Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (9) : 111    https://doi.org/10.1007/s11783-023-1711-3
RESEARCH ARTICLE
Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation
Sajjad Haider1(), Rab Nawaz2,3(), Muzammil Anjum2, Tahir Haneef4, Vipin Kumar Oad5, Salah Uddinkhan6, Rawaiz Khan7, Muhammad Aqif8
1. Chemical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
2. Department of Environmental Sciences, Institute of Soil and Environmental Sciences, Pir Mehr Ali Shah Arid Agriculture University Shamsabad, Rawalpindi 46300, Pakistan
3. Centre of Innovative Nanostructures and Nanodevices (COINN), Institute of Autonomous System, Universiti Teknologi PETRONAS, Bandar Seri Iskandar 32610, Malaysia
4. Civil and Environmental Engineering Department, The University of Alabama in Huntsville, Huntsville, AL 35899, USA
5. Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Gdansk 80-233, Poland
6. College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
7. Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
8. Faculty of Materials and Chemical Engineering, Department of Chemical Engineering, Ghulam Ishaq Khan Institute, Khyber Pakhtunkhwa Topi 23460, Pakistan
 Download: PDF(12480 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Properties and performance relationship of CSBT photocatalyst were investigated.

● Properties of CSBT were controlled by simply manipulating glycerol content.

● Performance was linked to semiconducting and physicochemical properties.

● CSBT (W:G ratio 9:1) had better performance with lower energy consumption.

● Phenols were reduced by 48.30% at a cost of $2.4127 per unit volume of effluent.

Understanding the relationship between the properties and performance of black titanium dioxide with core-shell structure (CSBT) for environmental remediation is crucial for improving its prospects in practical applications. In this study, CSBT was synthesized using a glycerol-assisted sol-gel approach. The effect of different water-to-glycerol ratios (W:G = 1:0, 9:1, 2:1, and 1:1) on the semiconducting and physicochemical properties of CSBT was investigated. The effectiveness of CSBT in removing phenolic compounds (PHCs) from real agro-industrial wastewater was studied. The CSBT synthesized with a W:G ratio of 9:1 has optimized properties for enhanced removal of PHCs. It has a distinct core-shell structure and an appropriate amount of Ti3+ cations (11.18%), which play a crucial role in enhancing the performance of CSBT. When exposed to visible light, the CSBT performed better: 48.30% of PHCs were removed after 180 min, compared to only 21.95% for TiO2 without core-shell structure. The CSBT consumed only 45.5235 kWh/m3 of electrical energy per order of magnitude and cost $2.4127 per unit volume of treated agro-industrial wastewater. Under the conditions tested, the CSBT demonstrated exceptional stability and reusability. The CSBT showed promising results in the treatment of phenols-containing agro-industrial wastewater.

Keywords Black TiO2      Core-shell structure      Property-performance relationship      Agro-industrial effluent      Environmental remediation     
Corresponding Author(s): Sajjad Haider,Rab Nawaz   
Issue Date: 17 April 2023
 Cite this article:   
Sajjad Haider,Rab Nawaz,Muzammil Anjum, et al. Property-performance relationship of core-shell structured black TiO2 photocatalyst for environmental remediation[J]. Front. Environ. Sci. Eng., 2023, 17(9): 111.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1711-3
https://academic.hep.com.cn/fese/EN/Y2023/V17/I9/111
Fig.1  Scheme of synthesis of CSBT.
Properties W:G ratio
1:0 9:1 2:1 1:1
Peak position (2θ) (° ) 25.32 25.36 25.56 25.61
d-spacing (nm) 0.336 0.336 0.337 0.344
Particle size (nm) 35.73 7.53 44.49 62.38
Bandgap (eV) 3.16 2.96 2.52 2.29
Conduction band (eV) ?0.56 ?0.48 ?0.60 ?0.53
Valence band (eV) 2.60 2.48 1.92 1.76
Surface area (m2/g) 154.51 99.88 40.35 12.02
Pore volume (cm3/g) 0.198 0.161 0.30 0.014
Average pore size (nm) 4.35 3.06 4.47 6.49
Tab.1  Effect of W:G ratio on physicochemical and optical properties of CSBT
Fig.2  (a) XRD diffractogram and (b) enlarged XRD patterns from 20° to 30° (2θ) of the CSBT synthesized at different W:G ratios.
Fig.3  TEM images and the associated particle size distribution of the CSBT synthesized at various W:G ratios (a) 1:0, (b) 9:1, (c) 2:1, and (d) 1:1 and FESEM images of the CSBT synthesized at various W:G ratios (e) 1:0, (f) 9:1, (g) 2:1, and (h) 1:1.
Fig.4  HRTEM images of the CSBT synthesized at different W:G ratios (a) 0:1, (b) 9:1, (c) 2:1, and (d) 1:1 and magnified HRTEM images at 1 nm scale constructed from the highlighted regions of (e) 0:1, (f) 9:1, (g) 2:1, and (h) 1:1 and the corresponding line profile plots of the CSBT synthesized at different W:G ratio (i) 1:0, (j) 9:1, (k) 2:1, and (l) 1:1.
Fig.5  (a) HRTEM image of the CSBT synthesized at W:G ratio of 9:1, 3D top view surface plots (b) inner surface and (c) outer surface, 3D side view surface plots of (d) inner region and (e) outer region.
Fig.6  HRTEM images of the CSBT synthesized at W:G ratios of (a) 0:1, (b) 9:1; FFT images of the inner surface of the CSBT synthesized at W:G ratios of (ai) 1:0, (bi) 9:1; and FFT images of the outer surface of the CSBT synthesized at W:G ratios of (aii) 1:0, (bii) 9:1.
Fig.7  High-resolution Ti2p spectra of the CSBT synthesized at W:G ratios of (a) 1:0, (b) 9:1, (c) 2:1 and (d) 1:1; and high-resolution O1s spectra of the CSBT synthesized at W:G ratios of (e) 1:0, (f) 9:1, (g) 2:1 and (h) 1:1.
W:G ratio Ti3+ defects (%) PHCs removed (%) kapp (min?1) R2 EE (kWh/m3) Cost ($/m3) a)
1:0 0.00 37.66 0.621 × 10−3 0.9966 48.3091 2.5603
9:1 11.18 48.30 0.659 × 10−3 0.9918 45.5235 2.4127
2:1 33.72 27.75 0.324 × 10−3 0.9911 92.5925 4.9074
1:1 45.17 21.95 0.344 × 10−3 0.9964 87.2093 4.6220
Tab.2  Effect of W:G ratio on Ti3+ defects concentration, PHCs removal rate constants and electrical energy consumption
Fig.8  (a) UV-Vis spectra, (b) T-plot, (c) PL, and (d) EIS spectra of the CSBT synthesized at W:G ratios.
Fig.9  N2 physisorption isotherms of the CSBT synthesized at W:G ratios of (a) 1:0, (b) 9:1, (c) 2:1 and (d) 1:1; and (e) pore size distribution of the samples.
Fig.10  (a) Photocatalytic activity of the CSBT synthesized at W:G ratios, (b) phenols removal efficiency, (c) kinetic plots, and (d) correlation among phenols removal efficiency, Ti3+ concentration and W:G ratios.
Fig.11  Correlation between physicochemical and optical properties of the CSBT synthesized at different W:G ratios and photocatalytic activity for PHCs removal (a) particle size and phenols removal, (b) bandgap and phenols removal, (c) surface area and phenol removal, and (d) pore size and phenols removal.
Fig.12  Photocatalytic degradation mechanism of phenol over CSBT synthesized at 9:1 ratio.
Fig.13  (a) Reusability tests results, (b) XRD diffractogram, (c) Raman spectra and (d) FTIR spectra of the CSBT before and after the use in four consecutive cycles.
1 M H Alhaji, K Sanaullah, S F Salleh, R Baini, S F Lim, A R H Rigit, K A M Said, A Khan. (2018). Photo-oxidation of pre-treated palm oil mill effluent using cylindrical column immobilized photoreactor. Process Safety and Environmental Protection, 117: 180–189
https://doi.org/10.1016/j.psep.2018.04.012
2 D Ariyanti, L Mills, J Dong, Y Yao, W Gao. (2017). NaBH4 modified TiO2: defect site enhancement related to its photocatalytic activity. Materials Chemistry and Physics, 199: 571–576
https://doi.org/10.1016/j.matchemphys.2017.07.054
3 B Bakbolat, C Daulbayev, F Sultanov, R Beissenov, A Umirzakov, A Mereke, A Bekbaev, I Chuprakov. (2020). Recent developments of TiO2-based photocatalysis in the hydrogen evolution and photodegradation: a review. Nanomaterials (Basel, Switzerland), 10(9): 1790
https://doi.org/10.3390/nano10091790
4 U Balachandran, N Eror. (1988). Electrical conductivity in non-stoichiometric titanium dioxide at elevated temperatures. Journal of Materials Science, 23(8): 2676–2682
https://doi.org/10.1007/BF00547436
5 B Bharti, S Kumar, H N Lee, R Kumar. (2016). Formation of oxygen vacancies and Ti3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment. Scientific Reports, 6(1): 32355
https://doi.org/10.1038/srep32355
6 T Billo, F Y Fu, P Raghunath, I Shown, W F Chen, H T Lien, T H Shen, J F Lee, T S Chan, K Y Huang. et al.. (2018). Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction. Nano. Micro. Small, 14(2): 1702928
https://doi.org/10.1002/smll.201702928
7 A Charles, C K Cheng. (2019). Photocatalytic treatment of palm oil mill effluent by visible light-active calcium ferrite: effects of catalyst preparation technique. Journal of Environmental Management, 234: 404–411
https://doi.org/10.1016/j.jenvman.2019.01.024
8 S Chen, Y Wang, J Li, Z Hu, H Zhao, W Xie, Z Wei. (2018). Synthesis of black TiO2 with efficient visible-light photocatalytic activity by ultraviolet light irradiation and low temperature annealing. Materials Research Bulletin, 98: 280–287
https://doi.org/10.1016/j.materresbull.2017.10.036
9 X Chen, L Liu, F Huang. (2015). Black titanium dioxide (TiO2) nanomaterials. Chemical Society Reviews, 44(7): 1861–1885
https://doi.org/10.1039/C4CS00330F
10 C K Cheng, M R Derahman, M R Khan. (2015). Evaluation of the photocatalytic degradation of pre-treated palm oil mill effluent (POME) over Pt-loaded titania. Journal of Environmental Chemical Engineering, 3(1): 261–270
https://doi.org/10.1016/j.jece.2014.10.016
11 C K Cheng, M R Deraman, K H Ng, M R Khan. (2016). Preparation of titania doped argentum photocatalyst and its photoactivity towards palm oil mill effluent degradation. Journal of Cleaner Production, 112: 1128–1135
https://doi.org/10.1016/j.jclepro.2015.06.104
12 U Diebold (2003). The surface science of titanium dioxide. Surface Science Reports, 48(5–8): 53–229
https://doi.org/10.1016/S0167-5729(02)00100-0
13 H Dong, G Zeng, L Tang, C Fan, C Zhang, X He, Y He. (2015). An overview on limitations of TiO2-based particles for photocatalytic degradation of organic pollutants and the corresponding countermeasures. Water Research, 79: 128–146
https://doi.org/10.1016/j.watres.2015.04.038
14 J Y Eom, S J Lim, S M Lee, W H Ryu, H S Kwon. (2015). Black titanium oxide nanoarray electrodes for high rate Li-ion microbatteries. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(21): 11183–11188
https://doi.org/10.1039/C5TA01718A
15 F E Ergül, S Sargın, G Öngen, F V Sukan. (2011). Dephenolization and decolorization of olive mill wastewater through sequential batch and co-culture applications. World Journal of Microbiology & Biotechnology, 27(1): 107–114
https://doi.org/10.1007/s11274-010-0433-4
16 E Finazzi, C Di Valentin, G Pacchioni, A Selloni. (2008). Excess electron states in reduced bulk anatase TiO2: comparison of standard GGA, GGA+ U, and hybrid DFT calculations. Journal of Chemical Physics, 129(15): 154113
https://doi.org/10.1063/1.2996362
17 K M Fuentes, D Venuti, P Betancourt. (2020). Black titania with increased defective sites for phenol photodegradation under visible light. Reaction Kinetics, Mechanisms and Catalysis, 131(1): 423–435
https://doi.org/10.1007/s11144-020-01832-6
18 U I Gaya, A H Abdullah. (2008). Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide: a review of fundamentals, progress and problems. Journal of Photochemistry and Photobiology C, Photochemistry Reviews, 9(1): 1–12
https://doi.org/10.1016/j.jphotochemrev.2007.12.003
19 S J Gregg, K S Sing, H W Salzberg. (1967). Adsorption surface area and porosity. Journal of the Electrochemical Society, 11: 279Ca
20 L Harris, R Schumacher. (1980). The influence of preparation on semiconducting rutile (TiO2). Journal of the Electrochemical Society, 127(5): 1186–1188
https://doi.org/10.1149/1.2129844
21 M A Henderson (2011). A surface science perspective on TiO2 photocatalysis. Surface Science Reports, 66(6–7): 185–297
https://doi.org/10.1016/j.surfrep.2011.01.001
22 M A Henderson, W S Epling, C H Peden, C L Perkins. (2003). Insights into photoexcited electron scavenging processes on TiO2 obtained from studies of the reaction of O2 with OH groups adsorbed at electronic defects on TiO2 (110). Journal of Physical Chemistry B, 107(2): 534–545
https://doi.org/10.1021/jp0262113
23 H Hu, Y Lin, Y H Hu. (2019). Synthesis, structures and applications of single component core-shell structured TiO2: a review. Chemical Engineering Journal, 375: 122029
https://doi.org/10.1016/j.cej.2019.122029
24 H Hu, Y Lin, Y H Hu. (2020). Core-shell structured TiO2 as highly efficient visible light photocatalyst for dye degradation. Catalysis Today, 341: 90–95
https://doi.org/10.1016/j.cattod.2019.01.077
25 A G Ilie, M Scarisoareanu, I Morjan, E Dutu, M Badiceanu, I Mihailescu. (2017). Principal component analysis of Raman spectra for TiO2 nanoparticle characterization. Applied Surface Science, 417: 93–103
https://doi.org/10.1016/j.apsusc.2017.01.193
26 M Irfan, R Nawaz, J A Khan, H Ullah, T Haneef, S Legutko, S Rahman, J Józwik, M A Alsaiari, M K A Khan. et al.. (2021). Synthesis and characterization of manganese-modified black TiO2 nanoparticles and their performance evaluation for the photodegradation of phenolic compounds from wastewater. Materials, 14: 7422
https://doi.org/10.3390/ma14237422
27 L Jay, E Chirwa (2018). Pathway analysis of phenol degradation by UV/TiO2 photocatalysis utilising the C-13 isotopic labelling technique. Dissertation for Doctoral Degree. Pretoria. South Africa: University of Pretoria
28 N Kashif, F Ouyang. (2009). Parameters effect on heterogeneous photocatalysed degradation of phenol in aqueous dispersion of TiO2. Journal of Environmental Sciences-China, 21(4): 527–533
https://doi.org/10.1016/S1001-0742(08)62303-7
29 B Katryniok, S Paul, F Dumeignil. (2013). Recent developments in the field of catalytic dehydration of glycerol to acrolein. ACS Catalysis, 3(8): 1819–1834
https://doi.org/10.1021/cs400354p
30 L J Konwar, J P Mikkola, N Bordoloi, R Saikia, R S Chutia, R Kataki (2018). Sidestreams from bioenergy and biorefinery complexes as a resource for circular bioeconomy. In: Bhaskar T, Pandey A, Mohan S V, Lee D J, Khanal S K, Editors. Waste Biorefinery. Amsterdam, Netherlands: Elsevier, 85–125
31 C Lin, K S Lin. (2007). Photocatalytic oxidation of toxic organohalides with TiO2/UV: the effects of humic substances and organic mixtures. Chemosphere, 66(10): 1872–1877
https://doi.org/10.1016/j.chemosphere.2006.08.027
32 L Lin, Y Ma, J Wu, F Pang, J Ge, S Sui, Y Yao, R Qi, Y Cheng, C G Duan, J Chu, R Huang. (2019). Origin of photocatalytic activity in Ti4+/Ti3+ core–shell titanium oxide nanocrystals. Journal of Physical Chemistry C, 123(34): 20949–20959
https://doi.org/10.1021/acs.jpcc.9b05285
33 G Liu, X Yan, Z Chen, X Wang, L Wang, G Q Lu, H M Cheng. (2009). Synthesis of rutile–anatase core–shell structured TiO2 for photocatalysis. Journal of Materials Chemistry, 19(36): 6590–6596
https://doi.org/10.1039/b902666e
34 J Lyu, J Shao, Y Wang, Y Qiu, J Li, T Li, Y Peng, F Liu. (2019). Construction of a porous core-shell homojunction for the photocatalytic degradation of antibiotics. Chemical Engineering Journal, 358: 614–620
https://doi.org/10.1016/j.cej.2018.10.085
35 C Minero, D Vione (2006). A quantitative evalution of the photocatalytic performance of TiO2 slurries. Applied Catalysis B: Environmental, 67(3–4): 257–269
https://doi.org/10.1016/j.apcatb.2006.05.011
36 R Nawaz, S Haider, H Ullah, M S Akhtar, S Khan, M Junaid, N Khan. (2022). Optimized remediation of treated agro-industrial effluent using visible light-responsive core-shell structured black TiO2 photocatalyst. Journal of Environmental Chemical Engineering, 10(1): 106968
https://doi.org/10.1016/j.jece.2021.106968
37 R Nawaz, C F Kait, H Y Chia, M H Isa, L W Huei. (2019). Glycerol-mediated facile synthesis of colored titania nanoparticles for visible light photodegradation of phenolic compounds. Nanomaterials (Basel, Switzerland), 9(11): 1586
https://doi.org/10.3390/nano9111586
38 R Nawaz, C F Kait, H Y Chia, M H Isa, L W Huei. (2020a). Structural elucidation of core–shell TiO2 nanomaterials for environmental pollutants removal: a focused mini review. Environmental Technology & Innovation, 19: 101007
https://doi.org/10.1016/j.eti.2020.101007
39 R Nawaz, C F Kait, H Y Chia, M H Isa, L W Huei. (2020b). Photocatalytic remediation of treated palm oil mill effluent contaminated with phenolic compounds using TiO2 nanomaterial. Desalination and Water Treatment, 183: 355–365
40 C Negi, P Kandwal, J Rawat, M Sharma, H Sharma, G Dalapati, C Dwivedi. (2021). Carbon-doped titanium dioxide nanoparticles for visible light driven photocatalytic activity. Applied Surface Science, 554: 149553
https://doi.org/10.1016/j.apsusc.2021.149553
41 K H Ng, C K Cheng. (2015). A novel photomineralization of POME over UV-responsive TiO2 photocatalyst: kinetics of POME degradation and gaseous product formations. RSC Advances, 5(65): 53100–53110
https://doi.org/10.1039/C5RA06922J
42 K H Ng, M R Khan, Y H Ng, S S Hossain, C K Cheng. (2017). Restoration of liquid effluent from oil palm agroindustry in Malaysia using UV/TiO2 and UV/ZnO Photocatalytic systems: a comparative study. Journal of Environmental Management, 196: 674–680
https://doi.org/10.1016/j.jenvman.2017.03.078
43 K H Ng, C H Lee, M R Khan, C K Cheng. (2016). Photocatalytic degradation of recalcitrant POME waste by using silver doped titania: Photokinetics and scavenging studies. Chemical Engineering Journal, 286: 282–290
https://doi.org/10.1016/j.cej.2015.10.072
44 K H Ng, L S Yuan, C K Cheng, K Chen, C Fang. (2019). TiO2 and ZnO photocatalytic treatment of palm oil mill effluent (POME) and feasibility of renewable energy generation: A short review. Journal of Cleaner Production, 233: 209–225
https://doi.org/10.1016/j.jclepro.2019.06.044
45 J Nowotny, T Bak, M Nowotny, L Sheppard. (2006). TiO2 surface active sites for water splitting. Journal of Physical Chemistry B, 110(37): 18492–18495
https://doi.org/10.1021/jp063699p
46 A A Oladipo. (2021). Rapid photocatalytic treatment of high-strength olive mill wastewater by sunlight and UV-induced CuCr2O4@CaFe–LDO. Journal of Water Process Engineering, 40: 101932
https://doi.org/10.1016/j.jwpe.2021.101932
47 Y Parent, D Blake, K Magrini-bair, C Lyons, C Turchi, A Watt, E Wolfrum, M Prairie. (1996). Solar photocatalytic processes for the purification of water: state of development and barriers to commercialization. Solar Energy, 56(5): 429–437
https://doi.org/10.1016/0038-092X(96)81767-1
48 J F Porter, Y G Li, C K Chan. (1999). The effect of calcination on the microstructural characteristics and photoreactivity of Degussa P-25 TiO2. Journal of Materials Science, 34(7): 1523–1531
https://doi.org/10.1023/A:1004560129347
49 T Z Ren, Z Y Yuan, B L Su (2003). Surfactant-assisted preparation of hollow microspheres of mesoporous TiO2. Chemical Physics Letters, 374(1–2): 170–175
https://doi.org/10.1016/S0009-2614(03)00722-X
50 J Shi, J Li, Y Wang, C Y Zhang. (2022). TiO2-based nanosystem for cancer therapy and antimicrobial treatment: a review. Chemical Engineering Journal, 431: 133714
https://doi.org/10.1016/j.cej.2021.133714
51 R Shvab, E Hryha, L Nyborg. (2017). Surface chemistry of the titanium powder studied by XPS using internal standard reference. Powder Metallurgy, 60(1): 42–48
https://doi.org/10.1080/00325899.2016.1271092
52 A Sinhamahapatra, J P Jeon, J S Yu. (2015). A new approach to prepare highly active and stable black titania for visible light-assisted hydrogen production. Energy & Environmental Science, 8(12): 3539–3544
https://doi.org/10.1039/C5EE02443A
53 A Sobczyński, Ł Duczmal, W Zmudziński. (2004). Phenol destruction by photocatalysis on TiO2: an attempt to solve the reaction mechanism. Journal of Molecular Catalysis A, Chemical, 213(2): 225–230
https://doi.org/10.1016/j.molcata.2003.12.006
54 L Sun, Z Li, Z Li, Y Hu, C Chen, C Yang, B Du, Y Sun, F Besenbacher, M Yu. (2017). Design and mechanism of core–shell TiO2 nanoparticles as a high-performance photothermal agent. Nanoscale, 9(42): 16183–16192
https://doi.org/10.1039/C7NR02848B
55 M Taha, A Ibrahim. (2014). Characterization of nano zero-valent iron (nZVI) and its application in sono-Fenton process to remove COD in palm oil mill effluent. Journal of Environmental Chemical Engineering, 2(1): 1–8
https://doi.org/10.1016/j.jece.2013.11.021
56 Y Tan, P Goh, G Lai, W Lau, A Ismail. (2014). Treatment of aerobic treated palm oil mill effluent (AT-POME) by using TiO2 photocatalytic process. Jurnal Teknologi-Sciences & Engineering, 70: 61–63
57 J Tian, X Hu, H Yang, Y Zhou, H Cui, H Liu. (2016). High yield production of reduced TiO2 with enhanced photocatalytic activity. Applied Surface Science, 360: 738–743
https://doi.org/10.1016/j.apsusc.2015.11.056
58 J Tian, Y Leng, H Cui, H Liu. (2015). Hydrogenated TiO2 nanobelts as highly efficient photocatalytic organic dye degradation and hydrogen evolution photocatalyst. Journal of Hazardous Materials, 299: 165–173
https://doi.org/10.1016/j.jhazmat.2015.06.019
59 S G Ullattil, P Periyat. (2016). A ‘one pot’ gel combustion strategy towards Ti3+ self-doped ‘black’ anatase TiO2−x solar photocatalyst. Journal of Materials Chemistry. A, 4(16): 5854–5858
https://doi.org/10.1039/C6TA01993E
60 W Wagner, R Averback, H Hahn, W Petry, A Wiedenmann. (1991). Sintering characteristics of nanocrystalline TiO2: a study combining small angle neutron scattering and nitrogen absorption–BET. Journal of Materials Research, 6(10): 2193–2198
https://doi.org/10.1557/JMR.1991.2193
61 J Wang, Y Wang, W Wang, T Peng, J Liang, P Li, D Pan, Q Fan, W Wu. (2020). Visible light driven Ti3+ self-doped TiO2 for adsorption-photocatalysis of aqueous U(VI). Environmental Pollution, 262: 114373
https://doi.org/10.1016/j.envpol.2020.114373
62 K A Wong, S M Lam, J C Sin. (2019). Wet chemically synthesized ZnO structures for photodegradation of pre-treated palm oil mill effluent and antibacterial activity. Ceramics International, 45(2): 1868–1880
https://doi.org/10.1016/j.ceramint.2018.10.078
63 M C Wu, C H Chen, W K Huang, K C Hsiao, T H Lin, S H Chan, P Y Wu, C F Lu, Y H Chang, T F Lin, K H Hsu, J F Hsu, K M Lee, J J Shyue, K Kordás, W F Su. (2017). Improved solar-driven photocatalytic performance of highly crystalline hydrogenated TiO2 nanofibers with core-shell structure. Scientific Reports, 7(1): 40896
https://doi.org/10.1038/srep40896
64 J Xu, Z Liu, J Wang, P Liu, M Ahmad, Q Zhang, B Zhang. (2022). Preparation of core-shell C@ TiO2 composite microspheres with wrinkled morphology and its microwave absorption. Journal of Colloid and Interface Science, 607: 1036–1049
https://doi.org/10.1016/j.jcis.2021.09.038
65 M Zhai, Y Liu, J Huang, Y Wang, K Chen, Y Fu, H Li. (2019). Efficient suspension plasma spray fabrication of black titanium dioxide coatings with visible light absorption performances. Ceramics International, 45(1): 930–935
https://doi.org/10.1016/j.ceramint.2018.09.268
66 L Zhang, R Djellabi, P Su, Y Wang, J Zhao. (2023). Through converting the surface complex on TiO2 nanorods to generate superoxide and singlet oxygen to remove CN−. Journal of Environmental Sciences-China, 124: 300–309
https://doi.org/10.1016/j.jes.2021.08.054
67 G Zhou, L Shen, Z Xing, X Kou, S Duan, L Fan, H Meng, Q Xu, X Zhang, L Li, M Zhao, J Mi, Z Li. (2017). Ti3+ self-doped mesoporous black TiO2/graphene assemblies for unpredicted-high solar-driven photocatalytic hydrogen evolution. Journal of Colloid and Interface Science, 505: 1031–1038
https://doi.org/10.1016/j.jcis.2017.06.097
68 M Zulfiqar, M F R Samsudin, S Sufian. (2019). Modelling and optimization of photocatalytic degradation of phenol via TiO2 nanoparticles: an insight into response surface methodology and artificial neural network. Journal of Photochemistry and Photobiology A, Chemistry, 384: 112039
https://doi.org/10.1016/j.jphotochem.2019.112039
[1] FSE-23001-OF-HS_suppl_1 Download
[1] Xianjun Tan, Zhenying Jiang, Yuxiong Huang. Photo-induced surface frustrated Lewis pairs for promoted photocatalytic decomposition of perfluorooctanoic acid[J]. Front. Environ. Sci. Eng., 2023, 17(1): 3-.
[2] Zhifei Ma, Huali Cao, Fengchun Lv, Yu Yang, Chen Chen, Tianxue Yang, Haixin Zheng, Daishe Wu. Preparation of nZVI embedded modified mesoporous carbon for catalytic persulfate to degradation of reactive black 5[J]. Front. Environ. Sci. Eng., 2021, 15(5): 98-.
[3] Xin Li, Jun Xie, Chuanjia Jiang, Jiaguo Yu, Pengyi Zhang. Review on design and evaluation of environmental photocatalysts[J]. Front. Environ. Sci. Eng., 2018, 12(5): 14-.
[4] Yuankai ZHANG,Zhijiang HE,Hongchen WANG,Lu QI,Guohua LIU,Xiaojun ZHANG. Applications of hollow nanomaterials in environmental remediation and monitoring: A review[J]. Front. Environ. Sci. Eng., 2015, 9(5): 770-783.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed