction performance further excluded both as the promotion mechanism. Instead, adsorption energies predicted by molecular dynamics simulations suggested that differences in the adsorption strength played a critical role. This work provided a deep mechanistic understanding of the selective photocatalytic degradation of dyes reactions, which helps to rationally design highly efficient photocatalysts.

Keywords Selective dye degradation      Photocatalysis      TiO2      ZSM-11      Chemisorption     
Corresponding Author(s): Zhenhua Yao,Xuguang Liu,Tao Ye   
Issue Date: 13 March 2023
 Cite this article:   
Zhou Zhang,Kai Huo,Tingxuan Yan, et al. Mechanistic insights into the selective photocatalytic degradation of dyes over TiO2/ZSM-11[J]. Front. Environ. Sci. Eng., 2023, 17(8): 101.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1701-5
https://academic.hep.com.cn/fese/EN/Y2023/V17/I8/101
Fig.1  Reaction performance of the prepared catalysts for photocatalytic degradation of MO (a), MB (b), and RhB (c); pseudo-first-order kinetic fittings of experimental data from photocatalytic degradation of MO (d), MB (e), and RhB (f) over different catalysts; where C and C0 is the sampling and initial concentration of the dye.
Catalyst MOa) MBb) RhBb)
kapp R2 kapp R2 kapp R2
TiO2 1.5 0.9834 3.8 0.982 2.7 0.982
6.25TZ 0.8 0.9854 4.6 0.992 4.2 0.9817
12.5TZ 0.8 0.9761 3.8 0.9893 5.6 0.9935
25TZ 1.1 0.9659 4.7 0.9956 8.4 0.9904
50TZ 1.2 0.9813 4 0.994 12.3 0.9967
75TZ 1.2 0.9814 5.5 0.9947 7.4 0.9904
ZSM-11 0.3 0.9944 4.7 0.9906 4 0.9932
Tab.1  Apparent rate constant (kapp, × 10−3 min−1) of different catalysts for photocatalytic degradation of methyl orange (MO), methylene blue (MB), and rhodamine B (RhB) based on pseudo-first-order reaction kinetics
Fig.2  XRD patterns (a) and FT-IR spectra (b) of TiO2, ZSM-11, 6.25TZ, 12.5TZ, 25TZ, 50TZ, and 75TZ.
Fig.3  Typical SEM images of ZSM-11 (a), 50TZ (b); TEM images of TiO2 (c), ZSM-11 (d), 6.25TZ (e), 12.5TZ (f), 25TZ (g), 50TZ (h), 75TZ (i).
Catalyst SBET (m2/g) Vp (cm3/g) Average pore diameter (nm)
VTotal Vmicro Vmeso
TiO2 53 0.23 0.23 17.7
ZSM-11 281 0.22 0.1 0.12 3.1
6.25TZ 268 0.21 0.1 0.11 3.1
12.5TZ 251 0.22 0.09 0.13 3.6
25TZ 213 0.22 0.08 0.14 4.2
50TZ 166 0.23 0.05 0.18 5.5
75TZ 110 0.22 0.03 0.19 8.2
Tab.2  Measured specific surface area and pore structure of TiO2/ZSM-11 composite catalysts with N2 physisorption
Fig.4  UV-Vis DRS (a) and Tauc plots (b) of TiO2, ZSM-11, 6.25TZ, 12.5TZ, 25TZ, 50TZ, and 75TZ.
Fig.5  Optimized structures for the adsorption of different dyes over ZSM-11 with the side view of initial, transition, and final state, and top view of final state (from top to down): MO (a); MB (b); RhB (c).
Fig.6  Adsorption energies between ZSM-11 and dyes.
Fig.7  Different adsorption strength of three dyes over TiO2/ZSM-11.
1 S Aanchal, S Barman. (2020). Complete removal of endocrine disrupting compound and toxic dye by visible light active porous g-C3N4/H-ZSM-5 nanocomposite. Chemosphere, 241: 124981
https://doi.org/10.1016/j.chemosphere.2019.124981
2 K Badvi, V Javanbakht. (2021). Enhanced photocatalytic degradation of dye contaminants with TiO2 immobilized on ZSM-5 zeolite modified with nickel nanoparticles. Journal of Cleaner Production, 280: 124518
https://doi.org/10.1016/j.jclepro.2020.124518
3 S Deepracha, A Ayral, M Ogawa. (2021). Acceleration of the photocatalytic degradation of organics by in-situ removal of the products of degradation. Applied Catalysis B: Environmental, 284: 119705
https://doi.org/10.1016/j.apcatb.2020.119705
4 X Duan, J Yang, G Hu, C Yang, Y Chen, Q Liu, S Ren, J Li. (2021). Optimization of TiO2/ZSM-5 photocatalysts: energy band engineering by solid state diffusion method with calcination. Journal of Environmental Chemical Engineering, 9(4): 105563
https://doi.org/10.1016/j.jece.2021.105563
5 K Guo, B Gao, J Wang, J Pan, Q Yue, X Xu. (2021). Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment. Frontiers of Environmental Science & Engineering, 15(5): 103
6 R T Guo, J Wang, Z X Bi, X Chen, X Hu, W G Pan. (2022). Recent advances and perspectives of g-C3N4-based materials for photocatalytic dyes degradation. Chemosphere, 295: 133834
https://doi.org/10.1016/j.chemosphere.2022.133834
7 D Hou, X Hu, W Ho, P Hu, Y Huang. (2015). Facile fabrication of porous Cr-doped SrTiO3 nanotubes by electrospinning and their enhanced visible-light-driven photocatalytic properties. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(7): 3935–3943
https://doi.org/10.1039/C4TA05485G
8 G Hu, J Yang, X Duan, R Farnood, C Yang, J Yang, W Liu, Q Liu. (2021). Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications. Chemical Engineering Journal, 417: 129209
https://doi.org/10.1016/j.cej.2021.129209
9 M Hu, Y Liu, Z Yao, L Ma, X Wang. (2018). Catalytic reduction for water treatment. Frontiers of Environmental Science & Engineering, 12(1): 3
10 P Huang, A Kazlauciunas, R Menzel, L Lin. (2017). Determining the mechanism and efficiency of industrial dye adsorption through facile structural control of organo-montmorillonite adsorbents. ACS Applied Materials & Interfaces, 9(31): 26383–26391
https://doi.org/10.1021/acsami.7b08406
11 Đurđić K Ilić, R Ostafe, O Prodanović, Đelmaš A Đurđević, N Popović, R Fischer, S Schillberg, R Prodanović. (2021). Improved degradation of azo dyes by lignin peroxidase following mutagenesis at two sites near the catalytic pocket and the application of peroxidase-coated yeast cell walls. Frontiers of Environmental Science & Engineering, 15(2): 19
12 H Jedli, M M Almoneef, M Mbarek, A Jbara, K Slimi. (2022). Adsorption of CO2 onto zeolite ZSM-5: kinetic, equilibrium and thermodynamic studies. Fuel, 321: 124097
https://doi.org/10.1016/j.fuel.2022.124097
13 C Jing, Y Zhang, J Zheng, S Ge, J Lin, D Pan, N Naik, Z Guo. (2022). In-situ constructing visible light CdS/Cd-MOF photocatalyst with enhanced photodegradation of methylene blue. Particuology, 69: 111–122
https://doi.org/10.1016/j.partic.2021.11.013
14 P Karuppasamy, N Ramzan Nilofar Nisha, A Pugazhendhi, S Kandasamy, S Pitchaimuthu. (2021). An investigation of transition metal doped TiO2 photocatalysts for the enhanced photocatalytic decoloration of methylene blue dye under visible light irradiation. Journal of Environmental Chemical Engineering, 9(4): 105254
https://doi.org/10.1016/j.jece.2021.105254
15 X Kong, P Nie, L Shi, M Hu, P Zhang, X Li, Z Wang, X Liu. (2021). Graphene oxide-assisted fast synthesis of hierarchical ZSM-11 with superior performance for benzene alkylation. Chemical Engineering Journal, 425: 131598
https://doi.org/10.1016/j.cej.2021.131598
16 Q Li, C Lv, X Xia, C Peng, Y Yang, F Guo, J Zhang. (2022). Separation/degradation behavior and mechanism for cationic/anionic dyes by Ag-functionalized Fe3O4-PDA core-shell adsorbents. Frontiers of Environmental Science & Engineering, 16(11): 138
17 M Liu, Y Ren, J Wu, Y Wang, J Chen, X Lei, X Zhu. (2020). Effect of cations on the structure, physico-chemical properties and photocatalytic behaviors of silver-doped zeolite Y. Microporous and Mesoporous Materials, 293: 109800
https://doi.org/10.1016/j.micromeso.2019.109800
18 Y Lu, H Zhang, D Fan, Z Chen, X Yang. (2022). Coupling solar-driven photothermal effect into photocatalysis for sustainable water treatment. Journal of Hazardous Materials, 423: 127128
https://doi.org/10.1016/j.jhazmat.2021.127128
19 L Luo, Z J Wang, X Xiang, D Yan, J Ye. (2020). Selective activation of benzyl alcohol coupled with photoelectrochemical water oxidation via a radical relay strategy. ACS Catalysis, 10(9): 4906–4913
https://doi.org/10.1021/acscatal.0c00660
20 W Mao, L Zhang, T Wang, Y Bai, Y Guan. (2021). Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater. Frontiers of Environmental Science & Engineering, 15(4): 52
21 A J Muñoz, F Espínola, E Ruiz, A M Barbosa-Dekker, R F H Dekker, E Castro. (2021). Biosorption mechanisms of Ag(I) and the synthesis of nanoparticles by the biomass from Botryosphaeria rhodina MAMB-05. Journal of Hazardous Materials, 420: 126598
https://doi.org/10.1016/j.jhazmat.2021.126598
22 Y Pan, Y Zhang, Y Huang, Y Jia, L Chen, H Cui. (2021). Synergistic effect of adsorptive photocatalytic oxidation and degradation mechanism of cyanides and Cu/Zn complexes over TiO2/ZSM-5 in real wastewater. Journal of Hazardous Materials, 416: 125802
https://doi.org/10.1016/j.jhazmat.2021.125802
23 M Rostami, A Badiei, M R Ganjali, M Rahimi-Nasrabadi, M Naddafi, H Karimi-Maleh. (2022). Nano-architectural design of TiO2 for high performance photocatalytic degradation of organic pollutant: a review. Environmental Research, 212: 113347
https://doi.org/10.1016/j.envres.2022.113347
24 Y Si, J Li, B Cui, D Tang, L Yang, V Murugadoss, S Maganti, M Huang, Z Guo. (2022). Janus phenol-formaldehyde resin and periodic mesoporous organic silica nanoadsorbent for the removal of heavy metal ions and organic dyes from polluted water. Advanced Composites and Hybrid Materials, 5(2): 1180–1195
https://doi.org/10.1007/s42114-022-00446-x
25 Z Sun, Y Zhang, S Guo, J Shi, C Shi, K Qu, H Qi, Z Huang, V Murugadoss, M Huang, Z Guo. (2022). Confining FeNi nanoparticles in biomass-derived carbon for effectively photo-Fenton catalytic reaction for polluted water treatment. Advanced Composites and Hybrid Materials, 5(2): 1566–1581
https://doi.org/10.1007/s42114-022-00477-4
26 A Tkaczyk, K Mitrowska, A Posyniak. (2020). Synthetic organic dyes as contaminants of the aquatic environment and their implications for ecosystems: a review. Science of the Total Environment, 717: 137222
https://doi.org/10.1016/j.scitotenv.2020.137222
27 F Wang, S X Min. (2007). TiO2/polyaniline composites: an efficient photocatalyst for the degradation of methylene blue under natural light. Chinese Chemical Letters, 18(10): 1273–1277
https://doi.org/10.1016/j.cclet.2007.08.010
28 L Q Wang, H J Li, J Q Diao, D D Hou, M M Qiang, L J Chen. (2022). Photocatalytic performance of hierarchical metal-doped framework zeolite. Inorganic Chemistry Communications, 140: 109425
https://doi.org/10.1016/j.inoche.2022.109425
29 K Xie, J Fang, L Li, J Deng, F Chen. (2022). Progress of graphite carbon nitride with different dimensions in the photocatalytic degradation of dyes: a review. Journal of Alloys and Compounds, 901: 163589
https://doi.org/10.1016/j.jallcom.2021.163589
30 H Yu, P Xiao, J Tian, F Wang, J Yu. (2016). Phenylamine-functionalized rGO/TiO2 photocatalysts: spatially separated adsorption sites and tunable photocatalytic selectivity. ACS Applied Materials & Interfaces, 8(43): 29470–29477
https://doi.org/10.1021/acsami.6b09903
31 X Yue, J Xiang, J Chen, H Li, Y Qiu, X Yu. (2020). High surface area, high catalytic activity titanium dioxide aerogels prepared by solvothermal crystallization. Journal of Materials Science and Technology, 47: 223–230
https://doi.org/10.1016/j.jmst.2019.12.017
32 G Zhang, A Song, Y Duan, S Zheng. (2018a). Enhanced photocatalytic activity of TiO2/zeolite composite for abatement of pollutants. Microporous and Mesoporous Materials, 255: 61–68
https://doi.org/10.1016/j.micromeso.2017.07.028
33 W Zhang, F Bi, Y Yu, H He. (2013). Phosphoric acid treating of ZSM-5 zeolite for the enhanced photocatalytic activity of TiO2/HZSM-5. Journal of Molecular Catalysis A, Chemical, 372: 6–12
https://doi.org/10.1016/j.molcata.2013.02.002
34 X Zhang, Y Huang, Y Guo, X Yuan, F Jiao. (2018b). Catalytic performance of surface-silylated and phenyl-bridged Ti-containing mesoporous silica for epoxidation of propylene. Microporous and Mesoporous Materials, 262: 251–257
https://doi.org/10.1016/j.micromeso.2017.11.042
35 Y Zhang, K Hawboldt, L Zhang, J Lu, L Chang, A Dwyer. (2022b). Carbonaceous nanomaterial-TiO2 heterojunctions for visible-light-driven photocatalytic degradation of aqueous organic pollutants. Applied Catalysis A, General, 630: 118460
https://doi.org/10.1016/j.apcata.2021.118460
36 Y Zhang, J Zheng, J Nan, C Gai, Q Shao, V Murugadoss, S Maganti, N Naik, H Algadi, M Huang, B B Xu, Z Guo. (2023). Influence of mass ratio and calcination temperature on physical and photoelectrochemical properties of ZnFe-layered double oxide/cobalt oxide heterojunction semiconductor for dye degradation applications. Particuology, 74: 141–155
https://doi.org/10.1016/j.partic.2022.05.010
37 S Zhao, C Chen, J Ding, S Yang, Y Zang, N Ren. (2022). One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B. Frontiers of Environmental Science & Engineering, 16(3): 36
38 K Zhou, X Y Hu, B Y Chen, C C Hsueh, Q Zhang, J Wang, Y J Lin, C T Chang. (2016). Synthesized TiO2/ZSM-5 composites used for the photocatalytic degradation of azo dye: intermediates, reaction pathway, mechanism and bio-toxicity. Applied Surface Science, 383: 300–309
https://doi.org/10.1016/j.apsusc.2016.04.155
[1] FSE-22140-OF-ZZ_suppl_1 Download
[1] Sajjad Haider, Rab Nawaz, Muzammil Anjum, Tahir Haneef, Vipin Kumar Oad, Salah Uddinkhan, Rawaiz Khan, Muhammad Aqif. Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 111-.
[2] Xianjun Tan, Zhenying Jiang, Yuxiong Huang. Photo-induced surface frustrated Lewis pairs for promoted photocatalytic decomposition of perfluorooctanoic acid[J]. Front. Environ. Sci. Eng., 2023, 17(1): 3-.
[3] Ning Wang, Jiangtao Feng, Wei Yan, Luohong Zhang, Yonghong Liu, Ruihua Mu. Dual-functional sites for synergistic adsorption of Cr(VI) and Sb(V) by polyaniline-TiO2 hydrate: Adsorption behaviors, sites and mechanisms[J]. Front. Environ. Sci. Eng., 2022, 16(8): 105-.
[4] Xuesong Liu, Jianmin Wang, Yue-Wern Huang. Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling–Is it additive or synergistic?[J]. Front. Environ. Sci. Eng., 2022, 16(5): 59-.
[5] Shuangyang Zhao, Chengxin Chen, Jie Ding, Shanshan Yang, Yani Zang, Nanqi Ren. One-pot hydrothermal fabrication of BiVO4/Fe3O4/rGO composite photocatalyst for the simulated solar light-driven degradation of Rhodamine B[J]. Front. Environ. Sci. Eng., 2022, 16(3): 36-.
[6] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[7] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[8] Chenchen Li, Lijie Yan, Yiming Li, Dan Zhang, Mutai Bao, Limei Dong. TiO2@palygorskite composite for the efficient remediation of oil spills via a dispersion-photodegradation synergy[J]. Front. Environ. Sci. Eng., 2021, 15(4): 72-.
[9] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[10] Reza Katal, Mohammad Tanhaei, Jiangyong Hu. Photocatalytic degradation of the acetaminophen by nanocrystal-engineered TiO2 thin film in batch and continuous system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 27-.
[11] Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(6): 103-.
[12] Xuemin Hao, Guanlong Wang, Shuo Chen, Hongtao Yu, Xie Quan. Enhanced activation of peroxymonosulfate by CNT-TiO2 under UV-light assistance for efficient degradation of organic pollutants[J]. Front. Environ. Sci. Eng., 2019, 13(5): 77-.
[13] Zhan Wang, Chongyang Shen, Yichun Du, Yulong Zhang, Baoguo Li. Influence of phosphate on deposition and detachment of TiO2 nanoparticles in soil[J]. Front. Environ. Sci. Eng., 2019, 13(5): 79-.
[14] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[15] Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed