Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (5) : 59    https://doi.org/10.1007/s11783-021-1493-4
RESEARCH ARTICLE
Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling–Is it additive or synergistic?
Xuesong Liu1,4, Jianmin Wang1,2(), Yue-Wern Huang2,3
1. Department of Civil, Architectural and Environmental Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA
2. The Center for Research in Energy and Environment (CREE), Missouri University of Science and Technology, Rolla, MO 65409, USA
3. Department of Biological Sciences, Missouri University of Science and Technology, Rolla, MO 65409, USA
4. State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
 Download: PDF(949 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• A two-compartment model is able to quantify the effect of nano-TiO2 on Pb toxicity.

• Nano-TiO2 reduces Pb tolerance level and increased the killing rate for C. dubia.

• Thus, nano-TiO2 synergistically enhances Pb toxicity.

• Algae reduce Pb transfer rate to the body tissue and the killing rate.

Nano-TiO2 can remarkably increase lead (Pb) toxicity in aquatic organisms. However, the mechanism of this toxicity, additive or synergistic, is not well understood. To explore this mechanism, we inspected the role of nano-TiO2 in the toxicity of Pb on Ceriodaphnia dubia (C. dubia), a model water flea species typically used for ecotoxicity studies. The effect of algae, a diet for aquatic organisms, on the effect of this binary mixture was also investigated. A two-compartment toxicokinetic (TK)-toxicodynamic (TD) modeling approach was used to quantify the Pb toxicity under these complex conditions and to develop critical parameters for understanding the mechanism of toxicity. This two-compartment modeling approach adequately described the Pb accumulation in the gut and in the rest of the body tissue under different nano-TiO2 concentrations, with and without algae, and predicted the toxicity response of C. dubia. It indicated that increasing the nano-TiO2 concentration reduced the Pb tolerance level and concurrently increased the killing rate constant of C. dubia. Therefore, nano-TiO2 synergistically enhanced Pb toxicity. Algae remarkably reduced the toxicity of this binary mixture through reducing the Pb transfer rate to the body tissue and the killing rate, although it did not affect the Pb tolerance level. This two-compartment modeling approach is useful in understanding the role of nanoparticles when assessing the overall toxicity of nanoparticles and other toxic elements in the environment.

Keywords Algae      C. dubia      Lead      Nano-TiO2      Synergistic toxicity      Two-compartment toxicokinetic-toxicodynamic model     
Corresponding Author(s): Jianmin Wang   
Issue Date: 18 October 2021
 Cite this article:   
Xuesong Liu,Jianmin Wang,Yue-Wern Huang. Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling–Is it additive or synergistic?[J]. Front. Environ. Sci. Eng., 2022, 16(5): 59.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1493-4
https://academic.hep.com.cn/fese/EN/Y2022/V16/I5/59
Model Symbol Definition Unit
Toxicokinetic CT(t) Total Pb in the whole body at time t ng/flea
Cgut(t) Pb in the gut at time t ng/flea
Ctissue(t) Pb in the tissue at time t ng/flea
CPb Total Pb concentration in the solution ng/L
CNP Total NP concentration in the solution mg/L
k Active mouth uptake constant mg/flea/h
k12 The gut to body tissue transfer constant h−1
k1e The gut depuration constant h−1
t Exposure time h
Toxicodynamic S(t) Survival probability of test organisms at time t N.A.
kk Killing rate flea/ng/h
CTH Toxic metal threshold concentration ng/flea
Tab.1  Toxicokinetic and toxicodynamic model symbol and parameters
Fig.1  The Pb accumulation in C. dubia in the presence of nano-TiO2, with and without algae: (a) nano-TiO2 + Pb, and (b) nano-TiO2 + Pb+ algae. Exposure medium: [Pb] = 2500 μg/L; NPs= 100 mg/L; algae= 1.8 × 105 cells/mL. Each filled circle point represents the average value of data (N = 2), error bars represent the range of the data. The inset is the 24-h Pb accumulation in C. dubia under different nano-TiO2 concentrations with and without algae: (a) nano-TiO2 + Pb, NPs= 10–200 mg/L, and (b) nano-TiO2 + Pb+ algae, NPs= 50–200 mg/L. Condition of the exposure medium: [Pb] = 2500 μg/L; algae= 1.8 × 105 cells/mL.
NPs (mg/L) Algae
(cells/mL)
k
(× 10−3 mg/flea/h)
k12 (h−1) k1e (h−1) R2
10 0 0.097 0.026 1.588 0.95
20 0.395 0.88
50 0.694 0.96
100 1.091 0.91
200 1.418 0.93
50 1.8 × 105 0.610 0.022 1.588 0.89
100 0.998 0.95
200 1.342 0.93
Tab.2  Toxicokinetic model parameters (the gut uptake constant k, Pb transfer constant from gut to body tissue k12, Pb depuration constant from gut k1e) determined at the Pb concentration of 2500 μg/L
Fig.2  Survivorship of C. dubia in the presence of Pb and nano-TiO2. (a) The survivorship during the 24-h exposure period in test solutions that contained 2500 μg/L of Pb and various concentrations of nano-TiO2 (10–200 mg/L), (b) Comparison of observed and predicted 24-h survivorship for different concentrations of nano-TiO2 (20–200 mg/L) and Pb.
Test Solution * Predicted Ctissue(24) (ng/flea) CTH (ng/flea) kk (flea/ng/h) R2
10 mg/L TiO2** 9.13 N.A. N.A. N.A.
20 mg/L TiO2 16.71 11.69 1.5 × 10−3 0.94
50 mg/L TiO2 13.07 7.53 4.6 × 10−3 0.99
100 mg/L TiO2 10.27 5.70 0.018 0.99
200 mg/L TiO2 5.14 2.96 0.030 0.99
50 mg/L TiO2 + algae*** 9.73 7.53 0.002 0.95
100 mg/L TiO2 + algae*** 7.97 5.70 0.011 0.97
200 mg/L TiO2 + algae*** 4.17 2.96 0.021 0.97
Tab.3  Toxicodynamic model parameters (threshold concentration CTH, killing rate kk)
Fig.3  Survivorship of C. dubia in the presence of Pb, nano-TiO2, and algae. (a) The survivorship during the 24-h exposure period in test solutions that contained 2500 μg/L of Pb, various concentrations of nano-TiO2 (50–200 mg/L), and 1.8 × 105 cells/mL of algae, (b) Comparison of observed and predicted 24-h survivorship for different concentrations of nano-TiO2 (50–200 mg/L) and Pb, and 1.8 × 105 cells/mL of algae.
1 N S Allen, M Edge, J Verran, J Stratton, J Maltby, C Bygott (2008). Photocatalytic titania based surfaces: Environmental benefits. Polymer Degradation & Stability, 93(9): 1632–1646
https://doi.org/10.1016/j.polymdegradstab.2008.04.015
2 M Bundschuh, J Filser, S Lüderwald, M S McKee, G Metreveli, G E Schaumann, R Schulz, S Wagner (2018). Nanoparticles in the environment: Where do we come from, Where do we go to? Environmental Sciences Europe, 30(1): 6
https://doi.org/10.1186/s12302-018-0132-6 pmid: 29456907
3 L Cai, X Sun, D Hao, S Li, X Gong, H Ding, K Yu (2020). Sugarcane bagasse amendment improves the quality of green waste vermicompost and the growth of Eisenia fetida. Frontiers of Environmental Science & Engineering, 14(4): 61
https://doi.org/10.1007/s11783-020-1240-2
4 N Cedergreen, K Dalhoff, D Li, M Gottardi, A C Kretschmann (2017). Can toxicokinetic and toxicodynamic modeling be used to understand and predict synergistic interactions between chemicals? Environmental Science & Technology, 51(24): 14379–14389
https://doi.org/10.1021/acs.est.7b02723 pmid: 28901128
5 W Dudefoi, K Moniz, E Allen-Vercoe, M H Ropers, V K Walker (2017). Impact of food grade and nano-TiO2 particles on a human intestinal community. Food and Chemical Toxicology, 106(Pt A): 242–249
pmid: 28564612
6 D P Ebert (2005).Ecology, Epidemiology, and Evolution of Parasitism in Daphnia. Bethesda (MD): National Library of Medicine (USA), National Center for Biotechnology Information
7 K S Egorova, V P Ananikov (2017). Toxicity of metal compounds: Knowledge and myths. Organometallics, 36(21): 4071–4090
https://doi.org/10.1021/acs.organomet.7b00605
8 EPA (1994). Using toxicity tests in ecological risk assessment. Washington, DC: Environmental Protection Agency
9 EPA (2002). Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. Washington, DC: Environmental Protection Agency
10 N Ercal, H Gurer-Orhan, N Aykin-Burns (2001). Toxic metals and oxidative stress part I: Mechanisms involved in metal-induced oxidative damage. Current Topics in Medicinal Chemistry, 1(6): 529–539
https://doi.org/10.2174/1568026013394831 pmid: 11895129
11 W Fan, M Cui, H Liu, C Wang, Z Shi, C Tan, X Yang (2011). Nano-TiO2 enhances the toxicity of copper in natural water to Daphnia magna. Environmental Pollution (Barking, Essex: 1987), 159(3): 729–734
https://doi.org/10.1016/j.envpol.2010.11.030 pmid: 21177008
12 P L Gillis, P Chow-Fraser, J F Ranville, P E Ross, C M Wood (2005). Daphnia need to be gut-cleared too: the effect of exposure to and ingestion of metal-contaminated sediment on the gut-clearance patterns of D. magna. Aquatic Toxicology (Amsterdam, Netherlands), 71(2): 143–154
https://doi.org/10.1016/j.aquatox.2004.10.016 pmid: 15642639
13 P A Horton, M Rowan, K E Webster, R H Peters (1979). Browsing and grazing by cladoceran filter feeders. Canadian Journal of Zoology, 57(1): 206–212
https://doi.org/10.1139/z79-019
14 J Hu, H J Shipley (2012). Evaluation of desorption of Pb (II), Cu (II) and Zn (II) from titanium dioxide nanoparticles. Science of the Total Environment, 431: 209–220
https://doi.org/10.1016/j.scitotenv.2012.05.039 pmid: 22684122
15 J Hu, D Wang, B E Forthaus, J Wang (2012b). Quantifying the effect of nanoparticles on As(V) ecotoxicity exemplified by nano-Fe2O3 (magnetic) and nano-Al2O3. Environmental Toxicology and Chemistry, 31(12): 2870–2876
https://doi.org/10.1002/etc.2013 pmid: 22997023
16 J Hu, D Wang, J Wang, J Wang (2012a). Toxicity of lead on Ceriodaphnia dubia in the presence of nano-CeO2 and nano-TiO2. Chemosphere, 89(5): 536–541
https://doi.org/10.1016/j.chemosphere.2012.05.045 pmid: 22682362
17 C P Huang, H W Chou, Y H Tseng, M Fan (2010a). Responses of Ceriodaphnia dubia to photocatalytic nano-titanium dioxide particles. In: Fan M, Huang C, Bland A, Wang Z, Slimane R, Wright I, eds. Environanotechnology. Amsterdam: Elsevier, 1–21
18 Y W Huang, C H Wu, R S Aronstam (2010b). Toxicity of transition metal oxide nanoparticles: Recent insights from in vitro studies. Materials (Basel), 3(10): 4842–4859
https://doi.org/10.3390/ma3104842 pmid: 28883356
19 ICMM (2007). Health Risk Assessment Guidance for Metals. Fact Sheet 4. London: International Council on Mining and Metals
20 L E Kerper, P M Hinkle (1997). Cellular uptake of lead is activated by depletion of intracellular calcium stores. Journal of Biological Chemistry, 272(13): 8346–8352
https://doi.org/10.1074/jbc.272.13.8346 pmid: 9079658
21 P R Kiela, F K Ghishan (2016). Physiology of intestinal absorption and secretion. Best Practice & Research. Clinical Gastroenterology, 30(2): 145–159
https://doi.org/10.1016/j.bpg.2016.02.007 pmid: 27086882
22 J Lademann, H Weigmann, C Rickmeyer, H Barthelmes, H Schaefer, G Mueller, W Sterry (1999). Penetration of titanium dioxide microparticles in a sunscreen formulation into the horny layer and the follicular orifice. Skin Pharmacology and Applied Skin Physiology, 12(5): 247–256
https://doi.org/10.1159/000066249 pmid: 10461093
23 F Li, Z Liang, X Zheng, W Zhao, M Wu, Z Wang (2015). Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquatic Toxicology (Amsterdam, Netherlands), 158: 1–13
https://doi.org/10.1016/j.aquatox.2014.10.014 pmid: 25461740
24 X Liu, J Wang (2020). Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia. Frontiers of Environmental Science & Engineering, 14(6): 97
25 X Liu, J Wang, Y W Huang (2021). Quantifying the effect of nano-TiO2 on the toxicity of lead on C. dubia using a two-compartment modeling approach. Chemosphere, 263: 127958
https://doi.org/10.1016/j.chemosphere.2020.127958 pmid: 32835977
26 X Liu, J Wang, Y W Huang, T Kong (2019). Algae (Raphidocelis) reduce combined toxicity of nano-TiO2 and lead on C. dubia. Science of the Total Environment, 686: 246–253
https://doi.org/10.1016/j.scitotenv.2019.06.033 pmid: 31181512
27 A López-Serrano, R M Olivas, J S Landaluze, C Cámara (2014). Nanoparticles: A global vision. Characterization, separation, and quantification methods. Potential environmental and health impact. Analytical Methods, 6(1): 38–56
https://doi.org/10.1039/C3AY40517F
28 B O’Regan, M Grätzel (1991). A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346): 737–740
https://doi.org/10.1038/353737a0
29 B Poljsak, D Šuput, I Milisav (2013). Achieving the balance between ROS and antioxidants: when to use the synthetic antioxidants. Oxidative Medicine and Cellular Longevity, 2013: 956792
pmid: 23738047
30 K R Roell, D M Reif, A A Motsinger-Reif (2017). An introduction to terminology and methodology of chemical synergy—Perspectives from across disciplines. Frontiers in Pharmacology, 8: 158
https://doi.org/10.3389/fphar.2017.00158 pmid: 28473769
31 C Romay, J Armesto, D Remirez, R González, N Ledon, I García (1998). Antioxidant and anti-inflammatory properties of C-phycocyanin from blue-green algae. Inflammation Research, 47(1): 36–41
https://doi.org/10.1007/s000110050256 pmid: 9495584
32 D Roy, P N Greenlaw, B S Shane (1993). Adsorption of heavy metals by green algae and ground rice hulls. Journal of Environmental Science and Health, Part A: Environmental Science and Engineering, 28(1): 37–50
33 D L Sparks (2005). Toxic metals in the environment: the role of surfaces. Elements, 1(4): 193–197
https://doi.org/10.2113/gselements.1.4.193
34 C Tan, W H Fan, W X Wang (2012). Role of titanium dioxide nanoparticles in the elevated uptake and retention of cadmium and zinc in Daphnia magna. Environmental Science & Technology, 46(1): 469–476
https://doi.org/10.1021/es202110d pmid: 22082004
35 C Tan, W X Wang (2017). Influences of TiO2 nanoparticles on dietary metal uptake in Daphnia magna. Environmental Pollution (Barking, Essex : 1987), 231(Pt 1): 311–318
https://doi.org/10.1016/j.envpol.2017.08.024 pmid: 28810200
36 L Y Tan, B Huang, S Xu, Z B Wei, L Y Yang, A J Miao (2017). Aggregation reverses the carrier effects of TiO2 nanoparticles on cadmium accumulation in the waterflea Daphnia magna. Environmental Science & Technology, 51(2): 932–939
https://doi.org/10.1021/acs.est.6b03951 pmid: 27984694
37 Q G Tan, W X Wang (2012). Two-compartment toxicokinetic-toxicodynamic model to predict metal toxicity in Daphnia magna. Environmental Science & Technology, 46(17): 9709–9715
https://doi.org/10.1021/es301987u pmid: 22871152
38 M S Vohra, A P Davis (1997). Adsorption of Pb(II), NTA, and Pb(II)-NTA onto TiO2. Journal of Colloid and Interface Science, 194(1): 59–67
https://doi.org/10.1006/jcis.1997.5071 pmid: 9367585
39 D Wang, J Hu, B E Forthaus, J Wang (2011b). Synergistic toxic effect of nano-Al2O3 and As(V) on Ceriodaphnia dubia. Environmental Pollution (Barking, Essex: 1987), 159(10): 3003–3008
https://doi.org/10.1016/j.envpol.2011.04.019 pmid: 21565438
40 D Wang, J Hu, D R Irons, J Wang (2011a). Synergistic toxic effect of nano-TiO and As(V) on Ceriodaphnia dubia. Science of the Total Environment, 409(7): 1351–1356
https://doi.org/10.1016/j.scitotenv.2010.12.024 pmid: 21239047
41 A L Wani, A Ara, J A Usmani (2015). Lead toxicity: A review. Interdisciplinary Toxicology, 8(2): 55–64
https://doi.org/10.1515/intox-2015-0009 pmid: 27486361
42 Z Zhou, J Son, B Harper, Z Zhou, S Harper (2015). Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish. Beilstein Journal of Nanotechnology, 6: 1568–1579
https://doi.org/10.3762/bjnano.6.160 pmid: 26425408
[1] FSE-21081-OF-LXS_suppl_1 Download
[1] Yuxiong Huang, Manyu Gao, Wenjing Wang, Ziyi Liu, Wei Qian, Ciara Chun Chen, Xiaoshan Zhu, Zhonghua Cai. Effects of manufactured nanomaterials on algae: Implications and applications[J]. Front. Environ. Sci. Eng., 2022, 16(9): 122-.
[2] Zuyin Chen, Lihua Li, Lichong Hao, Yu Hong, Wencai Wang. Hormesis-like growth and photosynthetic physiology of marine diatom Phaeodactylum tricornutum Bohlin exposed to polystyrene microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(1): 2-.
[3] Violeta Makareviciene, Egle Sendzikiene, Ieva Gaide. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil[J]. Front. Environ. Sci. Eng., 2021, 15(5): 97-.
[4] Yanxia Zhao, Huiqing Lian, Chang Tian, Haibo Li, Weiying Xu, Sherub Phuntsho, Kaimin Shih. Surface water treatment benefits from the presence of algae: Influence of algae on the coagulation behavior of polytitanium chloride[J]. Front. Environ. Sci. Eng., 2021, 15(4): 58-.
[5] Yingdan Zhang, Na Liu, Wei Wang, Jianteng Sun, Lizhong Zhu. Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L.) growth by TiO2 nanoparticles[J]. Front. Environ. Sci. Eng., 2020, 14(6): 103-.
[6] Xuesong Liu, Jianmin Wang. Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia[J]. Front. Environ. Sci. Eng., 2020, 14(6): 97-.
[7] Caiyun Hou, Sen Qiao, Yue Yang, Jiti Zhou. A novel sequence batch membrane carbonation photobioreactor developed for microalgae cultivation[J]. Front. Environ. Sci. Eng., 2019, 13(6): 92-.
[8] Ziming Zhao, Wenjun Sun, Madhumita B. Ray, Ajay K Ray, Tianyin Huang, Jiabin Chen. Optimization and modeling of coagulation-flocculation to remove algae and organic matter from surface water by response surface methodology[J]. Front. Environ. Sci. Eng., 2019, 13(5): 75-.
[9] Victor M. Deantes-Espinosa, Tian-Yuan Zhang, Xiao-Xiong Wang, Yinhu Wu, Guo-Hua Dao, Hong-Ying Hu. Attached cultivation of Scenedesmus sp. LX1 on selected solids and the effect of surface properties on attachment[J]. Front. Environ. Sci. Eng., 2019, 13(4): 57-.
[10] Christine C. Nguyen, Cody N. Hugie, Molly L. Kile, Tala Navab-Daneshmand. Association between heavy metals and antibiotic-resistant human pathogens in environmental reservoirs: A review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 46-.
[11] Qinghao Jin, Chenyang Cui, Huiying Chen, Jing Wu, Jing Hu, Xuan Xing, Junfeng Geng, Yanhong Wu. Effective removal of Cd2+ and Pb2+ pollutants from wastewater by dielectrophoresis-assisted adsorption[J]. Front. Environ. Sci. Eng., 2019, 13(2): 16-.
[12] Xinfeng Wang, Lu Lin, Haifeng Lu, Zhidan Liu, Na Duan, Taili Dong, Hua Xiao, Baoming Li, Pei Xu. Microalgae cultivation and culture medium recycling by a two-stage cultivation system[J]. Front. Environ. Sci. Eng., 2018, 12(6): 14-.
[13] Jiao Zhang, Zhen Wei, Haifeng Jia, Xia Huang. Factors influencing water quality indices in a typical urban river originated with reclaimed water[J]. Front. Environ. Sci. Eng., 2017, 11(4): 8-.
[14] Jingjing ZHAN,Qiao ZHANG,Momei QIN,Yu HONG. Selection and characterization of eight freshwater green algae strains for synchronous water purification and lipid production[J]. Front. Environ. Sci. Eng., 2016, 10(3): 548-558.
[15] Lijing DONG,Zhiliang ZHU,Yanling QIU,Jianfu ZHAO. Removal of lead from aqueous solution by hydroxyapatite/manganese dioxide composite[J]. Front. Environ. Sci. Eng., 2016, 10(1): 28-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed