Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (5) : 97    https://doi.org/10.1007/s11783-020-1343-9
REVIEW ARTICLE
Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil
Violeta Makareviciene(), Egle Sendzikiene, Ieva Gaide
Vytautas Magnus University, Agriculture Academy, K. Donelaicio str. 58, LT-44248 Kaunas, Lithuania
 Download: PDF(325 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Microalgae oil application for biodiesel synthesis is discussed.

• Catalytic effectiveness of ferment preparations and chemical catalyst is disputed.

• Application of heterogeneous catalysts for biodiesel synthesis is reviewed.

• Possibilities of catalyst regeneration is shown.

Recently, there is a growing interest in the use of microalga in various fields. Microalgae have properties such as rapid reproduction and high biomass accumulation, and under certain conditions, some are able to accumulate a large amount of oil. However, microalgae oil often contains more free fatty acids than the vegetable oil and is therefore unsuitable for biodiesel synthesis using alkaline catalysts. For this reason, some authors suggest the application of heterogeneous catalysis. A particular interest in the use of immobilized enzymes has developed. Other solid substances can also be used as heterogeneous catalysts are usually metal oxides, carbonates or zeolites. The use of these catalysts results in simpler biodiesel synthesis, especially purification processes, a cleaner end product and a less polluted environment. The molar ratio of alcohol to oil is lower during enzymatic transesterification, and more than 90% ester yield is obtained using a molar ratio of alcohol to oil of 3:1 to 4.5:1. The alcohols do not have a negative effect on the effectiveness of chemical catalysts, so it is possible to use alcohols in molar ratio from 4:1 to 12:1. The optimal temperature of enzymatic process is 30℃‒50℃. An ester yield of more than 95% was obtained in 12‒48 h. Using chemical catalysts, greater than a 95% yield of esters was obtained at higher temperatures in a shorter time. Material costs of enzymatic catalysis can be reduced by reusing the catalysts directly or after regeneration.

Keywords Biodiesel      Heterogeneous catalysis      Transesterification      Microalgae oil     
Corresponding Author(s): Violeta Makareviciene   
Issue Date: 24 December 2020
 Cite this article:   
Violeta Makareviciene,Egle Sendzikiene,Ieva Gaide. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil[J]. Front. Environ. Sci. Eng., 2021, 15(5): 97.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1343-9
https://academic.hep.com.cn/fese/EN/Y2021/V15/I5/97
Algae Microalgae biomass Acid value
Lipid content % Ref. Acid value
mg KOH/g
Ref.
B. braunii FACHB 357 51.6 Cheng et al., 2013
B. braunii IPE 001 64.3 Xu et al., 2012
B. braunii Showa 30-39 Yoshimura et al., 2013
B. braunii UK 807-2 65-70 Li and Qin, 2005
Botryococcus sp. 28.6 Lee et al., 2010
C. vulgaris FACHB1068 42 Feng et al., 2011a
Chlorella vulgaris 10 Lee et al., 2010
Chlorella vulgaris 16.41 Converti et al., 2009
Chlorella vulgaris C7 56.6 Liu et al., 2008a
Chlorella vulgaris ESP-31 55.9 Yeh and Chang, 2011
Chlorella vulgaris P12 11 Anjos et al., 2013
Dunaliella tertiolecta ATCC 30929 70.6-71.4 Takagi et al., 2006 167.25 Krohn et al., 2011
Isochrysis zhangjiangensis 53 Feng et al., 2011b
Monoraphidium sp. FXY-10 51.72 Zhao et al., 2014
N. oleoabundans 40 Li et al., 2008
Nannochloris sp. UTEX LB1999 50.9 Takagi et al., 2000
Nannochloropsis oculata 15.31 Converti et al., 2009 83.4 Krohn et al., 2011
Nannochloropsis sp. 59.9 Jiang et al., 2011 6.5 Chen et al., 2012
Neochloris oleabundans UTEX 1185 56 Gouveia et al., 2009a
Pond water algae 0.4 Nautiyal et al., 2014
Porphyridium cruentum 8 Biller and Ross, 2011
Scenedesmus obliquus CNW-N 22.4 Ho et al., 2012
Scenedesmus sp. 10 Lee et al., 2010 8.7 Chen et al., 2012
Scenedesmus sp. LX1 53 Xin et al., 2010
Spirulina 0.45 Nautiyal et al., 2014
Tetraselmis subcordiformis 29.77 Huang et al., 2013
Tab.1  Lipid content of microalgae biomass and acid value of microalgae oil
Fatty
acid
Content %
Rapeseed1 Ankistrodesmus fusiformis2 Butyrococcus braunii2 Chlorella sp.1 Chlorella vulgaris2 Chlamidomonas sp.2 Haematococcus sp.1 Nanochloropsos sp.3 Nannochloris sp.1 Scenedesmus sp.1 Spirulina maxima3 Micractinium sp. IC-764
Saturated: 5.40 37.33 9.85 36.91 49.46 78.61 18.78 30.96 14.27 22.81 41.68 32,5
C14:0 Myristic ? 2.02 0.73 0.31 0.63 1.61 0.23 7.16 ? 0.73 0.34 2.2
C16:0 Palmitic 3.22 26.95 7.17 31.09 40.31 50.7 9.78 23.35 8.62 17.17 40.16 28.1
C17:0 Margaric 0.47 0.51 1.55 0.93 0.51
C18:0 Stearic 2.18 2.01 1.59 4.11 8.01 11.54 3.99 0.45 2.81 2.87 1.18 2.2
C20:0 Arachidic 0.57 1.37 0.73 0.44 0.06
C22:0 Behenic 0.24 1.81 1.09 0.92
C24:0 Lignoceric 2.22 0.06 0.1 3.17
Unsaturated: 94.60 52.63 90.15 63.09 45.02 21.39 81.24 59.20 85.74 77.19 51.9 67.5
C16:1 Palmitoleic 0.25 2.28 3.16 0.28 1.66 26.87 1.00 12.05 9.19 3.5
C18:1 Oleic 16.92 19.61 77.22 43.01 29.8 7.82 49.43 13.20 62.35 41.95 5.43 12.4
C18:2 Linoleic 66.32 12.23 5.16 10.95 8.54 3.93 13.67 1.21 12.72 13.02 17.89 29.2
C18:3 Linolenic 11.14 26.50 1.57 6.03 1.57 0.82 10.94 5.44 17.97 4.9
C 20:1 Gadoleic 0.51 1.95 4.59 2.12 1.11
C22:1 Erucic 0.22 0.24 0.83 0.62 0.20
C24:1 Nervonic 0.02 0.12 1.49 0.89
Tab.2  Composition of fatty acids for the given types of microalgae oil compared to rape oil
Fig.1  Principal technological scheme of biodiesel production from microalgae biomass.
Fig.2  Transesterification reaction of triglycerides (a) and esterification reaction of free fatty acids (b).
Solvent Conversion efficiency (%)
Acetone 53.05
1-butanol 11.36
t-butanol 79.69
Dichlormethane 19.78
Ether 71.25
Ethyl acetate 20.66
Hexane 51.81
Isopropanol 39.19
MTBE 77.66
Pyridine 6.98
Tab.3  Efficiency of solvent use in enzymatic catalysis
Catalyst Solvent Acyl receptor Optimal conditions Yield (%) Ref.
Lipolase 100L ? Ethanol Ethanol to oil molar ratio 3:1, 30°C, 26 h, 10% of enzyme 96.9 Makareviciene et al., 2017
Lipozyme TL IM Diesel fuel Ethanol Ethanol to oil molar ratio 4.5:1, 30°C, 13 h, 13.3% of enzyme 98 Gumbyte et al., 2018
Candida antarctica t-butanol Methanol Methanol to oil molar ratio 12:1; oil and t-butanol ratio 1:1 (w/v), oil and lipase mass ratio 20:1; 40°C, 12 h, 250 r/min >97 Wu et al., 2017
Candida sp. 99?125 and immobilized
by physical absorption onto macroporous resins
Methanol Methanol 30% of lipase, 10% of water, methanol to oil molar ratio 3:1, 38°C, pH 7, 12 h 98.15 Xiong et al., 2008
Candida sp. Hexane Methanol (stepwise) Methanol to oil molar ratio 3:1, 38°C, 12 h., 75% of enzyme 98.2 Li, et al., 2007
Penicillium expansum lipase [BMIm][PF6] Methanol Methanol to oil molar ratio 4:1, 50°C, 48 h., 20% of enzyme 90.7 Lai et al., 2012a
Candida sp.
Novozyme 435
Dimethyl carbonate Dimethyl carbonate 50% of lipase, 60°C, 6 h 75.5 Lee et al., 2013
Tab.4  Optimal conditions of enzymatic microalgae oil transesterification (Makareviciene and Skorupskaite, 2019)
Fig.3  Possible chemical heterogeneous catalysts for biodiesel synthesis.
Catalyst Amount (%) Temperature (°C) Yield (%) Ref.
CaOAl2O3 1.56 50 88.9 Narula et al., 2017
Mg–Zr solid base catalyst 10 65 28 Li et al., 2011
KF/CaO catalysts with different KF loadings 12 60 93.07 Ma et al., 2015
Cr2O3/Na2Cr2O3/Al2O3 20 80 98.28 Guldhe et al.,2017a
Tungstated zirconium oxide (WO3/ZrO2) 15 100 94.58 Guldhe et al., 2017b
Amberlyst-15 30 90 >98 Dong et al., 2013
Acid resins:
CT-269
CT-275
Amberlite 15
KSF klay
Silica-alumina
0.8 (M) 100 >90
67
18.2
Carrero et al., 2015
Tab.5  Heterogeneous catalysts used for microalgae oil transesterification and process conditions (Makareviciene and Skorupskaite, 2019)
Catalyst Amount (%) Temperature (°C) Pressure (kPa) Yield (%) Ref.
NiO, MoO3/Al2O3 4 370 5000 99 Verma et al., 2011
18
NiO, MoO3/H-ZSM-5 5 375 1000 83 Verma et al., 2011
18
Microporous titania Continues 340 15513.78 31 Krohn et al., 2011
(HY-340) niobium oxide 10 200 20684.27 94.27 Reyes et al., 2012
Tab.6  Findings from studies on biodiesel synthesis from microalgae oil under supercritical conditions using heterocatalysts
Catalyst Fatty raw material Transesterification agent Preparation of catalyst for reuse No of cycles Ref.
Novozym 435 Soybean oil Methanol ? 1 Du et al., 2004
Novozym 435 Insect fat Methanol Recovered Novozym 435 was immersed in tert-butanol for its regeneration, followed by washing with insect fat for the removal of tert-butanol on the catalyst 20 Nguyen et al., 2017
Novozym 435 Soybean oil Three-step methanolysis 25 Watanabe et al., 2002
Novozym 435 Vegetable oil Two-step methanolysis 70 Shimada et al., 2002
Novozym 435 Vegetable oil Three-step methanolysis 50-52 Shimada et al., 2002, Shimada et al., 1999
Novozym 435 Fish oil Ethanol 10 Suárez et al. 2019
Novozym 435 Tuna oil Two-step ethanolysis 37 Shimada et al., 2002
Novozym 435 Tuna oil Three-step ethanolysis 54 Shimada et al., 2002
Novozym 435 Soybean oil Methyl acetate 100 Du et al., 2004
Rhodotorula mucilaginosa MTCC8737 Chlorella salina oil Methyl acetate 10 Surendhiran, et al., 2014
Novozym 435 Insect fat Methyl acetate 20 Nguyen et al., 2018
Novozym-435 Crude jatropha oil Ethyl acetate 12 Modi et al., 2007
Novozym 435 Soybean oil Methanol ultrasonic waves 5 Yu et al., 2010
Tab.7  Multiple reuse of biocatalysts in biodiesel synthesis
Catalyst Fatty raw material Preparation of catalyst for reuse No of cycles Ref.
Nanocrystalline CaO Soyabean oil ? 8 Reddy et. al., 2006
Nanocrystalline CaO Poultry fat ? 3 Reddy et. al., 2006
CaO Sunflower oil ? 8 Granados et. al., 2007
CaO Palm olein ? 5 Yoosuk et. al., 2010
CaO Soyabean oil 20 Liu et al., 2008 b
Ca(OCH3)2 Soyabean oil ? 20 Liu et. al., 2008 b
KOH/NaX Soyabean oil Washing with cyclohexane and heating at 398 K for 2h 1 Xie et. al., 2007
KOH/NaX Soyabean oil Washing with cyclohexane and heating at 398 K for 2h, impregnation with 5% KOH 1 Xie et. al., 2007
Mg2CoAl Canola oil Filtration and drying at 100°C 7 Li, et al., 2009
Na/SiO2 Jatropha curcus oil Washing with methanol and drying at 100°C for 2 h 5 Kumar, et al., 2010
Dolomite Canola oil ? 3 Ilgen, 2011
Dolomite Sanflower oil ? 2 Sendzikiene et al., 2018
Dolomite Palm kernel oil Centrifugation and washing with methanol 7 Ngamcharussrivichai et al., 2010
waste eggshell Soyabean oil ? 13 Wei et al., 2009
Starch-derived solid acid catalyst Waste cooking oils ? 50 Lou et al., 2008
Tab.8  Multiple uses of chemical/natural catalysts in biodiesel synthesis
Homogeneous catalysis Heterogeneous catalysis
Chemical Enzymatic
Advantages Disadvantages Advantages Disadvantages Advantages Disadvantages
High process rate and yield Sensitivity to moisture and a larger amount of free fatty acids in raw materials Possibility to regenerate or reuse the catalyst Average process speed Water and free fatty acids contained in raw materials have no negative impact on process efficiency Average process speed, long duration
Ability to use excess of alcohol Corrosive environment Easy separation of esters, clean glycerol non-contaminated with salts Possibility to regenerate or reuse the catalyst Inactivation of ferment preparations by alcohols
Low cost of catalysts Impossibility to regenerate or reuse the catalyst Stability of catalysts effectiveness Easy separation of esters, clean glycerol non-contaminated with salts Require high amount of catalysts
Difficult cleaning and purification of the product or alcohol regeneration Low cost of catalysts Low process temperature High material costs associated with the high cost of enzymatic catalysts
Difficulty of application of an continues process Ability to use excess of alcohol
Quite high energy consumption and material expenses Quite low energy consumption and material expenses
Tab.9  Comparison of homogeneous and heterogeneous catalysis
1 E C Aguieiras, D S Ribeiro, P P Couteiro, C M Bastos, D S de Queiroz, J M Parreira, M A Langone (2016). Investigation of the reuse of immobilized lipases in biodiesel synthesis: Influence of different solvents in lipase activity. Applied Biochemistry and Biotechnology, 179(3): 485–496
https://doi.org/10.1007/s12010-016-2008-9
2 E C G Aguieiras, E D Cavalcanti-Oliveira, D M G Freire (2015). Current status and new developments of biodiesel production using fungal lipazes. Fuel, 159: 52–67
https://doi.org/10.1016/j.fuel.2015.06.064
3 C C Akoh, S W Chang, G C Lee, J F Shaw (2007). Enzymatic approach to biodiesel production. Journal of Agricultural and Food Chemistry, 55(22): 8995–9005
https://doi.org/10.1021/jf071724y
4 V C Akubude, K N Nwaigwe, E Dintwa (2019). Production of biodiesel from microalgae via nanocatalyzed transesterification process: A review. Materials Science for Energy Technologies, 2(2): 216–225
https://doi.org/10.1016/j.mset.2018.12.006
5 Z Amini, H C Ong, M D Harrison, F Kusumo, H Mazaheri, Z Ilham (2017). Biodiesel production by lipase-catalyzed transesterification of Ocimum basilicum L. (sweet basil) seed oil. Energy Conversion and Management, 132: 82–90
https://doi.org/10.1016/j.enconman.2016.11.017
6 G S S Andrade, A K F Carvalho, C M Romero, P C Oliveira, de H F Castro (2014). Mucor circinelloides whole-cells as a biocatalyst for the production of ethyl esters based on babassu oil. Bioprocess and Biosystems Engineering, 37(12): 2539–2548
https://doi.org/10.1007/s00449-014-1231-4
7 V Andruleviciute, V Makareviciene, V Skorupskaite, M Gumbyte (2014). Biomass and oil content of Chlorella sp., Haematococcus sp., Nannochloris sp. and Scenedesmus sp. under mixotrophic growth conditions in the presence of technical glycerol. Journal of Applied Phycology, 26(1): 83–90
https://doi.org/10.1007/s10811-013-0048-x
8 M Anjos, B D Fernandes, A A Vicente, J A Teixeira, G Dragone (2013). Optimization of CO2 bio-mitigation by Chlorella vulgaris. Bioresource Technology, 139: 149–154
https://doi.org/10.1016/j.biortech.2013.04.032
9 M Szczęsna Antczak, A Kubiak, T Antczak, S Bielecki (2009). Enzymatic biodiesel synthesis-Key factors affecting efficiency of the process. Renewable Energy, 34(5): 1185–1194 doi:10.1016/j.renene.2008.11.013
10 L Azócar, G Ciudad, H J Heipieper, R Muńoz, R Navia (2011). Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value. Journal of Bioscience and Bioengineering, 112(6): 583–589
https://doi.org/10.1016/j.jbiosc.2011.08.001
11 G Bayramoglu, A Akbulut, V C Ozalp, M Y Arica (2015). Imobilized lipase on micro-porous biosilica for enzymatic transesterification of algal oil. Chemical Engineering Research & Design, 95: 12–21
https://doi.org/10.1016/j.cherd.2014.12.011
12 D Beneroso, T Monti, E T J Kostas, J Robinson (2017). Microwave pyrolysis of biomass for bio-oil production: scalable processing concepts. Chemical Engineering Journal, 316: 481–498
https://doi.org/10.1016/j.cej.2017.01.130
13 S Benjamin, A Pandey (1998). Candida rugosa lipases: Molecular biology and versatility in biotechnology. Yeast (Chichester, England), 14(12): 1069–1087
https://doi.org/10.1002/(SICI)1097-0061(19980915)14:12<1069::AID-YEA303>3.0.CO;2-K
14 P Biller, A B Ross (2011). Potential yields and properties of oil from the hydrothermal liquefaction of microalgae with different biochemical content. Bioresource Technology, 102(1): 215–225
https://doi.org/10.1016/j.biortech.2010.06.028
15 L Brennan, P Owende (2010). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable & Sustanable Energy Reviews, 14(2): 557–577 doi: 10.1016/j.rser.2009.10.009
16 Z M A Bundhoo (2018). Microwave-assisted conversion of biomass and waste materials to biofuels. Renewable & Sustainable Energy Reviews, 82: 1149–1177
https://doi.org/10.1016/j.rser.2017.09.066
17 T Cakmak, P Angun, Y E Demiray, A D Ozkan, Z Elibol, T Tekinay (2012). Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production pf Chlamydomonas reinhardtii. Biotechnology and Bioengineering, 109(8): 1947–1957
https://doi.org/10.1002/bit.24474
18 A Carrero, G Vicente, R Rodrı’guez, M Linares, G L del Peso (2011). Hierarchical zeolites as catalysts for biodiesel production from Nannochloropsis microalga oil. Catalysis Today, 167(1): 148–153
https://doi.org/10.1016/j.cattod.2010.11.058
19 A Carrero, G Vicente, R Rodríguez, G L Peso, C Santos(2015). Synthesis of fatty acids methyl esters (FAMEs) from Nannochloropsis gaditana microalga using heterogeneous acid catalysts. Biochemical Engineering Journal, 97: 119–124
https://doi.org/10.1016/j.bej.2015.02.003
20 J M Cerveró, J R Alvarez, S Luque (2014). Novozym 435-catalyzed synthesis of fatty acid ethyl esters from soybean oil for biodiesel production. Biomass and Bioenergy, 61: 131–137
https://doi.org/10.1016/j.biombioe.2013.12.005
21 I C Chandler (2001). Determining the regioselectivity of immobilized lipases in triacylglycerol acidolysis reactions. Journal of the American Oil Chemists’ Society, 78(7): 737–742
https://doi.org/10.1007/s11746-001-0335-7
22 J Chen, W Wu (2003). Regeneration of Immobilized Candida antarctica lipase for transesterification. Journal of Bioscience and Bioengineering, 95(5): 466–469
https://doi.org/10.1016/S1389-1723(03)80046-4
23 L Chen, T Liu, W Zhang, X Chen, J Wang (2012). Biodiesel production from algae oil high in free fatty acids by two-step catalytic conversion. Bioresource Technology, 111: 208–214
https://doi.org/10.1016/j.biortech.2012.02.033
24 J Cheng, Y Qiu, R Huang, W Yang, J Zhou, K Cen (2016). Biodiesel production from wet microalgae by using graphene oxide as solid acid catalyst. Bioresource Technology, 221: 344–349
https://doi.org/10.1016/j.biortech.2016.09.064
25 P Cheng, B Ji, L Gao, W Zhang, J Wang, T Liu (2013). The growth, lipid and hydrocarbon production of Botryococcus braunii with attached cultivation. Bioresource Technology, 138: 95–100
https://doi.org/10.1016/j.biortech.2013.03.150
26 L P Christopher, Kumar Hemanathan, V P Zambare (2014). Enzymatic biodiesel: Challenges and opportunities. Applied Energy, 119: 497–520
https://doi.org/10.1016/j.apenergy.2014.01.017
27 E P Cipolatti, M J A Silva, M Klein, V Feddern, M M C Feltes, J V Oliveira, J L Ninow, D de Oliveira (2014). Current status and trends in enzymatic nanoimmobilization. Journal of Molecular Catalysis. B, Enzymatic, 99: 56–67
https://doi.org/10.1016/j.molcatb.2013.10.019
28 A Converti, A A Casazza, E Y Ortiz, P Perego, Del M. Borghi(2009). Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chemical Engineering and Processing: Process Intensification, 48(6): 1146–1151
https://doi.org/10.1016/j.cep.2009.03.006
29 T Dong, J Wang, C Miao, Y Zheng, S Chen (2013). Two-step in situ biodiesel production from microalgae with high free fatty acid content. Bioresource Technology, 136: 8–15
https://doi.org/10.1016/j.biortech.2013.02.105
30 W Du, Y Xu, D Liu, J Zeng (2004). Comparative study on lipase-catalyzed transformation of soybeanoil for biodiesel production with different acyl acceptors. Journal of Molecular Catalysis. B, Enzymatic, 30(3–4): 125–129
https://doi.org/10.1016/j.molcatb.2004.04.004
31 S Duraiarasan, S A Razack, A Manickam, A Munusamy, M B Syed, M Y Ali, G M Ahmed, M S Mohiuddin (2016). Direct conversion of lipids from marine microalga C. salina to biodiesel with immobilised enzymes using magnetic nanoparticle. Journal of Environmental Chemical Engineering, 4(1): 1393–1398
https://doi.org/10.1016/j.jece.2015.12.030
32 M K Enamala, S Enamala, M Chavali, J Donepudi, R Yadavalli, B Kolapalli, T V Aradhyula, J Velpuri, C Kuppam (2018). Production of biofuels from microalgae: A review on cultivation, harvesting, lipid extraction, and numerous applications of microalgae. Renewable & Sustainable Energy Reviews, 94: 49–68
https://doi.org/10.1016/j.rser.2018.05.012
33 D Feng, Z Chen, S Xue, W Zhang (2011b). Increased lipid production of the marine oleaginous microalgae Isochrysis zhangjiangensis (Chrysophyta) by nitrogen supplement. Bioresource Technology, 102(12): 6710–6716
https://doi.org/10.1016/j.biortech.2011.04.006
34 Y Feng, C Li, D Zhang (2011a). Lipid production of Chlorella vulgaris cultured in artificial wastewater medium. Bioresource Technology, 102(1): 101–105
https://doi.org/10.1016/j.biortech.2010.06.016
35 R Fernandez-Lafuente (2010). Lipase from Thermomyces lanuginosus: Uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis. B, Enzymatic, 62(3–4): 197–212
https://doi.org/10.1016/j.molcatb.2009.11.010
36 M L Foresti, M Pedernera, V Bucalá, M L Ferreira (2007). Multiple effects of water on solvent-free enzymatic esterifications. Enzyme and Microbial Technology, 41(1–2): 62–70
https://doi.org/10.1016/j.enzmictec.2006.11.023
37 K Frolich, A Vavra, J Kocik, M Hajek, A Jílková (2019). The long-term catalytic performance of mixed oxides in fixed-bed reactors in transesterification. Renewable Energy, 143: 1259–1267
https://doi.org/10.1016/j.renene.2019.05.083
38 A Galadima, O Muraza (2014). Biodiesel production from algae by using heterogeneous catalysts: A critical review. Energy, 78: 72–83
https://doi.org/10.1016/j.energy.2014.06.018
39 C Garcia-Galan, A Berenguer-Murcia, R Fernandez-Lafuente, R C Rodrigues (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis & Catalysis, 353(16): 2885–2904
https://doi.org/10.1002/adsc.201100534
40 B H H Goh, H C Ong, M Y Cheah, W H Chen, K L Yu, T M I Mahlia (2019). Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review. Renewable & Sustainable Energy Reviews, 107: 59–74
https://doi.org/10.1016/j.rser.2019.02.012
41 L Gouveia, A E Marques, da T L Silva, A Reis (2009a). Neochloris oleabundans UTEX #1185: A suitable renewable lipid source for biofuel production. Journal of Industrial Microbiology & Biotechnology, 36(6): 821–826
https://doi.org/10.1007/s10295-009-0559-2
42 L Gouveia, A C Oliveira (2009b). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology & Biotechnology, 36(2): 269–274
https://doi.org/10.1007/s10295-008-0495-6
43 M L Granados, M D Z Poves, D M Alonso, R Mariscal, F C Galisteo, R Moreno-Tost, J Santamaría, J L G Fierro (2007). Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 73(3–4): 317–326
https://doi.org/10.1016/j.apcatb.2006.12.017
44 H C Greenwell, L M L Laurens, R J Shields, R W Lovitt, K J Flyn (2010). Placing microalgae on the biofuels priority list: A review of the technological challenges. Journal of the Royal Society, Interface, 7(46): 703–726
https://doi.org/10.1098/rsif.2009.0322
45 A Guldhe, C V R Moura, P Singh, I Rawat, E M Moura, Y Sharma, F Bux (2017a). Conversion of microalgal lipids to biodiesel using chromium-aluminum mixed oxide as a heterogeneous solid acid catalyst. Renewable Energy, 105: 175–182
https://doi.org/10.1016/j.renene.2016.12.053
46 A Guldhe, P Singh, F A Ansari, B Singh, F Bux (2017b). Biodiesel synthesis from microalgal lipids using tungstated zirconia as a heterogeneous acid catalyst and its comparison with homogeneous acid and enzyme catalysts. Fuel, 187: 180–188
https://doi.org/10.1016/j.fuel.2016.09.053
47 M Gumbytė, V Makareviciene, V Skorupskaite, E Sendzikiene, M Kondratavicius (2018). Enzymatic microalgae oil transesterification with ethanol in mineral diesel fuel media. Journal of Renewable and Sustainable Energy, 10(1): 013105
https://doi.org/10.1063/1.5012939
48 J Gupta, M Agarwal (2016). Preparation and characterization of CaO nanoparticle for biodiesel production. AIP Conference Proceedings, 1724 doi:10.1063/1.4945186
49 M J Haas, G J Piazza, T A Foglia(2002). Enzymatic approaches to the production of biodiesel fuels. In: Kuo T M, Gardner H W, eds., Lipid Biotechnology. New York: Marcel Dekker, 587–598
50 Z Helwani, M R Othman, N Aziz, J Kim, W J N Fernando (2009). Solid heterogeneous catalysis for transesterification of triglycerides with methanol: A review. Applied Catalysis A, General, 363(1–2): 1–10
https://doi.org/10.1016/j.apcata.2009.05.021
51 S H Ho, C Y Chen, J S Chang (2012). Effect of light intensity and nitrogen starvation on CO2 fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N. Bioresource Technology, 113: 244–252
https://doi.org/10.1016/j.biortech.2011.11.133
52 X Huang, Z Huang, W Wen, J Yan (2013). Effects of nitrogen supplementation of the culture medium on the growth, total lipid content and fatty acid profiles of three microalgae (Tetraselmis subcordiformis, Nannochloropsis oculata and Pavlova viridis). Journal of Applied Phycology, 25(1): 129–137
https://doi.org/10.1007/s10811-012-9846-9
53 Z Hussain, N Bashir, M I Khan, K Hussain, S A Sulaiman, M Y Naz, K A Ibrahim, N M AbdEl-Salam (2017a). Production of highly upgraded bio-oils through two-step catalytic pyrolysis of water hyacinth. Energy & Fuels, 31(11): 12100–12107
https://doi.org/10.1021/acs.energyfuels.7b01252
54 Z Hussain, H Naz, M Rafique, H Gulab, M Y Naz, S A Sulaiman, K M Khan (2019). Conversion of spent fat oil into liquid and gaseous fuels through clinker catalyse pyrolysis. Brazilian Journal of Chemical Engineering, 36(2): 949–957
https://doi.org/10.1590/0104-6632.20190362s20180429
55 Z Hussain, K Hussain, S A Sulaiman, M Y Naz, K A Ibrahim, N M Abdel-Salam (2017b). Preparation of upgraded bio-oil using two-step catalytic pyrolysis of fresh, putrefied and microbe treated biomass. Environmental Progress & Sustainable Energy, 37: 1836–1844
56 O Ilgen (2011). Dolomite as a heterogeneous catalyst for transesterification of canola oil. Fuel Processing Technology, 92(3): 452–455
https://doi.org/10.1016/j.fuproc.2010.10.009
57 K E Jaeger, M T Reetz (1998). Microbial lipazes form versatile tools for biotechnology. Trends in Biotechnology, 16(9): 396–403
https://doi.org/10.1016/S0167-7799(98)01195-0
58 K R Jegannathan, C Eng-Seng, P Ravindra (2011). Economic assessment of biodiesel production: Comparison of alkali and biocatalyst processes. Renewable & Sustainable Energy Reviews, 15(1): 745–751
https://doi.org/10.1016/j.rser.2010.07.055
59 L Jiang, S Luo, X Fan, Z Yang, R Guo (2011). Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Applied Energy, 88(10): 3336–3341
https://doi.org/10.1016/j.apenergy.2011.03.043
60 Y J Jo, O K Lee, E Y Lee (2014). Dimethyl carbonate mediated lipid extraction and lipase-catalyzed in situ transesterification for simultaneous preparation of fatty acid methyl esters and glycerol carbonate from Chlorella sp. KR-1 biomass. Bioresource Technology, 158: 105–110 doi:10.1016/j.biortech.2014.01.141
61 B J Krohn, C V McNeff, B Yan, D Nowlan (2011). Production of algae-based biodiesel using the continuous catalytic Mcgyan® process. Bioresource Technology, 102(1): 94–100
https://doi.org/10.1016/j.biortech.2010.05.035
62 D Kumar, G K Poonam, C P Singh (2010). Ultrasonic-assisted transesterification of Jatropha curcus oil using solid catalyst, Na/SiO2. Ultrasonics Sonochemistry, 17(5): 839–844 doi:10.1016/j.ultsonch.2010.03.001
63 J Q Lai, Z L Hu, R A Sheldon, Z Yang (2012a). Catalytic performance of crosslinked enzyme aggregates of Penicillium expansum lipase and their use as catalyst for biodiesel production. Process Biochemistry, 47(12): 2058–2063
https://doi.org/10.1016/j.procbio.2012.07.024
64 J Q Lai, Z L Hu, P W Wang, Z Yang (2012b). Enzymatic production of microalgal biodiesel in ionic liquid. Fuel, 95: 329–333 (BMIm) (PF6)
https://doi.org/10.1016/j.fuel.2011.11.001
65 M K Lam, K T Lee (2012). Microalgae biofuels: A critical review of issues, problems and the way forward. Biotechnology Advances, 30(3): 673–690
https://doi.org/10.1016/j.biotechadv.2011.11.008
66 A F Lee, J A Bennett, J C Manayil, K Wilson (2014). Heterogeneous catalysis for sustainable biodiesel production via esterification and transesterification. Chemical Society Reviews, 43(22): 7887–7916
https://doi.org/10.1039/C4CS00189C
67 J H Lee, D H Lee, J S Lim, B H Um, C Park, S Kang, S W Kim (2008). Optimization of the process for biodiesel production using a mixture of immobilized Rhizopus oryzae and Candida rugosa lipases. Journal of Microbiology and Biotechnology, 18(12): 1927–1931
68 J Y Lee, C Yoo, S Y Jun, C Y Ahn, H M Oh (2010). Comparison of several methods for effective lipid extraction from microalgae. Bioresource Technology, 101(1): S75–S77
https://doi.org/10.1016/j.biortech.2009.03.058
69 O K Lee, Y H Kim, J G Na, Y K Oh, E Y Lee (2013). Highly efficient extraction and lipase-catalyzed transesterification of triglycerides from Chlorella sp. KR-1 for production of biodiesel. Bioresource Technology, 147: 240–245
https://doi.org/10.1016/j.biortech.2013.08.037
70 E Li, Z P Xu, V Rudolph (2009). MgCoAl–LDH derived heterogeneous catalysts for the ethanol transesterification of canola oil to biodiesel. Applied Catalysis B: Environmental, 88(1–2): 42–49
https://doi.org/10.1016/j.apcatb.2008.09.022
71 L Li, W Du, D Liu, L Wang, Z Li (2006). Lipase-catalyzed transesterification of rapeseed oils for biodiesel production with a novel organic solvent as the reaction medium. Journal of Molecular Catalysis. B, Enzymatic, 43(1–4): 58–62
https://doi.org/10.1016/j.molcatb.2006.06.012
72 X Li, H Xu, Q Wu (2007). Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnology and Bioengineering, 98(4): 764–771
https://doi.org/10.1002/bit.21489
73 Y Li, M Horsman, B Wang, N Wu, C Q Lan (2008). Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Applied Microbiology and Biotechnology, 81(4): 629–636
74 Y Li, J G Qin (2005). Comparison of growth and lipid content in three Botryococcus braunii strains. Journal of Applied Phycology, 17(6): 551–556
https://doi.org/10.1007/s10811-005-9005-7
75 Y S Li, S Lian, D M Tong, R L Song, W Y Yang, Y Fan, R Qing, Ch Hu (2011). One-step production of biodiesel from Nannochloropsis sp. on solid base Mg–Zr catalyst. Applied Energy, 88(10): 3313–3317
https://doi.org/10.1016/j.apenergy.2010.12.057
76 Y Li, J G Qin (2005). Comparison of growth and lipid content in three Botyrococcuc braunii strains. Journal of Applied Phycology, 17(6): 551–556 doi: 10.1007/s10811-005-9005-7
77 X Liu, H He, Y Wang, S Zhu, X Piao (2008b). Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87(2): 216–221
https://doi.org/10.1016/j.fuel.2007.04.013
78 Z Y Liu, G C Wang, B C Zhou (2008a). Effect of iron on growth and lipid accumulation in Chlorella vulgaris. Bioresource Technology, 99(11): 4717–4722
https://doi.org/10.1016/j.biortech.2007.09.073
79 W Y Lou, M H Zong, Z Q Duan (2008). Efficient production of biodiesel from high free fatty acid-containing waste oils using various carbohydrate-derived solid acid catalysts. Bioresource Technology, 99(18): 8752–8758
https://doi.org/10.1016/j.biortech.2008.04.038
80 G Ma, W Hu, H Pei, L Jiang, M Song, R Mu (2015). In situ heterogeneous transesterification of microalgae using combined ultrasound and microwave irradiation. Energy Conversion and Management, 90: 41–46
https://doi.org/10.1016/j.enconman.2014.10.061
81 A R Macrae (1983). Lipase-catalyzed interesterification of oils and fats. Journal of the American Oil Chemists’ Society, 60(2Part1): 291–294
https://doi.org/10.1007/BF02543502
82 V Makareviciene, M Gumbyte, V Skorupskaite, E Sendzikiene (2017). Biodiesel fuel production by enzymatic microalgae oil transesterification with ethanol. Journal of Renewable and Sustainable Energy, 9(2): 023101
https://doi.org/10.1063/1.4978369
83 V Makareviciene, V Skorupskaite(2019). Transesterification of microalgae for biodiesel production. In: Basile A and Dalena F, eds. Second and Thirds Generation Feedstocks. The Evaluation of Biofuels. Amsterdam: Elsevier, 469–509
84 G Manikandan, R Rajasekaran (2013). Transesterification of algal oil using nano CaO catalyst. International Journal of Chemical Science, 11(1): 591–597
85 A G Marangoni(2002). Lipases: Structure function and properties. In: Kuo T M, Gardner H W, eds. Lipid Biotechnology. New York: Marcel Dekker, 357–384
86 J M Marchetti, V U Miguel, A F Errazu (2007). Possible methods for biodiesel production. Renewable & Sustainable Energy Reviews, 11(6): 1300–1311
https://doi.org/10.1016/j.rser.2005.08.006
87 T Mathimani, A Baldinelli, K Rajendran, D Prabakar, M Matheswaran, Pieter R, van Leeuwen A Pugazhendhi (2019). Review on cultivation and thermochemical conversion of microalgae to fuels and chemicals: Process evaluation and knowledge gaps. Journal of Cleaner Production, 208: 1053–1064
https://doi.org/10.1016/j.jclepro.2018.10.096
88 T Matsumoto, S Takahashi, M Kaieda, M Ueda, A Tanaka, H Fukuda, A Kondo (2001). Yeast whole-cell biocatalyst constructed by intracellular overproduction of Rhizopus oryzae lipase is applicable to biodiesel fuel production. Applied Microbiology and Biotechnology, 57(4): 515–520
https://doi.org/10.1007/s002530100733
89 X Miao, Q Wu (2004). High yield bio-oil production from fast pyrolysis by metabolic controlling of Chlorella protothecoides. Journal of Biotechnology, 110(1): 85–93
https://doi.org/10.1016/j.jbiotec.2004.01.013
90 M K Modi, J R C Reddy, B V S K Rao, R B N Prasad (2007). Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acyl acceptor. Bioresource Technology, 98(6): 1260–1264
https://doi.org/10.1016/j.biortech.2006.05.006
91 L Moreno-Garcia, K Adjallé, S Barnabé, G S V Raghavan (2017). Microalgae biomass production for a biorefinery system: Recent advances and the way towards sustainability. Renewable & Sustainable Energy Reviews, 76: 493–506
https://doi.org/10.1016/j.rser.2017.03.024
92 V Narula, M F Khan, A Negi, S Kalra, A Thakur, S Jain (2017). Low temperature optimization of biodiesel production from algal oil using CaO and CaO/Al2O3 as catalyst by the application of response surface methodology. Energy, 140(1): 879–884
https://doi.org/10.1016/j.energy.2017.09.028
93 I A Nascimento, S S I Marques, I T D Cabanelas, S A Pereira, J I Druzian, C de Souza, D V Vich, de G C Carvalho, M A Nascimento (2013). Screening microalgae strains for biodiesel production: lipid productivity and estimation of fuel quality based on fatty acids profiles as selective criteria. BioEnergy Research, 6(1): 1–13
https://doi.org/10.1007/s12155-012-9222-2
94 P Nautiyal, K A Subramanian, M G Dastidar (2014). Production and characterization of biodiesel from algae. Fuel Processing Technology, 120: 79–88
https://doi.org/10.1016/j.fuproc.2013.12.003
95 C Ngamcharussrivichai, P Nunthasanti, S Tanachai, K Bunyakiat (2010). Biodiesel production through transesterification over natural calciums. Fuel Processing Technology, 91(11): 1409–1415
https://doi.org/10.1016/j.fuproc.2010.05.014
96 H C Nguyen, S H Liang, S S Chen, C H Su, J Lin, C C Chien (2018). Enzymatic production of biodiesel from insect fat using methyl acetate as an acyl acceptor: Optimization by using response surface methodology. Energy Conversion and Management, 158: 168–175
https://doi.org/10.1016/j.enconman.2017.12.068
97 H C Nguyen, S H Liang, T T Doan, C H Su, P C Yang (2017). Lipase-catalyzed synthesis of biodiesel from black soldier fly (Hermetica illucens): Optimization by using response surface methodology. Energy Conversion and Management, 145: 335–342
https://doi.org/10.1016/j.enconman.2017.05.010
98 A V Piligaev, K N Sorokina, Y V Samoylova, V N Parmon (2018). Lipid production by microalga Micractinium sp. IC-76 in a flat panel photobioreactor and its transesterification with cross-linked enzyme aggregates of Burkholderia cepacia lipase. Energy Conversion and Management, 156: 1–9
https://doi.org/10.1016/j.enconman.2017.10.086
99 G Pokoo-Aikins, A Nadim, M M El-Halwagi, V Mahalec (2010). Design and analysis of biodiesel production from algae grown through carbon sequestration. Clean Technologies and Environmental Policy, 12: 239–254 doi: 10.1007/s10098-009-0215-6
100 R N Z R A Rahman, S N Baharum, M Basri, A B Salleh (2005). High-yield purification of an organic solvent-tolerant lipase from Pseudomonas sp. strain S5. Analytical Biochemistry, 341(2): 267–274
https://doi.org/10.1016/j.ab.2005.03.006
101 K Ramachandran, T Suganya, N Nagendra Gandhi, S Renganathan (2013). Recent developments for biodiesel production by ultrasonic assist transesterification using different heterogeneous catalyst: A review. Renewable & Sustainable Energy Reviews, 22: 410–418
https://doi.org/10.1016/j.rser.2013.01.057
102 I Rawat, R Ranjith Kumar, T Mutanda, F Bux (2013). Biodiesel from microalgae: A critical evaluation from laboratory to large scale production. Applied Energy, 103: 444–467
https://doi.org/10.1016/j.apenergy.2012.10.004
103 A Razack, S Duraiarasan (2016). Response surface methodology assisted biodiesel production from waste cooking oil using encapsulated mixed enzyme. Waste Management, 47(A): 98–104
104 C R Venkat Reddy, R Oshel, J G Verkade (2006). Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy & Fuels, 20(3): 1310–1314
https://doi.org/10.1021/ef050435d
105 Y Reyes, G Chenard, D Aranda, C Mesquita, M Fortes, R Joao, L Bacellar (2012). Biodiesel production by hydroesterification of microalgal biomass using heterogeneous catalyst. Nature and Science, 4(10): 778–783
106 R C Rodrigues, B C C Pessela, G Volpato, R Fernandez-Lafuente, J M Guisan, M A Z Ayub (2010). Two step ethanolysis: A simple and efficient way to improve the enzymatic biodiesel synthesis catalyzed by an immobilized–stabilized lipase from Thermomyces lanuginosus. Process Biochemistry, 45(8): 1268–1273
https://doi.org/10.1016/j.procbio.2010.04.015
107 E Safakish, H Nayebzadeh, N Saghatoleslami, S Kazemifard (2020). Comprehensive assessment of the preparation conditions of a separable magnetic nanocatalyst for biodiesel production frim algae. Algal Research, 49: 101949
https://doi.org/10.1016/j.algal.2020.101949
108 A Salis, M Pinna, M Monduzzi, V Solinas (2005). Biodiesel production from triolein and short chain alcohols through biocatalysis. Journal of Biotechnology, 119(3): 291–299
https://doi.org/10.1016/j.jbiotec.2005.04.009
109 Y M Sani, W M A W Daud, Abdul A Aziz (2013). Solid acid-catalyzed biodiesel production from microalgal oil: The dual advantage. Journal of Environmental Chemical Engineering, 1(3): 113–121
https://doi.org/10.1016/j.jece.2013.04.006
110 B Selmi, D Thomas (1998). Immobilized lipase-catalyzed ethanolysis of sunflower oil in a solvent-free medium. Journal of the American Oil Chemists’ Society, 75(6): 691–695 doi:10.1007/s11746-998-0207-4
111 E Sendžikiene, V Makareviciene, K Kazancev (2018). Application of dolomite as a heterogeneous catalyst of biodiesel synthesis. Transport, 33(5): 1155–1161 doi:10.3846/transport.2018.6723
112 M M Shamel, M Hasan, B Ramachandran (2005). Operational stability of lipase enzyme: Effect of temperature and shear. Asia-Pacific Journal of Chemical Engineering, 13(5–6): 599–604
113 Y Shimada, Y Watanabe, T Samukawa, A Sugihara, H Noda, H Fukuda, Y Tominaga (1999). Conversion of vegetable oil to biodiesel using immobilized Candida antarctica lipase. Journal of the American Oil Chemists’ Society, 76(7): 789–793
https://doi.org/10.1007/s11746-999-0067-6
114 Y Shimada, Y Watanabe, A Sugihara, Y Tominaga (2002). Enzymatic alcoholysis for biodiesel fuel production and application of the reaction oil processing. Journal of Molecular Catalysis. B, Enzymatic, 17(3–5): 133–142
https://doi.org/10.1016/S1381-1177(02)00020-6
115 S Siva, C Marimuthu (2015). Production of biodiesel by transesterification of algae oil with an assistance of nano-CaO catalyst derived from egg shell. International Journal of ChemTech Research, 7(4): 2112–2116
116 R Sivaramakrishnan, A Incharoensakdi (2017). Direct transesterification of Botryococcus sp. catalysed by immobilized lipase: Ultrasound treatment can reduce reaction time with high yield of methyl ester. Fuel, 191: 363–370
https://doi.org/10.1016/j.fuel.2016.11.085
117 R Sivaramakrishnan, K Muthukumar (2014). Direct transesterification of Oedogonium sp. oil be using immobilized isolated novel Bacillus sp. lipase. Journal of Bioscience and Bioengineering, 117(1): 86–91
https://doi.org/10.1016/j.jbiosc.2013.06.018
118 M Marín-Suárez, D Méndez-Mateos, A Guadix, E M Guadix (2019). Reuse of immobilized lipases in the transesterification of waste fish oil for the production of biodiesel. Renewable Energy, 140: 1–8
https://doi.org/10.1016/j.renene.2019.03.035
119 D Surendhiran, M Vijay, A R Sirajunnisa (2014). Biodiesel production from marine microalga Chlorella salina using whole cell yeast immobilized on sugarcane bagasse. Journal of Environmental Chemical Engineering, 2(3): 1294–1300
https://doi.org/10.1016/j.jece.2014.05.004
120 H Taher, S Al-Zuhair, A H Al-Marzouqi, Y Haik, M M Farid (2011). A review of enzymatic transesterification of microalgal oil-based biodiesel using supercritical technology. Enzyme Research, Article ID 468292
121 M Takagi, K Watanabe, K Yamaberi, T Yoshida (2000). Limited feeding of potassium nitrate for intracellular lipid and triglyceride accumulation of Nannochloris sp. UTEX LB1999. Applied Microbiology and Biotechnology, 54(1): 112–117
https://doi.org/10.1007/s002530000333
122 M Takagi, K Karseno, T K Yoshida (2006). Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells. Journal of Bioscience and Bioengineering, 101(3): 223–226
https://doi.org/10.1263/jbb.101.223
123 M R Talukder M, J C Wu, Van T B Nguyen, N M Fen, Y L S Melissa (2009). Novozym 435 for production of biodiesel from unrefined palm oil: Comparison of methanolysis methods. Journal of Molecular Catalysis. B, Enzymatic, 60(3–4): 106–112
https://doi.org/10.1016/j.molcatb.2009.04.004
124 T Tan, J Lu, K Nie, L Deng, F Wang (2010). Biodiesel production with immobilized lipase: A review. Biotechnology Advances, 28(5): 628–634
https://doi.org/10.1016/j.biotechadv.2010.05.012
125 T Tan, K Nie, F Wang (2006). Production of biodiesel by immobilized Candida sp. lipase at high water content. Applied Biochemistry and Biotechnology, 128(2): 109–116
https://doi.org/10.1385/ABAB:128:2:109
126 M B Tasić, L F R Pinto, B K Klein, V B Veljković, R M Filho (2016). Botryococcus braunii for biodieselproduction. Renewable & Sustainable Energy Reviews, 64: 260–270
https://doi.org/10.1016/j.rser.2016.06.009
127 D T Tran, C L Chen, J S Chang (2012). Immobilization of Burkholderia sp. lipase on a ferric silica nanocomposite for biodiesel production. Journal of Biotechnology, 158(3): 112–119
https://doi.org/10.1016/j.jbiotec.2012.01.018
128 I C Véras, F A L Silva, A D Ferrão-Gonzales, V H Moreau (2011). One-step enzymatic production of fatty acid ethyl ester from high-acidity waste feedstocks in solvent-free media. Bioresource Technology, 102(20): 9653–9658
https://doi.org/10.1016/j.biortech.2011.08.012
129 D Verma, R Kumar, B S Rana, A K Sinha (2011). Aviation fuel production from lipids by a single-step route using hierarchical mesoporous zeolites. Energy & Environmental Science, 4(5): 1667–1671
https://doi.org/10.1039/c0ee00744g
130 S Wahidin, A Idris, S R M Shaleh (2016). Ionic liquid as a promising biobased green solvent in combination with microwave irradiation for direct biodiesel production. Bioresource Technology, 206: 150–154 doi: 10.1016/j.biortech.2016.01.084
131 L Wang, W Du, D Liu, L Li, N Dai (2006). Lipase-catalyzed biodiesel production from soybean oil deodorizer distillate with absorbent present in tert-butanol system. Journal of Molecular Catalysis. B, Enzymatic, 43(1–4): 29–32
https://doi.org/10.1016/j.molcatb.2006.03.005
132 Y Wang, J Liu, H Gerken, C Zhang, Q Hu, Y Li (2014). Highly-efficient enzymatic conversion of crude algal oils into biodiesel. Bioresource Technology, 172: 143–149
https://doi.org/10.1016/j.biortech.2014.09.003
133 Y Watanabe, P Pinsirodom, T Nagao, A Yamauchi, T Kobayashi, Y Nishida, Y Takagi, Y Shimada (2007). Conversion of acid oil by-produced in vegetable oil refining to biodiesel fuel by immobilized Candida antarctica lipase. Journal of Molecular Catalysis. B, Enzymatic, 44(3–4): 99–105
https://doi.org/10.1016/j.molcatb.2006.09.007
134 Y Watanabe, Y Shimada, A Sugihara, Y Tominaga (2002). Conversion of degummed soybean oil to biodiesel fuel with immobilized Candida antarctica lipase. Journal of Molecular Catalysis. B, Enzymatic, 17(3–5): 151–155
https://doi.org/10.1016/S1381-1177(02)00022-X
135 Z Wei, C Xu, B Li (2009). Application of waste eggshell as low-cost solid catalyst for biodiesel production. Bioresource Technology, 100(11): 2883–2885
https://doi.org/10.1016/j.biortech.2008.12.039
136 S Wu, L Song, M Sommerfeld, Q Hu, W Chen (2017). Optimization of an effective method for the conversion of crude algal lipids into biodiesel. Fuel, 197: 467–473
https://doi.org/10.1016/j.fuel.2017.02.040
137 W Xie, X Huang, H Li (2007). Soybean oil methyl esters preparation using NaX zeolites loaded with KOH as a heterogeneous catalyst. Bioresource Technology, 98(4): 936–939
https://doi.org/10.1016/j.biortech.2006.04.003
138 W Xie, N Ma (2009). Immobilized lipase on Fe3O4 nanoparticles as biocatalyst for biodiesel production. Energy & Fuels, 23(3): 1347–1353
https://doi.org/10.1021/ef800648y
139 W Xie, N Ma (2010). Enzymatic transesterification of soybean oil by using immobilized lipase on magnetic nano-particles. Biomass and Bioenergy, 34(6): 890–896
https://doi.org/10.1016/j.biombioe.2010.01.034
140 W Xie, J Wang (2014). Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/poly (styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energy & Fuels, 28(4): 2624–2631
https://doi.org/10.1021/ef500131s
141 L Xin, H Hong-ying, G Ke, S Ying-xue (2010). Effects of different nitrogen and phosphorus concentrations on the growth, nutrient uptake, and lipid accumulation of a freshwater microalga Scenedesmus sp. Bioresource Technology, 101(14): 5494–5500
https://doi.org/10.1016/j.biortech.2010.02.016
142 W Xiong, X Li, J Xiang, Q Wu (2008). High-density fermentation of microalga Chlorella protothecoides in bioreactor for microbio-diesel production. Applied Microbiology and Biotechnology, 78(1): 29–36
https://doi.org/10.1007/s00253-007-1285-1
143 L Xu, F Wang, C Guo, C Z Liu (2012). Improved algal oil production from Botryococcus braunii by feeding nitrate and phosphate in an airlift bioreactor. Engineering in Life Sciences, 12(2): 171–177
https://doi.org/10.1002/elsc.201100110
144 Y Xu, W Du, D Liu, J Zeng (2003). A novel enzymatic route for biodiesel production from renewable oils in a solvent-free medium. Biotechnology Letters, 25(15): 1239–1241
https://doi.org/10.1023/A:1025065209983
145 Y Xu, W Du, J Zeng, D Liu (2004). Conversion of soybean oil to biodiesel fuel using Lipozyme TL IM in a solvent-free medium. Biocatalysis and Biotransformation, 22(1): 45–48
https://doi.org/10.1080/10242420410001661222
146 J Yan, X Zheng, S Li (2014). A novel and robust recombinant Pichia pastoris yeast whole cell biocatalyst with intracellular overexpression of a Thermomyces lanuginosus lipase: Preparation, characterization and application in biodiesel production. Bioresource Technology, 151: 43–48
https://doi.org/10.1016/j.biortech.2013.10.037
147 K L Yeh, J S Chang (2011). Nitrogen starvation strategies and photobioreactor design for enhancing lipid content and lipid production of a newly isolated microalga Chlorella vulgaris ESP-31: Implications for biofuels. Biotechnology Journal, 6(11): 1358–1366
https://doi.org/10.1002/biot.201000433
148 B Yoosuk, P Udomsap, B Puttasawat, P Krasae (2010). Modification of calcite by hydration–dehydration method for heterogeneous biodiesel production process: The effects of water on properties and activity. Chemical Engineering Journal, 162(1): 135–141
https://doi.org/10.1016/j.cej.2010.05.013
149 Y Yoshimura, S Okada, M Honda (2013). Culture of the hydrocarbon producing microalga Botryococcus braunii strain Showa: Optimal CO2, salinity, temperature, and irradiance conditions. Bioresource Technology, 133: 232–239
https://doi.org/10.1016/j.biortech.2013.01.095
150 D Yu, L Tian, H Wu, S Wang, Y Wang, D Ma, X Fang (2010). Ultrasonic irradiation with vibration for biodiesel production from soybean oil by Novozym 435. Process Biochemistry, 45(4): 519–525
https://doi.org/10.1016/j.procbio.2009.11.012
151 J Zeng, W Du, X Liu, D Liu, L Dai (2006). Study on the effect of cultivation parameters and pretreatment on Rhizopus oryzae cell-catalyzed transesterification of vegetable oils for biodiesel production. Journal of Molecular Catalysis. B, Enzymatic, 43(1–4): 15–18
https://doi.org/10.1016/j.molcatb.2006.03.007
152 X Zhang, S Yan, R D Tyagi, R Y Surampalli, J R Valero (2014). Ultrasonication aided in-situ transesterification of microbial lipids to biodiesel. Bioresource Technology, 169: 175–180
https://doi.org/10.1016/j.biortech.2014.06.108
153 P Zhao, X Yu, J Li, X Tang, Z Huang (2014). Enhancing lipid productivity by co-cultivation of Chlorella sp. U4341 and Monoraphidium sp. FXY-10. Journal of Bioscience and Bioengineering, 118(1): 72–77
https://doi.org/10.1016/j.jbiosc.2013.12.014
154 Y Zheng, J Quan, X Ning, L M Zhu, B Jiang, Z Y He (2009). Lipase-catalyzed transesterification of soybean oil for biodiesel production in tert-amyl alcohol. World Journal of Microbiology & Biotechnology, 25(1): 41–46
https://doi.org/10.1007/s11274-008-9858-4
[1] Xiaoya Liu, Yu Hong, Yu Liu. Cultivation of Chlorella sp. HQ in inland saline-alkaline water under different light qualities[J]. Front. Environ. Sci. Eng., 2022, 16(4): 45-.
[2] Shi Yin, Yan-Qiu Chen, Yue-Li Li, Wang-Lai Cen, Hua-Qiang Yin. Static and dynamic characteristics of SO2-O2 aqueous solution in the microstructure of porous carbon materials[J]. Front. Environ. Sci. Eng., 2018, 12(5): 12-.
[3] Xuemin Wu,Fenfen Zhu,Juanjuan Qi,Luyao Zhao,Fawei Yan,Chenghui Li. Challenge of biodiesel production from sewage sludge catalyzed by KOH, KOH/activated carbon, and KOH/CaO[J]. Front. Environ. Sci. Eng., 2017, 11(2): 3-.
[4] Yuvarajan Devarajan,Ravi kumar Jayabal,Devanathan Ragupathy,Harish Venu. Emissions analysis on second generation biodiesel[J]. Front. Environ. Sci. Eng., 2017, 11(1): 3-.
[5] Xiaoyan SHI, Kebin HE, Weiwei SONG, Xingtong WANG, Jihua TAN. Effects of a diesel oxidation catalyst on gaseous pollutants and fine particles from an engine operating on diesel and biodiesel[J]. Front Envir Sci Eng, 2012, 6(4): 463-469.
[6] Jinbao WU, Zongqiang GONG, Liyan ZHENG, Yanli YI, Jinghua JIN, Xiaojun LI, Peijun LI. Removal of high concentrations of polycyclic aromatic hydrocarbons from contaminated soil by biodiesel[J]. Front Envir Sci Eng Chin, 2010, 4(4): 387-394.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed