Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (9) : 122    https://doi.org/10.1007/s11783-022-1554-3
REVIEW ARTICLE
Effects of manufactured nanomaterials on algae: Implications and applications
Yuxiong Huang1, Manyu Gao1, Wenjing Wang1, Ziyi Liu1, Wei Qian1, Ciara Chun Chen1, Xiaoshan Zhu1,2(), Zhonghua Cai1
1. Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
2. Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China
 Download: PDF(1514 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Summary of positive and negative effects of MNMs on algae.

● MNMs adversely affect algal gene expression, metabolite, and growth.

● MNMs induce oxidative stress, mechanical damage and light-shielding effects on algae.

● MNMs can promote production of bioactive substances and environmental remediation.

The wide application of manufactured nanomaterials (MNMs) has resulted in the inevitable release of MNMs into the aquatic environment along their life cycle. As the primary producer in aquatic ecosystems, algae play a critical role in maintaining the balance of ecosystems’ energy flow, material circulation and information transmission. Thus, thoroughly understanding the biological effects of MNMs on algae as well as the underlying mechanisms is of vital importance. We conducted a comprehensive review on both positive and negative effects of MNMs on algae and thoroughly discussed the underlying mechanisms. In general, exposure to MNMs may adversely affect algae’s gene expression, metabolites, photosynthesis, nitrogen fixation and growth rate. The major mechanisms of MNMs-induced inhibition are attributed to oxidative stress, mechanical damages, released metal ions and light-shielding effects. Meanwhile, the rational application of MNMs-algae interactions would promote valuable bioactive substances production as well as control biological and chemical pollutants. Our review could provide a better understanding of the biological effects of MNMs on algae and narrow the knowledge gaps on the underlying mechanisms. It would shed light on the investigation of environmental implications and applications of MNMs-algae interactions and meet the increasing demand for sustainable nanotechnology development.

Keywords Manufactured nanomaterials      Algae      Mechanisms      Effects      Implications      Applications     
Corresponding Author(s): Xiaoshan Zhu   
About author: Tongcan Cui and Yizhe Hou contributed equally to this work.
Issue Date: 10 September 2022
 Cite this article:   
Yuxiong Huang,Manyu Gao,Wenjing Wang, et al. Effects of manufactured nanomaterials on algae: Implications and applications[J]. Front. Environ. Sci. Eng., 2022, 16(9): 122.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1554-3
https://academic.hep.com.cn/fese/EN/Y2022/V16/I9/122
Fig.1  MNMs affect algae’s gene expression and metabolism.
MNMs typeMNMsParticle sizeDosageAlgae speciesEffectsMechanismsEC50References
Carbonaceous MNMsGraphene oxide (GO)N/A0.5, 2, 5, 10, 20, 50, 70, 100 mg/LRaphidocelis subcapitataGrowth inhibitionOxidative damage; shading effects; mechanical damage96 h – EC50 = 20 mg/LNogueira et al., 2015
GO3.5 nm0.5, 2, 5, 10, 20, 50, 70, 100 mg/LRaphidocelis subcapitataGrowth inhibitionOxidative damage; shading effects; mechanical damageN/ANogueira et al., 2015
GO5 nmN/AChlorella vulgarisCell division inhibitionN/AN/AWahid et al., 2013
GrapheneN/A50 mg/LChlorella pyrenoidosaGrowth inhibitionShading effects; mechanical damage96 h – EC50 = 37.3 mg/L (GO)/34.0 mg/L (rGO)/62.2 mg/L(MG)Zhao et al., 2017
Carbon nanotubes (CNTs)N/A1–50 mg/LChlorella vulgarisGrowth inhibition; normal photosynthetic activityShading effects; the agglomeration of algal cells96 h – EC50 = 1.8 mg/L (well dispersed suspensions)/24 mg/L (agglomerated suspensions)Schwab et al., 2011
CNTsN/A1–50 mg/LPseudokirchneriella subcapitataGrowth inhibition; normal photosynthetic activityShading effects; the agglomeration of algal cells96 h – EC50 = 20 mg/L (well dispersed suspensions)/36 mg/L (agglomerated suspensions)Schwab et al., 2011
CNTs4 nm inner and 5–20 nm outer diameter0.85±0.12 mg CNTs/g algae dry weightPseudokirchneriella subcapitataBiochemical composition alterationMechanical damage and internalizationN/AGlomstad et al., 2016
Single-walled carbon nanotubes (SWCNTs)Length: ~20μm, diameter:1–12–46.1 mg/LChlorella vulgarisGrowth inhibitionN/A72 h – EC50 = 30.96 mg/LSohn et al., 2015
Length: ~20 μm, diameter:1–1.2 nm15–42.8 mg/LRaphidocelis subcapitataGrowth inhibitionN/A72 h – EC50 = 29.99 mg/LSohn et al., 2015
Multi-walled carbon nanotubes (MWCNTs)20–30 μm0.1, 0.5, 1, 2.5, 5, 10 mg/LDunaliella tertiolectaGrowth inhibitionN/A96 h – EC50 = (0.82±0.02) mg/LWei et al., 2010
CNT (DWCNTs 80%, SWCNTs 15%, and MWCNTs 5%)1–100 μm0.1, 1, 10 and 50 mg/LNitzchia paleaProteins/carbohydrates ratio increase; growth inhibitionN/A48 h – EC50 = 7.5 mg/LVerneuil et al., 2015
Metal/Metal Oxide MNMsNano-Au633 nm0.005125, 0.01025, 0.0205,0.041, 0.082 mg/LDesmodesmus subspicatusGrowth inhibitionN/A72 h – EC50 = 0.028 mg/LDěDková et al., 2014
Nano-Au633 nm0.005125, 0.01025, 0.0205,0.041, 0.082 mg/LSelenastrum bibraianumGrowth inhibitionN/A72 h – EC50 = 0.014 mg/LDěDková et al., 2014
Nano-Ag50 nm10, 50, 100, 200 mg/LChlorella vulgarisCell stability decreasedOxidative damageN/AHazani et al., 2013
Nano-Au10, 20,40, 60 and 80 nm5–8 mg/LPseudokirchneriella subcapitataGrowth inhibitionN/A72 h – EC50 = 0.72 mg/L(average)Angela et al., 2014
Nano-AuN/A10, 100, 200, 500 nMChlamydomonas reinhardtiiATP and photosynthesis plummetingOxidative damageN/APillai et al., 2014
Nano-Au50 nm0–10 mg/LChlorella vulgarisChlorophyll content decrease; growth inhibition (viable algal cells decrease)lipids peroxidationOxidative damageN/AOukarroum et al., 2012
Nano-Au20, 40, 100 nm0.05–20 μM.Thalassiosira pseudonanaGrowth inhibitionReleasing metal ionsN/ABurchardt et al., 2012
Nano-Au20, 40, 100 nm0.05–20 μM.Synechococcus sp.Growth inhibitionReleasing metal ionsN/ABurchardt et al., 2012
Nano-CuON/A0.1, 0.5, 0.8, 1, 2 mg/LMicrocystis aeruginosaDNA damageMechanical damage and internalization; oxidative damage72 h – EC50 = 0.47 mg/LAngela et al., 2014
Nano-TiO2935±33 (s) nm0, 0.2, 2, 10, 50, and 250 mg/LPseudokirchneriella subcapitataGrowth inhibitionN/A96 h – EC50 = 8.7 mg/L (with a UV filter)/6.3 mg/L (with 3 h pre-exposure to UV)Wang et al., 2011
Nano-TiO210 nm (primary size) /192±0.8 nm (NM aggregates)0–500 mg/LAnabaena variabilisGrowth inhibition; nitrogen fixation activity inhibitionN/A96 h – EC50 = 0.62 mg/LCherchi and Gu, 2010
Nano-TiO24–30nm0, 10, 30, 100, 250,500, 600, and 1000 mg/LPseudokirchneriella subcapitataGrowth inhibitionSurface coverage; oxidative damage96 h – EC50 = 113±18 mg/LMetzler et al., 2011
Nano-TiO25–10 nm0, 5, 10, 20, and 30 mg/LKarenia brevisGrowth inhibition; cell membrane destroyedOxidative damage; mechanical damage72 h – EC50 = 10.69 mg/LLi et al., 2015
Nano-TiO25–10 nm0, 5, 10, 20, and 30 mg/LSkeletonema costatumGrowth inhibition; MDA contents increaseOxidative damage72 h – EC50 = 7.37 mg/LLi et al., 2015
Quantum Dots (QDs)Carbon QDs (PEG2000 -CQDs, CA-CQDs, and Gly-CQDs)< 10 nm0, 5, 10, 50, 100, and500 mg/LMicrocystis aeruginosaGrowth inhibitionN/AN/AYan, 2015
CdSe QDs3.2 nmShort-term exposure experiments: 20–320 nM.Long-term exposure experiments: 0.04–1.0 nMPhaeodactylum tricornutumGrowth inhibition; SOD and CAT activities were increased; ascorbate peroxidase (APX) and glutathione reductase (GR) activities were not significantly affectedOxidative damageN/AMorelli et al., 2012
CdTe-QDs< 10 nm0, 5, 10, 50, 100, and 500 mg/LMicrocystis aeruginosaGrowth inhibition; chlorophyll-a accumulation inhibitionN/AN/AYan, 2015
CQDs (N, S doped CQDs, N doped CQDs, no doped CQDs)0, 1, 5, 10, 50, 100 mg/L,0, 5, 10, 50, 100, 500 mg/L, 0, 5, 10, 50, 100, 500 mg/L, respectivelyChlorellapyrenoidosaGrowth inhibition; Chla contents and protein contents were decreased; SOD activity and MDA contents were increasedOxidative damage96 h – EC50 = 38.56, 185.83, 232.47 mg/L, respectivelyXiao et al., 2016
Metal QDs (CdTe QDs, CdS QDs, CuInS2 /ZnS QDs)0, 0.01, 0.02, 0.1, 0.2, 1 mg/L, 0, 0.75, 1.5, 7.5, 15, 75mg/L, 0, 10, 20, 100, 200, 1000 mg/L, respectivelyChlorellapyrenoidosaGrowth inhibition; Chla contents and protein contents were decreased; SOD activity and MDA contents were increasedOxidative damage96 h – EC50 = 0.015, 4.88, 459.5 mg/L, respectivelyXiao et al., 2016
Tab.1  Adverse effects and mechanisms of MNMs on algae
Fig.2  Potential applications of MNMs’ effect on algae.
1 I Ahmed , B Zhang , M Muneeb-Ur-Rehman , W Fan . Effect of different shapes of Nano-Cu2O and humic acid on two-generations of Daphnia Magna. Ecotoxicology and Environmental Safety, 2021, 207 : 111274–
https://doi.org/10.1016/j.ecoenv.2020.111274
2 I Angela , K Imbi , K Kaja , B Irina , A Villem , S Sandra , V Heiki , K Aleksandr , T Tiina , H Margit . Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, rrustaceans and mammalian cells in vitro. PLoS One, 2014, 9( 7): e102108–
https://doi.org/10.1371/journal.pone.0102108
3 V Aruoja , H C Dubourguier , K Kasemets , A Kahru . Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. , 2009, 4( 207): 1461– 1468
4 M Bhuvaneshwari , V Iswarya , S Vishnu , N Chandrasekaran , A Mukherjee . Dietary transfer of zinc oxide particles from algae (Scenedesmus obliquus) to daphnia (Ceriodaphnia dubia). Environmental Research, 2018, 164 : 395– 404
https://doi.org/10.1016/j.envres.2018.03.015
5 L Borlido , A M Azevedo , A C A Roque , M R Aires-Barros . Magnetic separations in biotechnology. Biotechnology Advances, 2013, 31( 8): 1374– 1385
https://doi.org/10.1016/j.biotechadv.2013.05.009
6 J L Bouldin , T M Ingle , A Sengupta , R Alexander , R E Hannigan , R A Buchanan . Aqueous toxicity and food chain transfer of quantum dots in freshwater algae and Ceriodaphnia dubia. Environmental Toxicology and Chemistry, 2008, 27( 9): 1958– 1963
https://doi.org/10.1897/07-637.1
7 A D Burchardt , R N Carvalho , A Valence , P Nativo , D Gilliland , C P Garcia , R Passarella , V Pedroni , F Rossi , T Lettieri . Effects of silver nanoparticles in diatom Thalassiosira pseudonana and Cyanobacterium Synechococcus sp. Environmental Science & Technology, 2012, 46( 20): 11336– 11344
https://doi.org/10.1021/es300989e
8 A Cai , A Guo , Z Ma . Immobilization of TiO2 nanoparticles on Chlorella pyrenoidosa cells for enhanced visible-light-driven photocatalysis. Materials (Basel), 2017, 10( 5): 541–
https://doi.org/10.3390/ma10050541
9 B Campos , C Rivetti , P Rosenkranz , J M Navas , C Barata . Effects of nanoparticles of TiO2 on food depletion and life-history responses of Daphnia magna.. Aquatic Toxicology (Amsterdam, Netherlands), 2013, ( 130–131): 174– 183
https://doi.org/10.1016/j.aquatox.2013.01.005
10 T Cedervall , L A Hansson , M Lard , B Frohm , S Linse . Food chain transport of nanoparticles affects behaviour and fat metabolism in fish. PLoS One, 2012, 7( 2): e32254–
https://doi.org/10.1371/journal.pone.0032254
11 Y H Chang , M C Wu . Enhanced photocatalytic reduction of Cr(VI) by combined magnetic TiO2-based NFs and ammonium oxalate hole scavengers. Catalysts, 2019, 9( 1): 72– 84
https://doi.org/10.3390/catal9010072
12 C Chen , K Zhu , K Chen , A Alsaedi , T Hayat . Synthesis of Ag nanoparticles decoration on magnetic carbonized polydopamine nanospheres for effective catalytic reduction of Cr(VI). Journal of Colloid and Interface Science, 2018, 526 : 1– 8
https://doi.org/10.1016/j.jcis.2018.04.094
13 F R Chen , Z G Xiao , L Yue , J Wang , Y Feng , X S Zhu , Z Y Wang , B S Xing . Algae response to engineered nanoparticles: Current understanding, mechanisms and implications. Environmental Science. Nano, 2019, 6( 4): 1026– 1042
https://doi.org/10.1039/C8EN01368C
14 G Chen , H Wang , W Dong , Y Huang , Z Zhao , Y Zeng . Graphene dispersed and surface plasmon resonance-enhanced Ag3PO4 (DSPR-Ag3PO4) for visible light driven high-rate photodegradation of carbamazepine. Chemical Engineering Journal, 2021, 405 : 126850–
https://doi.org/10.1016/j.cej.2020.126850
15 J Chen , Y Qian , H Li , Y Cheng , M Zhao . The reduced bioavailability of copper by nano-TiO2 attenuates the toxicity to Microcystis aeruginosa. Environmental Science and Pollution Research International, 2015, 22( 16): 12407– 12414
https://doi.org/10.1007/s11356-015-4492-9
16 J E Chen , A G Smith . A look at diacylglycerol acyltransferases (DGATs) in algae. Journal of Biotechnology, 2012, 162( 1): 28– 39
https://doi.org/10.1016/j.jbiotec.2012.05.009
17 C Cherchi , A Z Gu . Impact of titanium dioxide nanomaterials on nitrogen fixation rate and intracellular nitrogen storage in Anabaena variabilis. Environmental Science & Technology, 2010, 44( 21): 8302– 8307
https://doi.org/10.1021/es101658p
18 C Cherchi , M Miljkovic , M Diem , A Z Gu . nTiO2 induced changes in intracellular composition and nutrient stoichiometry in primary producer —cyanobacteria. Science of the Total Environment, 2015, ( 512–513): 345– 352
https://doi.org/10.1016/j.scitotenv.2015.01.037
19 I Chowdhury , S L Walker , S E Mylon . Aggregate morphology of nano-TiO2: Role of primary particle size, solution chemistry, and organic matter. Environmental Science. Processes & Impacts, 2013, 15( 1): 275– 282
https://doi.org/10.1039/C2EM30680H
20 S Dalai , S Pakrashi , M Joyce Nirmala , A Chaudhri , N Chandrasekaran , A B Mandal , A Mukherjee . Cytotoxicity of TiO2 nanoparticles and their detoxification in a freshwater system. Aquatic Toxicology (Amsterdam, Netherlands), 2013, ( 138–139): 1– 11
https://doi.org/10.1016/j.aquatox.2013.04.005
21 Silva M B da , N Abrantes , V Nogueira , F Gonçalves . TiO2 nanoparticles for the remediation of eutrophic shallow freshwater systems: Efficiency and impacts on aquatic biota under a microcosm experiment. Aquatic Toxicology, 2016, 178 : 58– 71
22 S Dauda , M A Chia , S P Bako . Toxicity of titanium dioxide nanoparticles to Chlorella vulgaris Beyerinck (Beijerinck) 1890 (Trebouxiophyceae, Chlorophyta) under changing nitrogen conditions. Aquatic Toxicology (Amsterdam, Netherlands), 2017, ( 187): 108– 114
https://doi.org/10.1016/j.aquatox.2017.03.020
23 K Dědková , Z Bureš , J Palarčík , M Vlček , J Kukutschová . Acute aquatic toxicity of gold nanoparticles to freshwater green algae. Procceedings of NanoCon, 2014, 2014 : 5– 7
24 W Ding , X Tan , G Chen , J Xu , K Yu , Y Huang . Molecular-level insights on the facet-dependent degradation of perfluorooctanoic acid. ACS Applied Materials & Interfaces, 2021, 13( 35): 41584– 41592
https://doi.org/10.1021/acsami.1c10136
25 F Du , C Hu , X Sun , L Zhang , N Xu . Transcriptome analysis reveals the promoting effect of trisodium citrate on astaxanthin accumulation in Haematococcus pluvialis under high light condition. Aquaculture (Amsterdam, Netherlands), 2021, ( 543): 736978–
https://doi.org/10.1016/j.aquaculture.2021.736978
26 E Eroglu , P K Eggers , M Winslade , S M Smith , C L Raston . Enhanced accumulation of microalgal pigments using metal nanoparticle solutions as light filtering devices. Green Chemistry, 2013, 15( 11): 3155– 3159
https://doi.org/10.1039/c3gc41291a
27 J Fan , Y B Hu , X Y Li . Nanoscale zero-valent iron coated with magnesium hydroxide for effective removal of Cyanobacteria from water. ACS Sustainable Chemistry & Engineering, 2018, 6( 11): 15135– 15142
https://doi.org/10.1021/acssuschemeng.8b03593
28 W Farooq , H U Lee , Y S Huh , Y C Lee . Chlorella vulgaris cultivation with an additive of magnesium-aminoclay. ALGAL RESEARCH-BIOMASS BIOFUELS AND BIOPRODUCTS, 2016, 17 : 211– 216
29 T Fazal , M S U Rehman , F Javed , M Akhtar , A Mushtaq , A Hafeez , A Alaud Din , J Iqbal , N Rashid , F Rehman . Integrating bioremediation of textile wastewater with biodiesel production using microalgae (Chlorella vulgaris). Chemosphere, 2021, 281 : 130758–
https://doi.org/10.1016/j.chemosphere.2021.130758
30 A J Fonseca , F Pina , M F Macedo , N Leal , A Romanowska-Deskins , L Laiz , A Gomez-Bolea , C Saiz-Jimenez . Anatase as an alternative application for preventing biodeterioration of mortars: Evaluation and comparison with other biocides. International Biodeterioration & Biodegradation, 2010, 64( 5): 388– 396
https://doi.org/10.1016/j.ibiod.2010.04.006
31 N M Franklin , N J Rogers , S C Apte , G E Batley , G E Gadd , P S Casey . Comparative toxicity of nanoparticulate ZnO, bulk ZnO, and ZnCl2 to a freshwater microalga (Pseudokirchneriella subcapitata): The importance of particle solubility. Environmental Science & Technology, 2007, 41( 24): 8484– 8490
https://doi.org/10.1021/es071445r
32 J P Giraldo , M P Landry , S M Faltermeier , T P McNicholas , N M Iverson , A A Boghossian , N F Reuel , A J Hilmer , F Sen , J A Brew , M S Strano . Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 2014, 13( 4): 400– 408
https://doi.org/10.1038/nmat3890
33 B Glomstad , D Altin , L Sørensen , J Liu , B M Jenssen , A M Booth . Carbon nanotube properties influence adsorption of phenanthrene and subsequent bioavailability and toxicity to Pseudokirchneriella subcapitata. Environmental Science & Technology, 2016, 50( 5): 2660– 2668
https://doi.org/10.1021/acs.est.5b05177
34 L Graziani , E Quagliarini , A Osimani , L Aquilanti , F Clementi , C Yepremian , V Lariccia , S Amoroso , M D’orazio . Evaluation of inhibitory effect of TiO2 nanocoatings against microalgal growth on clay brick facades under weak UV exposure conditions. Building and Environment, 2013, 64 : 38– 45
https://doi.org/10.1016/j.buildenv.2013.03.003
35 I V Grigoriev , R D Hayes , S Calhoun , B Kamel , A Wang , S Ahrendt , S Dusheyko , R Nikitin , S J Mondo , A Salamov , I Shabalov , A Kuo . PhycoCosm, a comparative algal genomics resource. Nucleic Acids Research, 2021, 49( D1): D1004– D1011
https://doi.org/10.1093/nar/gkaa898
36 S Guleri , K Singh , R Kaushik , R Dhankar , A Tiwari . Phycoremediation: A novel and synergistic approach in wastewater remediation. Journal of Microbiology, Biotechnology and Food Sciences, 2020, 10( 1): 98– 106
https://doi.org/10.15414/jmbfs.2020.10.1.98-106
37 D Gunasekaran , N Chandrasekaran , D Jenkins , A Mukherjee . Plain polystyrene microplastics reduce the toxic effects of ZnO particles on marine microalgae Dunaliella salina. Journal of Environmental Chemical Engineering, 2020, 8( 5): 104250–
https://doi.org/10.1016/j.jece.2020.104250
38 C Gunawan , A Sirimanoonphan , W Y Teoh , C P Marquis , R Amal . Submicron and nano formulations of titanium dioxide and zinc oxide stimulate unique cellular toxicological responses in the green microalga Chlamydomonas reinhardtii. Journal of Hazardous Materials, 2013, 260 : 984– 992
https://doi.org/10.1016/j.jhazmat.2013.06.067
39 A Hagen , T Hertel . Quantitative analysis of optical spectra from individual single-wall carbon nanotubes. Nano Letters, 2003, 3( 3): 383– 388
https://doi.org/10.1021/nl020237o
40 E Haque , A C Ward . Zebrafish as a model to evaluate nanoparticle toxicity. Nanomaterials, 2018, 8 : 561–
41 N B Hartmann , F Von der Kammer , T Hofmann , M Baalousha , S Ottofuelling , A Baun . Algal testing of titanium dioxide nanoparticles: Testing considerations, inhibitory effects and modification of cadmium bioavailability. Toxicology, 2010, 269( 2–3): 190– 197
https://doi.org/10.1016/j.tox.2009.08.008
42 A A Hazani , M M Ibrahim , I A Arif , A I Shehata , G El-Gaaly , M Daoud , D Fouad , H Rizwana , N Moubayed . Ecotoxicity of Ag-nanoparticles to microalgae. Journal of Pure & Applied Microbiology, 2013, 7 : 233– 241
43 L J Hazeem , G Kuku , E Dewailly , C Slomianny , A Barras , A Hamdi , R Boukherroub , M Culha , M Bououdina . Toxicity effect of silver nanoparticles on photosynthetic pigment content, growth, ROS production and ultrastructural changes of microalgae Chlorella vulgaris.. Nanomaterials (Basel, Switzerland), 2019, 9( 7): 914–
https://doi.org/10.3390/nano9070914
44 L J Hazeem , G Yesilay , M Bououdina , S Perna , D Cetin , Z Suludere , A Barras , R Boukherroub . Investigation of the toxic effects of different polystyrene micro-and nanoplastics on microalgae Chlorella vulgaris by analysis of cell viability, pigment content, oxidative stress and ultrastructural changes. Marine Pollution Bulletin, 2020, 156 : 111278–
https://doi.org/10.1016/j.marpolbul.2020.111278
45 M He , Y Chen , Y Yan , S Zhou , C Wang . Influence of interaction between α-Fe2O3 nanoparticles and dissolved fulvic acid on the physiological responses in Synechococcus sp. PCC7942. Bulletin of Environmental Contamination and Toxicology, 2017, 99( 6): 719– 727
https://doi.org/10.1007/s00128-017-2199-y
46 Y R Hu , F Wang , S K Wang , C Z Liu , C Guo . Efficient harvesting of marine microalgae Nannochloropsis maritima using magnetic nanoparticles. Bioresource Technology, 2013, 138 : 387– 390
https://doi.org/10.1016/j.biortech.2013.04.016
47 Y Huang , A S Adeleye , L Zhao , A S Minakova , T Anumol , A A Keller . Antioxidant response of cucumber (Cucumis sativus) exposed to nano copper pesticide: Quantitative determination via LC-MS/MS. Food Chemistry, 2019, 270 : 47– 52
https://doi.org/10.1016/j.foodchem.2018.07.069
48 Y X Huang , A A Keller , P Cervantes-Aviles , J Nelson . Fast multielement quantification of nanoparticles in wastewater and sludge using single-particle ICP-MS. ACS ES&T Water, 2021, 1( 1): 205– 213
49 Y X Huang , W W Li , A S Minakova , T Anumol , A A Keller . Quantitative analysis of changes in amino acids levels for cucumber (Cucumis sativus) exposed to nano copper. NanoImpact, 2018, 12 : 9– 17
https://doi.org/10.1016/j.impact.2018.08.008
50 V Iswarya , M Bhuvaneshwari , S A Alex , S Iyer , G Chaudhuri , P T Chandrasekaran , G M Bhalerao , S Chakravarty , A M Raichur , N Chandrasekaran , A Mukherjee . Combined toxicity of two crystalline phases (anatase and rutile) of Titania nanoparticles towards freshwater microalgae: Chlorella sp. Aquatic Toxicology (Amsterdam, Netherlands), 2015, ( 161): 154– 169
https://doi.org/10.1016/j.aquatox.2015.02.006
51 J Ji , Z F Long , D H Lin . Toxicity of oxide nanoparticles to the green algae Chlorella sp. Chemical Engineering Journal, 2011, 170( 2-3): 525– 530
https://doi.org/10.1016/j.cej.2010.11.026
52 Z Jiang , X Tan , Y Huang . Piezoelectric effect enhanced photocatalysis in environmental remediation: State-of-the-art techniques and future scenarios. Science of the Total Environment, 2022, 806( Pt 4): 150924–
https://doi.org/10.1016/j.scitotenv.2021.150924
53 L Jing , Y Xu , M Xie , J Liu , J Deng , L Huang , H Xu , H Li . Three dimensional polyaniline/MgIn2S4 nanoflower photocatalysts accelerated interfacial charge transfer for the photoreduction of Cr(VI), photodegradation of organic pollution and photocatalytic H2 production. Current Opinion in Biotechnology, 2018, 23( 3): 346– 351
54 C S Jones , S P Mayfield . Algae biofuels: Versatility for the future of bioenergy. Current opinion in biotechnology, 2012, 23( 3): 346– 351
55 A Kartik , D Akhil , D Lakshmi , K Panchamoorthy Gopinath , J Arun , R Sivaramakrishnan , A Pugazhendhi . A critical review on production of biopolymers from algae biomass and their applications. Bioresource Technology, 2021, 329 : 124868–
https://doi.org/10.1016/j.biortech.2021.124868
56 A A Keller , S Mcferran , A Lazareva , S Suh . Global life cycle releases of engineered nanomaterials. Journal of Nanoparticle Research, 2013, 15( 6): 1692–
https://doi.org/10.1007/s11051-013-1692-4
57 B Kim , R Praveenkumar , J Lee , B Nam , D M Kim , K Lee , Y C Lee , Y K Oh . Magnesium aminoclay enhances lipid production of mixotrophic Chlorella sp. KR-1 while reducing bacterial populations. Bioresource Technology, 2016, 219 : 608– 613
https://doi.org/10.1016/j.biortech.2016.08.034
58 J Kim , G Yoo , H Lee , J Lim , K Kim , C W Kim , M S Park , J W Yang . Methods of downstream processing for the production of biodiesel from microalgae. Biotechnology Advances, 2013, 31( 6): 862– 876
https://doi.org/10.1016/j.biotechadv.2013.04.006
59 Y Kong , H Sun , S Zhang , B Zhao , Q Zhao , X Zhang , H Li . Oxidation process of lead sulfide nanoparticle in the atmosphere or natural water and influence on toxicity toward Chlorella vulgaris. Journal of Hazardous Materials, 2021, 417 : 126016–
https://doi.org/10.1016/j.jhazmat.2021.126016
60 H Kubatova , E Zemanová , K Klouda , K Bilek , J Kadukova . Effects of C60 fullerene and its derivatives on selected microorganisms. Journal of Microbiology Research (Rosemead, Calif.), 2013, ( 3): 152– 162
61 R Kumar , M Gopal , S Pabbi , S Paul , M Imteyaz Alam , S Yadav , K K Nair , N Chauhan , C Srivastava , R Gogoi , P K Singh , A Goswami . Effect of nanohexaconazole on nitrogen fixing blue green algae and bacteria. Journal of Nanoscience and Nanotechnology, 2016, 16( 1): 643– 647
https://doi.org/10.1166/jnn.2016.10901
62 M D Lambreva , T Lavecchia , E Tyystjärvi , T K Antal , S Orlanducci , A Margonelli , G Rea . Potential of carbon nanotubes in algal biotechnology. Photosynthesis Research, 2015, 125( 3): 451– 471
https://doi.org/10.1007/s11120-015-0168-z
63 C Lauritano , M I Ferrante , A Rogato . Marine natural products from microalgae: An omics overview. Marine Drugs, 2019, 17( 5): 269–
https://doi.org/10.3390/md17050269
64 S Lee , Y I Kang , S J Ha , J H Moon . Carbon-deposited TiO2 nanoparticle balls for high-performance visible photocatalysis. RSC Advances, 2014, 4( 98): 55371– 55376
https://doi.org/10.1039/C4RA09988E
65 F Li , Z Liang , X Zheng , W Zhao , M Wu , Z Wang . Toxicity of nano-TiO2 on algae and the site of reactive oxygen species production. Aquatic Toxicology (Amsterdam, Netherlands), 2015a, ( 158): 1– 13
https://doi.org/10.1016/j.aquatox.2014.10.014
66 X Li , S Zhou , W Fan . Effect of nano-Al2O3 on the toxicity and oxidative stress of copper towards Scenedesmus obliquus. International Journal of Environmental Research and Public Health, 2016, 13( 6): 575–
https://doi.org/10.3390/ijerph13060575
67 X M Li , K Schirmer , L Bernard , L Sigg , S Pillai , R Behra . Silver nanoparticle toxicity and association with the alga Euglena gracilis. Environmental Science. Nano, 2015b, 2( 6): 594– 602
https://doi.org/10.1039/C5EN00093A
68 Y Li , W Zhang , J Niu , Y Chen . Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal-oxide nanoparticles. ACS Nano, 2012, 6( 6): 5164– 5173
https://doi.org/10.1021/nn300934k
69 Z Li , P Juneau , Y Lian , W Zhang , S Wang , C Wang , L Shu , Q Yan , Z He , K Xu . Effects of titanium dioxide nanoparticles on photosynthetic and antioxidative processes of Scenedesmus obliquus. Plants (Basel, Switzerland), 2020a, 9( 12): 1748–
70 P Liu , Y E Corilo , A G Marshall . Polar lipid composition of biodiesel algae candidates Nannochloropsis oculata and Haematococcus pluvialis from nano liquid chromatography coupled with negative electrospray ionization 14.5 T Fourier transform ion cyclotron resonance mass spectrometry. Energy & Fuels, 2016, 30( 10): 8270– 8276
https://doi.org/10.1021/acs.energyfuels.6b01514
71 X S Liu , J M Wang . Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia. Frontiers of Environmental Science & Engineering, 2020, 14( 6): 97–
https://doi.org/10.1007/s11783-020-1276-3
72 X S Liu , J M Wang , Y W Huang . Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling—Is it additive or synergistic? Frontiers of Environmental Science & Engineering, 2022, 16( 5): 59–
https://doi.org/10.1007/s11783-021-1493-4
73 Y Liu , S Wang , Z Wang , N Ye , H Fang , D Wang . TiO2, SiO2 and ZrO2 nanoparticles synergistically provoke cellular oxidative damage in freshwater microalgae. Nanomaterials (Basel, Switzerland), 2018, 8( 2): 95–
https://doi.org/10.3390/nano8020095
74 M López-Alonso , B Díaz-Soler , M Martínez-Rojas , C Fito-López , M D Martínez-Aires . Management of occupational risk prevention of nanomaterials manufactured in construction sites in the EU. International Journal of Environmental Research and Public Health, 2020, 17( 24): 9211–
https://doi.org/10.3390/ijerph17249211
75 N Manier , A Bado-Nilles , P Delalain , O Aguerre-Chariol , P Pandard . Ecotoxicity of non-aged and aged CeO2 nanomaterials towards freshwater microalgae. Environmental Pollution (Barking, Essex: 1987), 2013, 180 : 63– 70
76 S Manzo , M L Miglietta , G Rametta , S Buono , G Di Francia . Toxic effects of ZnO nanoparticles towards marine algae Dunaliella tertiolecta. Science of the Total Environment, 2013, 445–446 : 371– 376
https://doi.org/10.1016/j.scitotenv.2012.12.051
77 J Masojidek , K Ranglova , G Lakatos , A M Silva Benavides , G Torzillo . Variables governing photosynthesis and growth in microalgae mass cultures. Processes (Basel, Switzerland), 2021, 9( 5): 820–
https://doi.org/10.3390/pr9050820
78 D M Metzler , A Erdem , Y H Tseng , C P Huang . Responses of algal cells to engineered nanoparticles measured as algal cell population, Chlorophyll a, and lipid peroxidation: Effect of particle size and type. Journal of Nanotechnology, 2012, 2012 : 237212– 237284
https://doi.org/10.1155/2012/237284
79 D M Metzler , M Li , A Erdem , C P Huang . Responses of algae to photocatalytic nano-TiO2 particles with an emphasis on the effect of particle size. Chemical Engineering Journal, 2011, 170( 2–3): 538– 546
https://doi.org/10.1016/j.cej.2011.02.002
80 A Middepogu , J Hou , X Gao , D Lin . Effect and mechanism of TiO2 nanoparticles on the photosynthesis of Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 2018, 161 : 497– 506
https://doi.org/10.1016/j.ecoenv.2018.06.027
81 S F Mohsenpour , S Hennige , N Willoughby , A Adeloye , T Gutierrez . Integrating micro-algae into wastewater treatment: A review. Science of the Total Environment, 2021, 752 : 142168–
https://doi.org/10.1016/j.scitotenv.2020.142168
82 E Morelli , P Cioni , M Posarelli , E Gabellieri . Chemical stability of CdSe quantum dots in seawater and their effects on a marine microalga. Aquatic Toxicology (Amsterdam, Netherlands), 2012, ( 122–123): 122– 123
https://doi.org/10.1016/j.aquatox.2012.06.012
83 P F M Nogueira , D Nakabayashi , V Zucolotto . The effects of graphene oxide on green algae Raphidocelis subcapitata.. Aquatic Toxicology (Amsterdam, Netherlands), 2015, ( 166): 29– 35
https://doi.org/10.1016/j.aquatox.2015.07.001
84 N Ouabadi , V Gauthier-Brunet , T Cabioc’h , G P Bei , S Dubois . Formation mechanisms of Ti3SnC2 nanolaminate carbide using Fe as additive. Journal of the American Ceramic Society, Oukarroum A, Bras S, Perreault F, Popovic R (2012). Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta.. Ecotoxicology and Environmental Safety, 2013, ( 78): 80– 85
85 A Oukarroum , S Bras , F Perreault , R Popovic . Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicology and Environmental Safety, 2012, 78 : 80– 85
https://doi.org/10.1016/j.ecoenv.2011.11.012
86 M V Pattarkine, V M Pattarkine (2012). Nanotechnology for algal biofuels. New York: Springer
87 S Pillai , R Behra , H Nestler , J F Suter , K Schirmer . Linking toxicity and adaptive responses across the transcriptome, proteome, and phenotype of Chlamydomonas reinhardtii exposed to silver. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111( 9): 3490– 3495
https://doi.org/10.1073/pnas.1319388111
88 R Praveenkumar , R Gwak , M Kang , T S Shim , S Cho , J Lee , Y K Oh , K Lee , B Kim . Regenerative astaxanthin extraction from a single microalgal (Haematococcus pluvialis) cell using a gold nano-scalpel. ACS Applied Materials & Interfaces, 2015, 7( 40): 22702– 22708
https://doi.org/10.1021/acsami.5b07651
89 N Premnath , K Mohanrasu , R Guru Raj Rao , G H Dinesh , G S Prakash , V Ananthi , K Ponnuchamy , G Muthusamy , A Arun . A crucial review on polycyclic aromatic hydrocarbons: Environmental occurrence and strategies for microbial degradation. Chemosphere, 2021, 280 : 130608–
https://doi.org/10.1016/j.chemosphere.2021.130608
90 V Rai, A Karthikaichamy, D Das, S Noronha, P P Wangikar, S Srivastava (2016). Multi-omics Frontiers in Algal Research: Techniques and Progress to Explore Biofuels in the Postgenomics World. Omics A Journal of Integrative Biology: omi.2016.0065
91 S Rhiem , M J Riding , W Baumgartner , F L Martin , K T Semple , K C Jones , A Schäffer , H M Maes . Interactions of multiwalled carbon nanotubes with algal cells: Quantification of association, visualization of uptake, and measurement of alterations in the composition of cells. Environmental Pollution (Barking, Essex: 1987), 2015, ( 196): 431– 439
92 T L Rocha , T Gomes , V S Sousa , N C Mestre , M J Bebianno . Ecotoxicological impact of engineered nanomaterials in bivalve molluscs: An overview. Marine Environmental Research, 2015, 111 : 74– 88
https://doi.org/10.1016/j.marenvres.2015.06.013
93 I Rodea-Palomares , S Gonzalo , J Santiago-Morales , F Leganés , E García-Calvo , R Rosal , F Fernández-Piñas . An insight into the mechanisms of nanoceria toxicity in aquatic photosynthetic organisms. Aquatic Toxicology (Amsterdam, Netherlands), 2012, ( 122–123): 122– 123
https://doi.org/10.1016/j.aquatox.2012.06.005
94 M Saber , A Golzary , M Hosseinpour , F Takahashi , K Yoshikawa . Catalytic hydrothermal liquefaction of microalgae using nanocatalyst. Applied Energy, 2016, 183( dec.1): 566– 576
95 I M Sadiq , S Dalai , N Chandrasekaran , A Mukherjee . Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxicology and Environmental Safety, 2011a, 74( 5): 1180– 1187
https://doi.org/10.1016/j.ecoenv.2011.03.006
96 I M Sadiq , S Pakrashi , N Chandrasekaran , A Mukherjee . Studies on toxicity of aluminum oxide (Al2O3) nanoparticles to microalgae species: Scenedesmus sp. and Chlorella sp. Journal of Nanoparticle Research, 2011b, 13( 8): 3287– 3299
https://doi.org/10.1007/s11051-011-0243-0
97 C Saison , F Perreault , J C Daigle , C Fortin , J Claverie , M Morin , R Popovic . Effect of core-shell copper oxide nanoparticles on cell culture morphology and photosynthesis (photosystem II energy distribution) in the green alga, Chlamydomonas reinhardtii.. Aquatic Toxicology (Amsterdam, Netherlands), 2010, 96( 2): 109– 114
https://doi.org/10.1016/j.aquatox.2009.10.002
98 D Samara Sanchez-Sandoval , O Gonzalez-Ortega , M Fernanda Navarro-Martinez , J Marcos Castro-Tapia , R F Garcia De La Cruz , R Elena Soria-Guerra . Photodegradation and removal of diclofenac by the green alga Nannochloropsis oculata. Phyton, 2021, 90( 5): 1519– 1533
https://doi.org/10.32604/phyton.2021.015087
99 C Santschi , N Von Moos , V B Koman , V I Slaveykova , P Bowen , O J F Martin . Non-invasive continuous monitoring of pro-oxidant effects of engineered nanoparticles on aquatic microorganisms. Journal of Nanobiotechnology, 2017, 15( 1): 19–
https://doi.org/10.1186/s12951-017-0253-x
100 S Scheerer, O Ortega-Morales, C Gaylarde (2009). Advances in Applied Microbiology, Vol 66. Laskin A L, Sariaslani S, Gadd G, eds. San Diego.: Academic Press, 97–139
101 F Schwab , T D Bucheli , L P Lukhele , A Magrez , B Nowack , L Sigg , K Knauer . Are carbon nanotube effects on green algae caused by shading and agglomeration?. Environmental Science & Technology, 2011, 45( 14): 6136– 6144
https://doi.org/10.1021/es200506b
102 M F Serag , N Kaji , S Habuchi , A Bianco , Y Baba . Nanobiotechnology meets plant cell biology: Carbon nanotubes as organelle targeting nanocarriers. RSC Advances, 2013, 3( 15): 4856– 4862
https://doi.org/10.1039/c2ra22766e
103 E K Sohn , Y S Chung , S A Johari , T G Kim , J K Kim , J H Lee , Y H Lee , S W Kang , I J Yu . Acute toxicity comparison of single-walled carbon nanotubes in various freshwater organisms. BioMed Research International, 2015, 2015 : 323090–
104 J Song , C Li , X Wang , S Zhi , X Wang , J Sun . Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa. Frontiers of Environmental Science & Engineering, 2021, 15( 6): 129–
https://doi.org/10.1007/s11783-021-1417-3
105 S Sun , H Deng , J Yang , D Zhou , X Wan , F Han . Photodegradation of butyl 4-hydroxybenzoate in the presence of peroxides and mediated by dissolved organic matter. Environmental Engineering Science, 2020, 37( 7): 497– 508
https://doi.org/10.1089/ees.2019.0481
106 X Tan , G Chen , D Xing , W Ding , H Liu , T Li , Y Huang . Indium-modified Ga2O3 hierarchical nanosheets as efficient photocatalysts for the degradation of perfluorooctanoic acid. Environmental Science: Nano, 2020, 7( 8): 2229– 2239
https://doi.org/10.1039/D0EN00259C
107 M P Taylor , M K Forbes , B Opeskin , N Parr , B P Lanphear . The relationship between atmospheric lead emissions and aggressive crime: An ecological study. Environmental Health, 2016, 15 : 23–
https://doi.org/10.1186/s12940-016-0122-3
108 V Thiagarajan , S A Alex , R Seenivasan , N Chandrasekaran , A Mukherjee . Toxicity evaluation of nano-TiO2 in the presence of functionalized microplastics at two trophic levels: Algae and crustaceans. Science of the Total Environment, 2021, 784 : 147262–
https://doi.org/10.1016/j.scitotenv.2021.147262
109 S Torkamani , S N Wani , Y J Tang , R Sureshkumar . Plasmon-enhanced microalgal growth in miniphotobioreactors. Applied Physics Letters, 2010, 97( 4): 043703–
https://doi.org/10.1063/1.3467263
110 Y D Tu , Z Zhou , R J Yan , Y P Gan , W Z Huang , X X Weng , H Huang , W K Zhang , X Y Tao . Bio-template synthesis of spirulina/TiO2 composite with enhanced photocatalytic performance. RSC Advances, 2012, 2( 28): 10585– 10591
https://doi.org/10.1039/c2ra21753h
111 W Tyne , S Little , D J Spurgeon , C Svendsen . Hormesis depends upon the life-stage and duration of exposure: Examples for a pesticide and a nanomaterial. Ecotoxicology and Environmental Safety, 2015, 120 : 117– 123
https://doi.org/10.1016/j.ecoenv.2015.05.024
112 L Vargas-Estrada , S Torres-Arellano , A Longoria , D M Arias , P U Okoye , P J Sebastian . Role of nanoparticles on microalgal cultivation: A review. Fuel, 2020, 280 : 118598–
https://doi.org/10.1016/j.fuel.2020.118598
113 A Verma , N T Prakash , A P Toor . An efficient TiO2 coated immobilized system for the degradation studies of herbicide isoproturon: Durability studies. Chemosphere, 2014, 109 : 7– 13
https://doi.org/10.1016/j.chemosphere.2014.02.051
114 L Verneuil , J Silvestre , I Randrianjatovo , C E Marcato-Romain , E Girbal-Neuhauser , F Mouchet , E Flahaut , L Gauthier , E Pinelli . Double walled carbon nanotubes promote the overproduction of extracellular protein-like polymers in Nitzschia palea: An adhesive response for an adaptive issue. Carbon, 2015, 88 : 113– 125
https://doi.org/10.1016/j.carbon.2015.02.053
115 N von Moos , V I Slaveykova . Oxidative stress induced by inorganic nanoparticles in bacteria and aquatic microalgae: State of the art and knowledge gaps. Nanotoxicology, 2014, 8( 6): 605– 630
https://doi.org/10.3109/17435390.2013.809810
116 M H Wahid , E Eroglu , X Chen , S M Smith , C L Raston . Entrapment of Chlorella vulgaris cells within graphene oxide layers. RSC Advances, 2013, 3( 22): 8180– 8183
https://doi.org/10.1039/c3ra40605a
117 P Wang , L Zhao , Y Huang , W Qian , X Zhu , Z Wang , Z Cai . Combined toxicity of nano-TiO2 and Cd2+ to Scenedesmus obliquus: Effects at different concentration ratios. Journal of Hazardous Materials, 2021a, 418 : 126354–
https://doi.org/10.1016/j.jhazmat.2021.126354
118 S Wang , Z Wang , M Chen , H Fang , D Wang . Co-exposure of freshwater microalgae to tetrabromobisphenol A and sulfadiazine: Oxidative stress biomarker responses and joint toxicity prediction. Bulletin of Environmental Contamination and Toxicology, 2017, 99( 4): 438– 444
https://doi.org/10.1007/s00128-017-2153-z
119 X Wang , J Zhang , W Sun , W Yang , J Cao , Q Li , Y Peng , J K Shang . Anti-algal activity of palladium oxide-modified nitrogen-doped titanium oxide photocatalyst on Anabaena sp. PCC 7120 and its photocatalytic degradation on Microcystin LR under visible light illumination. Chemical Engineering Journal, 2015, 264 : 437– 444
https://doi.org/10.1016/j.cej.2014.11.119
120 Z Wang , J Li , J Zhao , B Xing . Toxicity and internalization of CuO nanoparticles to prokaryotic alga Microcystis aeruginosa as affected by dissolved organic matter. Environmental Science & Technology, 2011, 45( 14): 6032– 6040
https://doi.org/10.1021/es2010573
121 Z Wang , F Zhang , M G Vijver , W J G M Peijnenburg . Graphene nanoplatelets and reduced graphene oxide elevate the microalgal cytotoxicity of nano-zirconium oxide. Chemosphere, 2021b, 276 : 130015–
https://doi.org/10.1016/j.chemosphere.2021.130015
122 C Wei , Y Zhang , J Guo , B Han , X Yang , J Yuan . Effects of silica nanoparticles on growth and photosynthetic pigment contents of Scenedesmus obliquus. Journal of Environmental Sciences (China), 2010a, 22( 1): 155– 160
https://doi.org/10.1016/S1001-0742(09)60087-5
123 L Wei , H Li , J Lu . Algae-induced photodegradation of antibiotics: A review. Environmental Pollution, 2021, 272 : 115589–
https://doi.org/10.1016/j.envpol.2020.115589
124 L Wei , M Thakkar , Y Chen , S A Ntim , S Mitra , X Zhang . Cytotoxicity effects of water dispersible oxidized multiwalled carbon nanotubes on marine alga, Dunaliella tertiolecta.. Aquatic Toxicology (Amsterdam, Netherlands), 2010, 100( 2): 194– 201
https://doi.org/10.1016/j.aquatox.2010.07.001
125 S W Y Wong , P T Y Leung , A B Djurisić , K M Y Leung . Toxicities of nano zinc oxide to five marine organisms: influences of aggregate size and ion solubility. Analytical and Bioanalytical Chemistry, 2010, 396( 2): 609– 618
https://doi.org/10.1007/s00216-009-3249-z
126 A Xiao , C Wang , J Chen , R Guo , Z Yan , J Chen . Carbon and metal quantum dots toxicity on the microalgae Chlorella pyrenoidosa. Ecotoxicology and Environmental Safety, 2016, 133 : 211– 217
https://doi.org/10.1016/j.ecoenv.2016.07.026
127 X Xin , G Huang , B Zhang , Y Zhou . Trophic transfer potential of nTiO2, nZnO, and triclosan in an algae-algae eating fish food chain. Aquatic Toxicology (Amsterdam, Netherlands), 2021, 235 : 105824–
https://doi.org/10.1016/j.aquatox.2021.105824
128 Q Xiong , L X Hu , Y S Liu , J L Zhao , L Y He , G G Ying . Microalgae-based technology for antibiotics removal: From mechanisms to application of innovational hybrid systems. Environment International, 2021a, 155 : 106594–
https://doi.org/10.1016/j.envint.2021.106594
129 S Xiong , X Cao , H Fang , H Guo , B Xing . Formation of silver nanoparticles in aquatic environments facilitated by algal extracellular polymeric substances: Importance of chloride ions and light. Science of the Total Environment, 2021b, 775 : 145867–
https://doi.org/10.1016/j.scitotenv.2021.145867
130 J Xu , X Luo , Y Wang , Y Feng . Evaluation of zinc oxide nanoparticles on lettuce (Lactuca sativa L). growth and soil bacterial community. Environmental Science and Pollution Research International, 2018, 25( 6): 6026– 6035
https://doi.org/10.1007/s11356-017-0953-7
131 Z C J Yan , A Xiao , J Shu , J Chen . Effects of representative quantum dots on microorganisms and phytoplankton: A comparative study. RSC Advances, 2015, 5( 129): 106406– 106412
https://doi.org/10.1039/C5RA23730K
132 X Y Yang , Q He , F C Guo , X B Liu , Y Chen . Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system. Frontiers of Environmental Science & Engineering, 2021, 15( 6): 138–
https://doi.org/10.1007/s11783-021-1432-4
133 J K Yap , R Sankaran , K W Chew , H S Halimatul Munawaroh , S H Ho , J Rajesh Banu , P L Show . Advancement of green technologies: A comprehensive review on the potential application of microalgae biomass. Chemosphere, 2021, 281 : 130886–
https://doi.org/10.1016/j.chemosphere.2021.130886
134 Y Yue , X Li , L Sigg , M J F Suter , S Pillai , R Behar , K Schirmer . Interaction of silver nanoparticles with algae and fish cells: A side by side comparison. Journal of Nanobiotechnol, 2017, 15 : 16–
135 C Zhang , X Chen , L Tan , J Wang . Combined toxicities of copper nanoparticles with carbon nanotubes on marine microalgae Skeletonema costatum. Environmental Science and Pollution Research International, 2018a, 25( 13): 13127– 13133
https://doi.org/10.1007/s11356-018-1580-7
136 C Zhang , J Wang , L Tan , X Chen . Toxic effects of nano-ZnO on marine microalgae Skeletonema costatum: Attention to the accumulation of intracellular Zn. Aquatic Toxicology (Amsterdam, Netherlands), 2016a, 158– 164
https://doi.org/10.1016/j.aquatox.2016.07.020
137 L Q Zhang , C Lei , K Yang , J C White , D H Lin . Cellular response of Chlorella pyrenoidosa to oxidized multi-walled carbon nanotubes. Environmental Science. Nano, 2018b, 5( 10): 2415– 2425
https://doi.org/10.1039/C8EN00703A
138 Q Zhang , J Hu , D J Lee . Biogas from anaerobic digestion processes: Research updates. Renewable Energy, 2016b, 98 : 108– 119
https://doi.org/10.1016/j.renene.2016.02.029
139 W X Zhang , D W Elliott . Applications of iron nanoparticles for groundwater remediation. Hoboken: Wiley Subscription Services, Inc., 2006, 16( 2): 7– 21
140 Y D Zhang , N Liu , W Wang , J T Sun , L Z Zhu . Photosynthesis and related metabolic mechanism of promoted rice (Oryza sativa L). growth by TiO2 nanoparticles. Frontiers of Environmental Science & Engineering, 2020, 14( 6): 103–
https://doi.org/10.1007/s11783-020-1282-5
141 C M Zhao , W X Wang . Biokinetic uptake and efflux of silver nanoparticles in Daphnia magna. Environmental Science & Technology, 2010, 44( 19): 7699– 7704
https://doi.org/10.1021/es101484s
142 J Zhao , X Cao , X Liu , Z Wang , C Zhang , J C White , B Xing . Interactions of CuO nanoparticles with the algae Chlorella pyrenoidosa: Adhesion, uptake, and toxicity. Nanotoxicology, 2016, 10( 9): 1297– 1305
https://doi.org/10.1080/17435390.2016.1206149
143 J Zhao , X Cao , Z Wang , Y Dai , B Xing . Mechanistic understanding toward the toxicity of graphene-family materials to freshwater algae. Water Research, 2017, 111 : 18– 27
https://doi.org/10.1016/j.watres.2016.12.037
[1] Xin Zhou, Xiaoya Ren, Yu Chen, Haopeng Feng, Jiangfang Yu, Kang Peng, Yuying Zhang, Wenhao Chen, Jing Tang, Jiajia Wang, Lin Tang. Bacteria inactivation by sulfate radical: progress and non-negligible disinfection by-products[J]. Front. Environ. Sci. Eng., 2023, 17(3): 29-.
[2] Fuqiang Liu, Shengtao Jiang, Shijie You, Yanbiao Liu. Recent advances in electrochemical decontamination of perfluorinated compounds from water: a review[J]. Front. Environ. Sci. Eng., 2023, 17(2): 18-.
[3] Yabing Meng, Depeng Wang, Zhong Yu, Qingyun Yan, Zhili He, Fangang Meng. Genome-resolved metagenomic analysis reveals different functional potentials of multiple Candidatus Brocadia species in a full-scale swine wastewater treatment system[J]. Front. Environ. Sci. Eng., 2023, 17(1): 2-.
[4] Shengqi Zhang, Chengsong Ye, Wenjun Zhao, Lili An, Xin Yu, Lei Zhang, Hongjie Sun, Mingbao Feng. Product identification and toxicity change during oxidation of methotrexate by ferrate and permanganate in water[J]. Front. Environ. Sci. Eng., 2022, 16(7): 93-.
[5] Mengtian Li, Ge Song, Ruiping Liu, Xia Huang, Huijuan Liu. Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: A review[J]. Front. Environ. Sci. Eng., 2022, 16(6): 70-.
[6] Weiying Li, Yu Tian, Jiping Chen, Xinmin Wang, Yu Zhou, Nuo Shi. Synergistic effects of sodium hypochlorite disinfection and iron-oxidizing bacteria on early corrosion in cast iron pipes[J]. Front. Environ. Sci. Eng., 2022, 16(6): 72-.
[7] Xuesong Liu, Jianmin Wang, Yue-Wern Huang. Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling–Is it additive or synergistic?[J]. Front. Environ. Sci. Eng., 2022, 16(5): 59-.
[8] Wanpeng Chen, Jiahui Song, Shaojie Jiang, Qiang He, Jun Ma, Xiaoliu Huangfu. Influence of extracellular polymeric substances from activated sludge on the aggregation kinetics of silver and silver sulfide nanoparticles[J]. Front. Environ. Sci. Eng., 2022, 16(2): 16-.
[9] Zuyin Chen, Lihua Li, Lichong Hao, Yu Hong, Wencai Wang. Hormesis-like growth and photosynthetic physiology of marine diatom Phaeodactylum tricornutum Bohlin exposed to polystyrene microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(1): 2-.
[10] Aifang Gao, Junyi Wang, Jianfei Luo, Aiguo Li, Kaiyu Chen, Pengfei Wang, Yiyi Wang, Jingyi Li, Jianlin Hu, Hongliang Zhang. Temporal variation of PM2.5-associated health effects in Shijiazhuang, Hebei[J]. Front. Environ. Sci. Eng., 2021, 15(5): 82-.
[11] Violeta Makareviciene, Egle Sendzikiene, Ieva Gaide. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil[J]. Front. Environ. Sci. Eng., 2021, 15(5): 97-.
[12] Yanxia Zhao, Huiqing Lian, Chang Tian, Haibo Li, Weiying Xu, Sherub Phuntsho, Kaimin Shih. Surface water treatment benefits from the presence of algae: Influence of algae on the coagulation behavior of polytitanium chloride[J]. Front. Environ. Sci. Eng., 2021, 15(4): 58-.
[13] Yue Hu, Ding Dong, Kun Wan, Chao Chen, Xin Yu, Huirong Lin. Potential shift of bacterial community structure and corrosion-related bacteria in drinking water distribution pipeline driven by water source switching[J]. Front. Environ. Sci. Eng., 2021, 15(2): 28-.
[14] Xuesong Liu, Jianmin Wang. Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia[J]. Front. Environ. Sci. Eng., 2020, 14(6): 97-.
[15] Jianzhi Huang, Huichun Zhang. Redox reactions of iron and manganese oxides in complex systems[J]. Front. Environ. Sci. Eng., 2020, 14(5): 76-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed