Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (5) : 107    https://doi.org/10.1007/s11783-021-1395-5
RESEARCH ARTICLE
Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water
Guolong Zeng, Yiyang Liu, Xiaoguo Ma(), Yinming Fan
School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
 Download: PDF(1324 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Magnetic multi-template molecularly imprinted polymer composite was synthesized.

• MIP composite was used as the adsorbent for removal of tetracyclines from water.

• MIP composite showed excellent adsorption selectivity toward tetracyclines.

• MIP composite possessed good reusability.

Antibiotic contamination of the water environment has attracted much attention from researchers because of their potential hazards to humans and ecosystems. In this study, a multi-template molecularly imprinted polymer (MIP) modified mesoporous silica coated magnetic graphene oxide (MGO@MS@MIP) was prepared by the surface imprinting method via a sol-gel process and was used for the selective, efficient and simultaneous removal of tetracyclines (TCs), including doxycycline (DC), tetracycline (TC), chlorotetracycline (CTC) and oxytetracycline (OTC) from water. The synthesized MIP composite was characterized by Fourier transform infrared spectroscopy, transmission electron microscope and thermogravimetric analysis. The adsorption properties of MGO@MS@MIP for these TCs were characterized through adsorption kinetics, isotherms and selectivity tests. The MIP composite revealed larger adsorption quantities, excellent selectivity and rapid kinetics for these four tetracyclines. The adsorption process was spontaneous and endothermic and followed the Freundlich isotherm model and the pseudo-second-order kinetic model. The MGO@MS@MIP could specifically recognize DC, TC, CTC and OTC in the presence of some chemical analogs. In addition, the sorption capacity of the MIP composite did not decrease significantly after repeated application for at least five cycles. Thus, the prepared magnetic MIP composite has great potential to contribute to the effective separation and removal of tetracyclines from water.

Keywords Tetracyclines      Removal      Adsorption      Molecularly imprinted polymer      Magnetic graphene oxide     
Corresponding Author(s): Xiaoguo Ma   
Issue Date: 03 February 2021
 Cite this article:   
Guolong Zeng,Yiyang Liu,Xiaoguo Ma, et al. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1395-5
https://academic.hep.com.cn/fese/EN/Y2021/V15/I5/107
Fig.1  Schematic diagram of the synthesis of MGO@MS@MIP.
Fig.2  TEM images of MGO (a), MGO@MS (b) and MGO@MS@MIP (c).
Fig.3  N2 adsorption-desorption isotherms of MGO@MS (a) and MGO@MS@MIP (b).
Fig.4  FTIR spectra of GO (a), MGO (b), MGO@MS (c), MGO@MS@MIP (d) and NIP (e).
Fig.5  TGA curves of MGO, MGO@MS and MGO@MS@MIP.
Fig.6  Effect of sample pH on the adsorption of OTC, TC, CTC and DC by MGO @MS@MIP. Adsorption conditions: 20 mL of adsorbate solution (50 mg/L); 20 mg of adsorbent; 90 min of contact time; and 298 K.
Fig.7  Adsorption kinetic curves of OTC, TC, CTC and DC on MGO@MS@MIP and NIP. Adsorption conditions: 20 mL of adsorbate solution (50 mg/L); 20 mg of adsorbent; pH 7.5; and 298K.
Adsorbate Adsorbent Qe, exp
(mg/g)
Pseudo-first order model Pseudo-second order model Intra-particle diffusion model
K1
(/min)
Qe, cal
(mg/g)
R2 K2
(mg/(g·min))
Qe,cal
(mg/g)
R2 Kid
(mg/(g·min1/2))
C
(mg/g)
R2
OTC MIP 5.92 0.069 4.07 0.9426 0.043 6.42 0.9991 0.178 3.67 0.7232
NIP 2.84 0.055 1.56 0.9280 0.078 2.85 0.9998 0.087 1.69 0.4568
TC MIP 5.66 0.074 3.94 0.9556 0.091 5.84 0.9999 0.161 3.62 0.5128
NIP 2.61 0.066 1.76 0.9322 0.047 2.64 0.9996 0.093 1.39 0.4620
CTC MIP 19.76 0.068 13.30 0.9390 0.021 19.83 0.9999 0.452 13.60 0.5231
NIP 8.10 0.068 5.55 0.9407 0.062 8.15 0.9999 0.207 5.32 0.5287
DC MIP 11.89 0.069 8.18 0.9416 0.028 12.42 0.9998 0.372 7.25 0.5850
NIP 5.76 0.072 4.66 0.9795 0.032 5.85 0.9996 0.202 3.10 0.5377
Tab.1  Kinetic parameters of OTC, TC, CTC and DC adsorption onto the MGO@MS@MIP and NIP at 298K
Fig.8  Adsorption isotherms of MGO@MS@MIP for OTC (a), TC (b), CTC (c) and DC (d).
Adsorbate Adsorbent T (K) Langmuir Freundlich Tempkin
Qm (mg/g) KL
(L/mg)
R2 KF n
(g/L)
R2 a
(mg/g)
b
(L/g)
R2
OTC MIP 298 8.19 0.082 0.9613 0.18 2.14 0.9896 0.78 1.24 0.8976
308 38.02 0.004 0.9305 0.84 1.09 0.9993 -1.93 2.02 0.7242
318 18.80 0.031 0.9897 0.68 1.42 0.9737 -0.64 2.62 0.8822
NIP 298 23.04 0.009 0.8110 0.17 1.05 0.9578 -1.83 2.14 0.7613
308 4.62 0.16 0.8917 0.45 1.68 0.8169 0.28 1.01 0.6053
318 35.72 0.010 0.5293 0.44 1.20 0.9461 -3.21 3.21 0.7566
TC MIP 298 31.45 0.017 0.9696 0.64 1.30 0.9930 -1.56 3.40 0.8072
308 95.20 0.004 0.9021 0.36 1.08 0.9994 -2.93 3.99 0.7472
318 57.80 0.008 0.9895 0.50 1.15 0.9960 -2.81 4.21 0.7608
NIP 298 35.58 0.011 0.8030 0.16 0.87 0.8650 -2.94 3.57 0.8022
308 17.69 0.038 0.8199 0.65 1.36 0.9190 -0.98 2.86 0.8036
318 62.50 0.014 0.7729 0.95 1.20 0.9430 -1.91 5.55 0.8244
CTC MIP 298 39.84 0.039 0.8560 2.92 2.16 0.9702 4.36 3.22 0.6406
308 54.05 0.033 0.9564 1.92 1.47 0.9912 1.20 5.44 0.8186
318 98.04 0.12 0.9790 5.43 1.67 0.9828 9.95 7.36 0.8361
NIP 298 15.38 0.13 0.9460 1.44 2.74 0.9250 0.54 2.62 0.8651
308 31.35 2.85 0.9380 1.50 2.46 0.9100 2.92 4.87 0.8858
318 192.31 26.0 0.6560 1.53 2.34 0.9122 17.4 9.61 0.6495
DC MIP 298 22.34 0.040 0.9750 0.34 1.57 0.9676 0.07 3.00 0.8352
308 13.69 0.039 0.9531 1.09 1.34 0.9845 -0.99 3.12 0.7706
318 9.22 0.032 0.9790 0.65 1.21 0.9955 -0.65 1.64 0.4783
NIP 298 44.82 0.011 0.5600 0.76 1.38 0.9799 -1.59 3.68 0.6969
308 24.80 0.024 0.7768 0.76 1.41 0.9545 -1.24 3.42 0.8227
318 21.85 0.10 0.9846 1.51 1.33 0.9720 1.80 3.38 0.8186
Tab.2  Isotherm parameters of OTC, TC, CTC and DC adsorption onto MGO@MS@MIP at different temperatures
Adsorbate C0
(mg/L)
?H0
(J/mol)
?S0
(J/(mol·K))
?G0 (KJ/mol)
298K 308K 318K
OTC 10 50.12 2.22 -0.61 -0.63 -0.65
50 43.70 1.81 -0.49 -0.51 -0.53
100 26.39 0.97 -0.26 -0.27 -0.28
TC 10 11.53 0.42 -0.114 -0.119 -0.123
50 5.66 0.12 -0.029 -0.030 -0.031
100 10.10 0.30 -0.079 -0.082 -0.085
CTC 10 49.36 2.41 -0.67 -0.69 -0.72
50 33.78 1..55 -0.43 -0.44 -0.46
100 38.63 1.73 -0.48 -0.49 -0.51
DC 10 41.92 1.87 -0.52 -0.53 -0.55
50 28.82 1.17 -0.32 -0.33 -0.34
100 37.80 1.51 -0.41 -0.43 -0.44
Tab.3  Thermodynamic parameters of OTC, TC, CTC and DC adsorption onto the MGO @MS @MIP at various initial concentrations and temperatures
Adsorbent Imprinting parameter OTC TC CTC DC CIP MTC
MIPs Kd 0.068 0.05 0.356 0.039 0.005 0.003
aMTC 12.53 9.22 65.64 7.13
aCIP 21.16 15.58 110.8 12.04
NIPs Kd 0.009 0.007 0.026 0.006 0.004 0.004
aMTC 2.26 1.17 6.55 1.48
aCIP 2.26 1.17 6.55 1.48
Tab.4  Special selectivity of MIP composite toward TCs compared with MTC and CIP
Fig.9  The reusability analysis of MGO@MS@MIP for four TCs.
Adsorbent Qe (mg/g) Equilibrium time (h) Reference
Magnetic carbon 28.14 5 Rattanachueskul et al., 2017
a) Fe3O4/PAN NFs 37.17 72 Liu et al., 2015
b) Magnetic PI@LDO 50.82 3 Wu et al., 2019
c) Fe-N, N-SBA15 40.24 6 Zhang et al., 2015
MGO@MS@MIP 40.09 1 This work
Tab.5  Comparison with other sorbents for the removal of tetracyclines
1 M J Ahmed (2017). Adsorption of quinolone, tetracycline, and penicillin antibiotics from aqueous solution using activated carbons. Environmental Toxicology and Pharmacology, 50: 1–10
https://doi.org/10.1016/j.etap.2017.01.004
2 C Buelke, A Alshami, J Casler, Y Lin, M Hickner, I H Aljundi (2019). Evaluating graphene oxide and holey graphene oxide membrane performance for water purification. Journal of Membrane Science, 588: 117195 doi:10.1016/j.memsci.2019.117195
3 H Y Chen, Y D Liu, B Dong (2018). Biodegradation of tetracycline antibiotics in A/O moving-bed biofilm reactor systems. Bioprocess and Biosystems Engineering, 41(1): 47–56
https://doi.org/10.1007/s00449-017-1842-7
4 Y J Chen, F H Wang, L C Duan, H Yang, J Gao (2016). Tetracycline adsorption onto rice husk ash, an agricultural waste: Its kinetic and thermodynamic studies. Journal of Molecular Liquids, 222: 487–494
https://doi.org/10.1016/j.molliq.2016.07.090
5 Y Cui , F Tan, Y Wang, S Ren, J Chen (2020). Diffusive gradients in thin films using molecularly imprinted polymer binding gels for in situ measurements of antibiotics in urban wastewaters. Frontiers of Environmental Science & Engineering, 14(6): 111
https://doi.org/10.1007/s11783-020-1290-5
6 Y J Dai, K X Zhang, X B Meng, J J Li, X T Guan, Q Y Sun, Y Sun, W S Wang, M Lin, M Liu, S S Yang, Y J Chen, F Gao, X Zhang, Z H Liu (2019). New use for spent coffee ground as an adsorbent for tetracycline removal in water. Chemosphere, 215: 163–172
https://doi.org/10.1016/j.chemosphere.2018.09.150
7 F Y Du, L S Sun, W Tan, Z Y Wei, H G Nie, Z J Huang, G H Ruan, J P Li (2019). Magnetic stir cake sorptive extraction of trace tetracycline antibiotics in food samples: preparation of metal-organic framework-embedded polyHIPE monolithic composites, validation and application. Analytical and Bioanalytical Chemistry, 411(10): 2239–2248
https://doi.org/10.1007/s00216-019-01660-1
8 O Duman, E Ayranci (2010). Attachment of benzo-crown ethers onto activated carbon cloth to enhance the removal of chromium, cobalt and nickel ions from aqueous solutions by adsorption. Journal of Hazardous Materials, 176(1–3): 231–238
https://doi.org/10.1016/j.jhazmat.2009.11.018
9 O Duman, C Özcan, T Gürkan Polat, S Tunç (2019). Carbon nanotube-based magnetic and non-magnetic adsorbents for the high-efficiency removal of diquat dibromide herbicide from water: OMWCNT, OMWCNT-Fe3O4 and OMWCNT-k-carrageenan-Fe3O4 nanocomposites. Environmental Pollution, 244: 723–732 doi:10.1016/j.envpol.2018.10.071
10 O Duman, S Tunç, B K Bozoğlan, T G Polat (2016). Removal of triphenylmethane and reactive azo dyes from aqueous solution by magnetic carbon nanotube-k-carrageenan Fe3O4 nanocomposite. Journal of Alloys and Compounds, 687: 370–383
https://doi.org/10.1016/j.jallcom.2016.06.160
11 O Duman, S Tunç, T G Polat (2015). Determination of adsorptive properties of expanded vermiculite for the removal of C. I. Basic Red 9 from aqueous solution: Kinetic, isotherm and thermodynamic studies. Applied Clay Science, 109–110: 22–32
https://doi.org/10.1016/j.clay.2015.03.003
12 L Guardia, F Suarez-Garcia, J I Paredes, P Solis-Fernandez, R Rozada, M J Fernandez-Merino, A Martinez-Alonso, J M D Tascon (2012). Synthesis and characterization of graphene-mesoporous silica nanoparticle hybrids. Microporous and Mesoporous Materials, 160: 18–24
https://doi.org/10.1016/j.micromeso.2012.04.038
13 J F Guo, M M Yu, X Wei, L H Huang (2018). Preparation of core-shell magnetic molecularly imprinted polymer with uniform thin polymer layer for adsorption of dichlorophen. Journal of Chemical & Engineering Data, 63(8): 3068–3073
https://doi.org/10.1021/acs.jced.8b00321
14 L H Guo, X G Ma, X W Xie, R F Huang, M Y Zhang, J Li, G L Zeng, Y M Fan (2019). Preparation of dual-dummy-template molecularly imprinted polymers coated magnetic graphene oxide for separation and enrichment of phthalate esters in water. Chemical Engineering Journal, 361: 245–255
https://doi.org/10.1016/j.cej.2018.12.076
15 P A Kallenberger, M Froba (2018). Water harvesting from air with a hygroscopic salt in a hydrogel-derived matrix. Communications Chemistry, 1(1): 28 doi:10.1038/s42004-018-0028-9
16 H J Kang, M Y Lim, J H Kwon (2012). Effects of adsorption onto silica sand particles on the hydrolysis of tetracycline antibiotics. Journal of Environmental Monitoring, 14(7): 1853–1859
https://doi.org/10.1039/c2em10961a
17 X Li, X G Ma, R F Huang, X W Xie, L H Guo, M Y Zhang (2018). Synthesis of a molecularly imprinted polymer on mSiO2@Fe3O4 for the selective adsorption of atrazine. Journal of Separation Science, 41(13): 2837–2845
https://doi.org/10.1002/jssc.201800146
18 L L Lian, J Y Lv, X Y Wang, D W Lou (2018). Magnetic solid-phase extraction of tetracyclines using ferrous oxide coated magnetic silica microspheres from water samples. Journal of Chromatography. A, 1534: 1–9
https://doi.org/10.1016/j.chroma.2017.12.041
19 H Liu, J Zhu, L Hao, Y Jiang, B Van Der Bruggen, A Sotto, C Gao, J Shen (2019). Thermo- and pH-responsive graphene oxide membranes with tunable nanochannels for water gating and permeability of small molecules. Journal of Membrane Science, 587: 117163
https://doi.org/10.1016/j.memsci.2019.06.003
20 P Liu, W J Liu, H Jiang, J J Chen, W W Li, H Q Yu (2012). Modification of bio-char derived from fast pyrolysis of biomass and its application in removal of tetracycline from aqueous solution. Bioresource Technology, 121: 235–240
https://doi.org/10.1016/j.biortech.2012.06.085
21 Q Liu, L B Zhong, Q B Zhao, C Frear, Y M Zheng (2015). Synthesis of Fe3O4/polyacrylonitrile composite electrospun nanofiber mat for effective adsorption of tetracycline. ACS Applied Materials & Interfaces, 7(27): 14573–14583
https://doi.org/10.1021/acsami.5b04598
22 P F Ma, W M Yang, T Fan, H Liu, Z P Zhou, J H Li, L Zhang, W Z Xu (2015). Surface imprinted polymers for oil denitrification with the combination of computational simulation and multi-template molecular imprinting. Polymers for Advanced Technologies, 26(5): 476–486
https://doi.org/10.1002/pat.3476
23 A Pourjavadi, Z M Tehrani, H Salimi, A Banazadeh, N Abedini (2015). Hydrogel nanocomposite based on chitosan-g-acrylic acid and modified nanosilica with high adsorption capacity for heavy metal ion removal. Iranian Polymer Journal, 24(9): 725–734
https://doi.org/10.1007/s13726-015-0360-1
24 J Radjenovic, M Petrovic (2017). Removal of sulfamethoxazole by electrochemically activated sulfate: Implications of chloride addition. Journal of Hazardous Materials, 333: 242–249
https://doi.org/10.1016/j.jhazmat.2017.03.040
25 N Rattanachueskul, A Saning, S Kaowphong, N Chumha, L Chuenchom (2017). Magnetic carbon composites with a hierarchical structure for adsorption of tetracycline, prepared from sugarcane bagasse via hydrothermal carbonization coupled with simple heat treatment process. Bioresource Technology, 226: 164–172
https://doi.org/10.1016/j.biortech.2016.12.024
26 W H Tsai, T C Huang, J J Huang, Y H Hsue, H Y Chuang (2009). Dispersive solid-phase microextraction method for sample extraction in the analysis of four tetracyclines in water and milk samples by high-performance liquid chromatography with diode-array detection. Journal of Chromatography. A, 1216(12): 2263–2269
https://doi.org/10.1016/j.chroma.2009.01.034
27 P Van Der Voort, P I Ravikovitch, K P De Jong, A V Neimark, A H Janssen, M Benjelloun, E Van Bavel, P Cool, B M Weckhuysen, E F Vansant (2002). Plugged hexagonal templated silica: a unique micro- and mesoporous composite material with internal silica nanocapsules. Chemical Communications, (9): 1010–1011 doi:10.1039/b201424f
28 J Wang, Z M Chen, B L Chen (2014). Adsorption of polycyclic aromatic hydrocarbons by graphene and graphene oxide nanosheets. Environmental Science & Technology, 48(9): 4817–4825
https://doi.org/10.1021/es405227u
29 J J Wang, J Wei (2017). Selective and simultaneous removal of dibenzothiophene and 4-methyldibenzothiophene using double-template molecularly imprinted polymers on the surface of magnetic mesoporous silica. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 5(9): 4651–4659
https://doi.org/10.1039/C6TA11167J
30 R Wang, X G Ma, X J Zhang, X Li, D P Li, Y F Dang (2019). C8-modified magnetic graphene oxide based solid-phase extraction coupled with dispersive liquid-liquid microextraction for detection of trace phthalate acid esters in water samples. Ecotoxicology and Environmental Safety, 170: 789–795 doi:10.1016/j.ecoenv.2018.12.051
31 Z M Wang, W D Wang, N Coombs, N Soheilnia, G A Ozin (2010). Graphene oxide-periodic mesoporous silica sandwich nanocomposites with vertically oriented channels. ACS Nano, 4(12): 7437–7450
https://doi.org/10.1021/nn102618n
32 D Wei, M T Li, X D Wang, F Han, L S Li, J Guo, L J Ai, L L Fang, L Liu, B Du, Q Wei (2016). Extracellular polymeric substances for Zn(II) binding during its sorption process onto aerobic granular sludge. Journal of Hazardous Materials, 301: 407–415
https://doi.org/10.1016/j.jhazmat.2015.09.018
33 H J Wu, H L Zhang, W J Zhang, X F Yang, H Zhou, Z Q Pan, D S Wang (2019). Preparation of magnetic polyimide@ Mg-Fe layered double hydroxides core-shell composite for effective removal of various organic contaminants from aqueous solution. Chemosphere, 219: 66–75
https://doi.org/10.1016/j.chemosphere.2018.11.209
34 L W Xie, J F Guo, Y P Zhang, Y C Hu, Q P You, S Y Shi (2015). Novel molecular imprinted polymers over magnetic mesoporous silica microspheres for selective and efficient determination of protocatechuic acid in Syzygium aromaticum. Food Chemistry, 178: 18–25
https://doi.org/10.1016/j.foodchem.2015.01.069
35 X W Xie, X G Ma, L H Guo, Y M Fan, G L Zeng, M Y Zhang, J Li (2019). Novel magnetic multi-templates molecularly imprinted polymer for selective and rapid removal and detection of alkylphenols in water. Chemical Engineering Journal, 357: 56–65
https://doi.org/10.1016/j.cej.2018.09.080
36 S N Xu, J Ding, L G Chen (2018). A fluorescent material for the detection of chlortetracycline based on molecularly imprinted silica-graphitic carbon nitride composite. Analytical and Bioanalytical Chemistry, 410(27): 7103–7112
https://doi.org/10.1007/s00216-018-1310-5
37 W Z Xu, W Zhou, P P Xu, J M Pan, X Y Wu, Y S Yan (2011). A molecularly imprinted polymer based on TiO2 as a sacrificial support for selective recognition of dibenzothiophene. Chemical Engineering Journal, 172(1): 191–198
https://doi.org/10.1016/j.cej.2011.05.089
38 X Q Yang, C X Yang, X P Yan (2013). Zeolite imidazolate framework-8 as sorbent for on-line solid-phase extraction coupled with high-performance liquid chromatography for the determination of tetracyclines in water and milk samples. Journal of Chromatography. A, 1304: 28–33
https://doi.org/10.1016/j.chroma.2013.06.064
39 B Ye, Z Chen, X Li, J Liu, Q Wu, C Yang, H Hu, R Wang (2019). Inhibition of bromate formation by reduced graphene oxide supported cerium dioxide during ozonation of bromide-containing water. Frontiers of Environmental Science & Engineering, 13(6): 86
https://doi.org/10.1007/s11783-019-1170-z
40 M Y Zhang, X G Ma, J Li, R F Huang, L H Guo, X F Zhang, Y M Fan, X W Xie, G L Zeng (2019). Enhanced removal of As(III) and As(V) from aqueous solution using ionic liquid-modified magnetic graphene oxide. Chemosphere, 234: 196–203
https://doi.org/10.1016/j.chemosphere.2019.06.057
41 Y Zhang, X Cheng, X Jiang, J J Urban, C H Lau, S Liu, L Shao (2020). Robust natural nanocomposites realizing unprecedented ultrafast precise molecular separations. Materials Today, 36: 40–47
https://doi.org/10.1016/j.mattod.2020.02.002
42 Z Y Zhang, H C Lan, H J Liu, J H Qu (2015). Removal of tetracycline antibiotics from aqueous solution by amino-Fe (III) functionalized SBA15. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 471: 133–138
https://doi.org/10.1016/j.colsurfa.2015.02.018
43 Q Zhou, Z Q Li, C D Shuang, A M Li, M C Zhang, M Q Wang (2012). Efficient removal of tetracycline by reusable magnetic microspheres with a high surface area. Chemical Engineering Journal, 210: 350–356
https://doi.org/10.1016/j.cej.2012.08.081
44 Y W Zhu, S Murali, W W Cai, X S Li, J W Suk, J R Potts, R S Ruoff (2010). Graphene and graphene oxide: Synthesis, properties, and applications. Advanced Materials, 22(35): 3906–3924
https://doi.org/10.1002/adma.201001068
45 A H Zyoud, A Zubi, S H Zyoud, M H Hilal, S Zyoud, N Qamhieh, A Hajamohideen, H S Hilal (2019). Kaolin-supported ZnO nanoparticle catalysts in self-sensitized tetracycline photodegradation: Zero-point charge and pH effects. Applied Clay Science, 182: 105294
https://doi.org/10.1016/j.clay.2019.105294
[1] FSE-20167-OF-ZGL_Suppl_1 Download
[1] Xuemei Hu, Shijie You, Fang Li, Yanbiao Liu. Recent advances in antimony removal using carbon-based nanomaterials: A review[J]. Front. Environ. Sci. Eng., 2022, 16(4): 48-.
[2] Hui Hu, Lei Jiang, Longli Sun, Yanling Gao, Tian Wang, Chenguang Lv. Effective and selective separation of perrhenate from acidic wastewater by super-stable, superhydrophobic, and recyclable biosorbent[J]. Front. Environ. Sci. Eng., 2022, 16(2): 21-.
[3] Zaishan Wei, Meiru Tang, Zhenshan Huang, Huaiyong Jiao. Mercury removal from flue gas using nitrate as an electron acceptor in a membrane biofilm reactor[J]. Front. Environ. Sci. Eng., 2022, 16(2): 20-.
[4] Hailan Wang, Baoyu Gao, Li’an Hou, Ho Kyong Shon, Qinyan Yue, Zhining Wang. Fertilizer drawn forward osmosis as an alternative to 2nd pass seawater reverse osmosis: Estimation of boron removal and energy consumption[J]. Front. Environ. Sci. Eng., 2021, 15(6): 135-.
[5] Farasat Ali, Ghulam Jilani, Leilei Bai, Chunliu Wang, Linqi Tian, Helong Jiang. Effects of previous drying of sediment on root functional traits and rhizoperformance of emerged macrophytes[J]. Front. Environ. Sci. Eng., 2021, 15(6): 134-.
[6] Yingwu Wang, Ping Ning, Ruheng Zhao, Kai Li, Chi Wang, Xin Sun, Xin Song, Qiang Lin. A Cu-modified active carbon fiber significantly promoted H2S and PH3 simultaneous removal at a low reaction temperature[J]. Front. Environ. Sci. Eng., 2021, 15(6): 132-.
[7] Zongqun Chen, Wei Jin, Hailong Yin, Mengqi Han, Zuxin Xu. Performance evaluation on the pollution control against wet weather overflow based on on-site coagulation/flocculation in terminal drainage pipes[J]. Front. Environ. Sci. Eng., 2021, 15(6): 111-.
[8] Jingke Song, Chenyang Li, Xuejiang Wang, Songsong Zhi, Xin Wang, Jianhui Sun. Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa[J]. Front. Environ. Sci. Eng., 2021, 15(6): 129-.
[9] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[10] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[11] Yaocheng Fan, Tiancui Li, Deshou Cun, Haibing Tang, Yanran Dai, Feihua Wang, Wei Liang. Removal of arsenic by pilot-scale vertical flow constructed wetland[J]. Front. Environ. Sci. Eng., 2021, 15(4): 79-.
[12] Lina Gan, Kezhi Li, Hejingying Niu, Yue Peng, Jianjun Chen, Yuandong Huang, Junhua Li. Simultaneous removal of NOx and chlorobenzene on V2O5/TiO2 granular catalyst: Kinetic study and performance prediction[J]. Front. Environ. Sci. Eng., 2021, 15(4): 70-.
[13] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[14] Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu. Pseudomonas mendocina LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously[J]. Front. Environ. Sci. Eng., 2021, 15(4): 57-.
[15] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed