Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front Envir Sci Eng Chin    2010, Vol. 4 Issue (4) : 387-394    https://doi.org/10.1007/s11783-010-0269-z
RESEARCH ARTICLE
Removal of high concentrations of polycyclic aromatic hydrocarbons from contaminated soil by biodiesel
Jinbao WU1,2,3, Zongqiang GONG1, Liyan ZHENG4, Yanli YI3, Jinghua JIN5, Xiaojun LI1, Peijun LI1()
1. Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China; 2. Shenyang University of Chemical Technology, Shenyang 110142, China; 3. Soil and Environment College, Shenyang Agriculture University, Shenyang 110161, China; 4. No. 202 Hospital of PLA, China; 5. Environmental Protection Research Institute of Light Industry, Beijing 100089, China
 Download: PDF(305 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Solubilizing experiments were carried out to evaluate the ability of biodiesel to remove polycyclic aromatic hydrocarbons (PAHs) from highly contaminated manufactured gas plant (MGP) and PAHs spiked soils with hydroxypropyl-β-cyclodextrin (HPCD) and tween 80 as comparisons. Biodiesel displayed the highest solubilities of phenanthrene (420.7 mg·L-1), pyrene (541.0 mg·L-1), and benzo(a)pyrene (436.3 mg·L-1). These corresponded to several fold increases relative to 10% HPCD and tween 80. Biodiesel showed a good efficiency for PAH removal from the spiked and MGP soils for both low molecular weight and high molecular weight PAHs at high concentrations. Biodiesel was the best agent for PAH removal from the spiked soils as compared with HPCD and tween 80; as over 77.9% of individual PAH were removed by biodiesel. Tween 80 also showed comparable capability with biodiesel for PAH solubilization at a concentration of 10% for the spiked soils. Biodiesel solubilized a wider range of PAHs as compared to HPCD and tween 80 for the MPG soils. At PAH concentrations of 229.6 and 996.9 mg·kg-1, biodiesel showed obvious advantage over the 10% HPCD and tween 80, because it removed higher than 80% of total PAH. In this study, a significant difference between PAH removals from the spiked and field MGP soils was observed; PAH removals from the MGP soil by HPCD and tween 80 were much lower than those from the spiked soil. These results demonstrate that the potential for utilizing biodiesel for remediation of highly PAH-contaminated soil has been established.

Keywords polycyclic aromatic hydrocarbons (PAHs)      biodiesel      soil      removal      solubilization     
Corresponding Author(s): LI Peijun,Email:lipeijun@iae.ac.cn   
Issue Date: 05 December 2010
 Cite this article:   
Jinbao WU,Zongqiang GONG,Liyan ZHENG, et al. Removal of high concentrations of polycyclic aromatic hydrocarbons from contaminated soil by biodiesel[J]. Front Envir Sci Eng Chin, 2010, 4(4): 387-394.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-010-0269-z
https://academic.hep.com.cn/fese/EN/Y2010/V4/I4/387
Fig.1  

Solubilities of phenanthrene, pyrene, and benzo(a)pyrene in different concentrations of solubilizing agents after 1 day equilibration with polycyclic aromatic hydrocarbon (PAH) crystals. Sample number= 4, error bar= 1 standard deviation, and the absence of error bars in some data indicates very low standard deviation values

Fig.2  

Removals of phenanthrene, pyrene, and benzo(a)pyrene from spiked soils by solubilizing agents. (a) s1; (b) s2. Sample number= 4, error bar= 1 standard deviation, and the absence of error bars in some data indicates very low standard deviation values

Fig.3  

Removals of individual PAHs from MGP soils by solubilizing agents. (a) MGP A; (b) MGP B; (c) MGP C. Sample number= 4, error bar= 1 standard deviation, and the absence of error bars in some data indicates very low standard deviation values

Fig.4  

Removals of total PAHs from MGP soils. Sample number= 4, error bar= 1 standard deviation, and the absence of error bars in some data indicates very low standard deviation values

Tab.1  

Representative chemical and physical characteristics of the manufactured gas plant soil (MGP) and control soil

Tab.2  

Original concentrations of polycyclic aromatic hydrocarbons (PAHs) in the MGP soils

1 Haritash A K, Kaushik C P. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. Journal of Hazardous Materials , 2009, 169(1-3): 1–15
doi: 10.1016/j.jhazmat.2009.03.137
2 Hawthorne S B, Poppendieck D G, Grabanski C B, Loehr R C. Comparing PAH availability from manufactured gas plant soils and sediments with chemical and biological tests. 1. PAH release during water desorption and supercritical carbon dioxide extraction. Environmental Science & Technology , 2002, 36(22): 4795–4803
doi: 10.1021/es020626k
3 Tao S, Cui Y H, Xu F L, Li B G, Cao J, Liu W X, Schmitt G, Wang X J, Shen W R, Qing B P, Sun R. Polycyclic aromatic hydrocarbons (PAHs) in agricultural soil and vegetables from Tianjin. The Science of the Total Environment , 2004, 320(1): 11–24
doi: 10.1016/S0048-9697(03)00453-4
4 Karimi-Lotfabad S K, Pickard M A, Gray M R. Reactions of polynuclear aromatic hydrocarbons on soil. Environmental Science & Technology , 1996, 30(4): 1145–1151
doi: 10.1021/es950365x
5 Teng Y, Luo Y M, Ping L F, Zou D X, Li Z G, Christie P. Effects of soil amendment with different carbon sources and other factors on the bioremediation of an aged PAH-contaminated soil. Biodegradation , 2010, 21(2): 167–178
doi: 10.1007/s10532-009-9291-x
6 Johnsen A R, Wick L Y, Harms H. Principles of microbial PAH-degradation in soil. Environmental Pollution , 2005, 133(1): 71–84
doi: 10.1016/j.envpol.2004.04.015
7 Berselli S, Milone G, Canepa P, Di Gioia D, Fava F. Effects of cyclodextrins, humic substances, and rhamnolipids on the washing of a historically contaminated soil and on the aerobic bioremediation of the resulting effluents. Biotechnology and Bioengineering , 2004, 88(1): 111–120
doi: 10.1002/bit.20218
8 Lei A P, Hu Z L, Wong Y S, Tam N F Y. Removal of fluoranthene and pyrene by different microalgal species. Bioresource Technology , 2007, 98(2): 273–280
doi: 10.1016/j.biortech.2006.01.012
9 Hong Y W, Yuan D X, Lin Q M, Yang T L. Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Marine Pollution Bulletin , 2008, 56(8): 1400–1405
doi: 10.1016/j.marpolbul.2008.05.003
10 Ehsan S, Prasher S O, Marshall W D. Simultaneous mobilization of heavy metals and polychlorinated biphenyl (PCB) compounds from soil with cyclodextrin and EDTA in admixture. Chemosphere , 2007, 68(1): 150–158
doi: 10.1016/j.chemosphere.2006.12.018
11 Khodadoust A P, Bagchi R, Suidan M T, Brenner R C, Sellers N G. Removal of PAHs from highly contaminated soils found at prior manufactured gas operations. Journal of Hazardous Materials , 2000, 80(1-3): 159–174
doi: 10.1016/S0304-3894(00)00286-7
12 Zhao B, Zhu L, Li W, Chen B. Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions. Chemosphere , 2005, 58(1): 33–40
doi: 10.1016/j.chemosphere.2004.08.067
13 Han M, Ji G, Ni J. Washing of field weathered crude oil contaminated soil with an environmentally compatible surfactant, alkyl polyglucoside. Chemosphere , 2009, 76(5): 579–586
doi: 10.1016/j.chemosphere.2009.05.003
14 Khodadoust A P, Reddy K R, Maturi K. Effect of different extraction agents on metal and organic contaminant removal from a field soil. Journal of Hazardous Materials , 2005, 117(1): 15–24
doi: 10.1016/j.jhazmat.2004.05.021
15 Chu W. Remediation of contaminated solid by surfactant-aided soil washing. Practice Periodical of Hazardous Toxic and Radioactive Waste Management , 2003, 7(1): 19–24
doi: 10.1061/(ASCE)1090-025X(2003)7:1(19)
16 Tungittiplakorn W, Cohen C, Lion L W. Engineered polymeric nanoparticles for bioremediation of hydrophobic contaminants. Environmental Science & Technology , 2005, 39(5): 1354–1358
doi: 10.1021/es049031a
17 Khodadoust A, Reddy K, Maturi K. Removal of phenanthrene from kaoilin soil using different extractants. Environmental Engineering Science , 2004, 21(6): 691–704
doi: 10.1089/ees.2004.21.691
18 Khalladi R, Benhabiles O, Bentahar F, Moulai-Mostefa N. Surfactant remediation of diesel fuel polluted soil. Journal of Hazardous Materials , 2009, 164(2-3): 1179–1184
doi: 10.1016/j.jhazmat.2008.09.024
19 Jozefaciuk G, Muranyi A, Fenyvesi E. Effect of randomly methylated beta-cyclodextrin on physical properties of soils. Environmental Science & Technology , 2003, 37(13): 3012–3017
doi: 10.1021/es026236f
20 Tick G R, Lourenso F, Wood A L, Brusseau M L. Pilot-scale demonstration of cyclodextrin as a solubility-enhancement agent for remediation of a tetrachloroethene-contaminated aquifer. Environmental Science & Technology , 2003, 37(24): 5829–5834
doi: 10.1021/es030417f
21 Viglianti C, Hanna K, de Brauer C, Germain P. Removal of polycyclic aromatic hydrocarbons from aged-contaminated soil using cyclodextrins: experimental study. Environmental Pollution , 2006, 140(3): 427–435
doi: 10.1016/j.envpol.2005.08.002
22 von Wedel R. Cytosol-cleaning oiled shorelines with a vegetable oil biosolvent. Spill Science & Technology Bulletin , 2000, 6(5-6): 357–359
doi: 10.1016/S1353-2561(00)00064-5
23 Yap C L, Gan S, Ng H K. Application of vegetable oils in the treatment of polycyclic aromatic hydrocarbons-contaminated soils. Journal of Hazardous Materials , 2010, 177(1-3): 28–41
doi: 10.1016/j.jhazmat.2009.11.078
24 Gao S, Wang L, Huang Q, Han S. Solubilization of polycyclic aromatic hydrocarbons by β-cyclodextrin and carboxymethyl-β-cyclodextrin. Chemosphere , 1998, 37(7): 1299–1305
doi: 10.1016/S0045-6535(98)00127-1
25 Ko S, Schlautman M, Carraway E. Partitioning of hydrophobic organic compound to hydroxypropyl-a-cyclodextrin: experimental studies and model predictions for surfactant-enhanced remediation applications. Environmental Science & Technology , 1999, 33(16): 2765–2770
doi: 10.1021/es9813360
26 Gómez J, Alcántara M T, Pazos M, Sanromán M A. Remediation of polluted soil by a two-stage treatment system: desorption of phenanthrene in soil and electrochemical treatment to recover the extraction agent. Journal of Hazardous Materials , 2010, 173(1-3): 794–798
doi: 10.1016/j.jhazmat.2009.08.103
27 Alcántara M T, Gómez J, Pazos M, Sanromán M A. PAHs soil decontamination in two steps: desorption and electrochemical treatment. Journal of Hazardous Materials , 2009, 166(1): 462–468
doi: 10.1016/j.jhazmat.2008.11.050
28 Cheng K Y, Wong J W C. Combined effect of nonionic surfactant Tween 80 and DOM on the behaviors of PAHs in soil—water system. Chemosphere , 2006, 62(11): 1907–1916
doi: 10.1016/j.chemosphere.2005.07.028
29 West C C, Harwell J H. Surfactants and subsurface remediation. Environmental Science & Technology , 1992, 26(12): 2324–2330
doi: 10.1021/es00036a002
30 McBride M B, Pitiranggon M, Kim B. A comparison of tests for extractable copper and zinc in metal-spiked and field-contaminated soil. Soil Science , 2009, 174(8): 439–444
doi: 10.1097/SS.0b013e3181b66856
31 Oorts K, Bronckaers H, Smolders E. Discrepancy of the microbial response to elevated copper between freshly spiked and long-term contaminated soils. Environmental Toxicology and Chemistry , 2006, 25(3): 845–853
doi: 10.1897/04-673R.1
32 Fernández-álvarez P, Vila J, Garrido J M, Grifoll M, Feijoo G, Lema J M. Evaluation of biodiesel as bioremediation agent for the treatment of the shore affected by the heavy oil spill of the Prestige. Journal of Hazardous Materials , 2007, 147(3): 914–922
doi: 10.1016/j.jhazmat.2007.01.135
33 Juhasz A L, Smith E, Weber J, Naidu R, Rees M, Rofe A, Kuchel T, Sansom L. Effect of soil ageing on in vivo arsenic bioavailability in two dissimilar soils. Chemosphere , 2008, 71(11): 2180–2186
doi: 10.1016/j.chemosphere.2007.12.022
34 Taylor L T, Jones D M. Bioremediation of coal tar PAH in soils using biodiesel. Chemosphere , 2001, 44(5): 1131–1136
doi: 10.1016/S0045-6535(00)00344-1
35 Miller N J, Mudge S M. The effect of biodiesel on the rate of removal and weathering characteristics of crude oilwithin artificial sand columns. Spill Science & Technology Bulletin , 1997, 4(1): 17–33
doi: 10.1016/S1353-2561(97)00030-3
[1] Zongqun Chen, Wei Jin, Hailong Yin, Mengqi Han, Zuxin Xu. Performance evaluation on the pollution control against wet weather overflow based on on-site coagulation/flocculation in terminal drainage pipes[J]. Front. Environ. Sci. Eng., 2021, 15(6): 111-.
[2] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[3] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[4] Violeta Makareviciene, Egle Sendzikiene, Ieva Gaide. Application of heterogeneous catalysis to biodiesel synthesis using microalgae oil[J]. Front. Environ. Sci. Eng., 2021, 15(5): 97-.
[5] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[6] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[7] Junlian Qiao, Yang Liu, Hongyi Yang, Xiaohong Guan, Yuankui Sun. Remediation of arsenic contaminated soil by sulfidated zero-valent iron[J]. Front. Environ. Sci. Eng., 2021, 15(5): 83-.
[8] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[9] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[10] Haiyan Mou, Wenchao Liu, Lili Zhao, Wenqing Chen, Tianqi Ao. Stabilization of hexavalent chromium with pretreatment and high temperature sintering in highly contaminated soil[J]. Front. Environ. Sci. Eng., 2021, 15(4): 61-.
[11] Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu. Pseudomonas mendocina LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously[J]. Front. Environ. Sci. Eng., 2021, 15(4): 57-.
[12] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[13] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[14] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[15] Hanli Wan, Jianmin Bian, Han Zhang, Yihan Li. Assessment of future climate change impacts on water-heat-salt migration in unsaturated frozen soil using CoupModel[J]. Front. Environ. Sci. Eng., 2021, 15(1): 10-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed