Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (6) : 129    https://doi.org/10.1007/s11783-021-1417-3
RESEARCH ARTICLE
Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa
Jingke Song1, Chenyang Li1, Xuejiang Wang2(), Songsong Zhi1, Xin Wang3, Jianhui Sun1
1. School of Environment, Key Laboratory for Yellow River and Huai River Water Environment and Pollution Control (Ministry of Education), Henan Key Laboratory for Environmental Pollution Control, Henan Normal University, Xinxiang 453007, China
2. College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China
3. Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green Energy and Environment Protection Materials, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou 510006, China
 Download: PDF(5808 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Bi doping in TiO2 enhanced the separation of photo-generated electron-hole.

• The performance of photocatalytic degradation of MC-LR was improved.

• Coexisting substances have no influence on algal removal performance.

• The key reactive oxygen species were h+ and OH in the photocatalytic process.

The increase in occurrence and severity of cyanobacteria blooms is causing increasing concern; moreover, human and animal health is affected by the toxic effects of Microcystin-LR released into the water. In this paper, a floating photocatalyst for the photocatalytic inactivation of the harmful algae Microcystis aeruginosa (M. aeruginosa) was prepared using a simple sol-gel method, i.e., coating g-C3N4 coupled with Bi-doped TiO2 on Al2O3-modified expanded perlite (CBTA for short). The impact of different molar ratios of Bi/Ti on CBTA was considered. The results indicated that Bi doping in TiO2 inhibited photogenerated electron-hole pair recombination. With 6 h of visible light illumination, 75.9% of M. aeruginosa (initial concentration= 2.7 × 106 cells/L) and 83.7% of Microcystin-LR (initial concentration= 100 μg/L) could be removed with the addition of 2 g/L CBTA-1% (i.e., Bi/Ti molar ratio= 1%). The key reactive oxygen species (ROSs) in the photocatalytic inactivation process are h+ and OH. The induction of the Bi4+/Bi3+ species by the incorporation of Bi could narrow the bandgap of TiO2, trap electrons, and enhance the stability of CBTA-1% in the solutions with coexisting environmental substances.

Keywords Bi doping      Visible light      Algal removal      Charge carrier separation     
Corresponding Author(s): Xuejiang Wang   
Issue Date: 17 March 2021
 Cite this article:   
Jingke Song,Chenyang Li,Xuejiang Wang, et al. Visible-light-driven heterostructured g-C3N4/Bi-TiO2 floating photocatalyst with enhanced charge carrier separation for photocatalytic inactivation of Microcystis aeruginosa[J]. Front. Environ. Sci. Eng., 2021, 15(6): 129.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1417-3
https://academic.hep.com.cn/fese/EN/Y2021/V15/I6/129
Fig.1  (a) XRD patterns of g-C3N4, CBTA-x (x = 0.5%, 1%, 2% or 3%) and CTA, and (b) N2 sorption isotherms of CTA and CBTA-x (x = 0.5%, 1%, 2% or 3%).
Fig.2  FESEM image of CBTA-1% (a) and its C, N, Bi and Ti element mapping images are shown in (b), (c), (d) and (e) respectively; (f) EDS spectra of CBTA-1%.
Fig.3  High-resolution XPS spectra of CBTA-1% for (a) C 1s, (b) N 1s, (c) Bi 4f and (d) Ti 2p. In Figs. 3(a)–3(d), PC indicates the principle component after deconvolution.
Fig.4  (a) Comparison of the photocatalytic inactivation of M. aeruginosa using CTA and CBTA-x (x = 0.5%, 1%, 2% and 3%); (b) Photocatalytic degradation of MC-LR with CTA and CBTA-1% (initial concentration= 100 μg/L). The dark adsorption stage is from –0.5 to 0 h. Lines serve to guide the eye.
Fig.5  Scheme 1 A schematic illustration of the photocatalytic process on the surface of the g-C3N4/Bi-TiO2 heterojunction photocatalyst with visible-light irradiation.
Fig.6  Optical and corresponding fluorescence images of live/dead-stained M. aeruginosa: (a) and (b) for initial algal cells, (c) and (d) for 6 h after photocatalytic inactivation treatment; algal cells were examined for viability using annexin V and propidium iodide (PI) staining: (e) initial algal cells and (f) after photocatalytic inactivation for 6 h.
1 U Alam, M Fleisch, I Kretschmer, D Bahnemann, M Muneer (2017). One-step hydrothermal synthesis of Bi-TiO2 nanotube/graphene composites: An efficient photocatalyst for spectacular degradation of organic pollutants under visible light irradiation. Applied Catalysis B: Environmental, 218: 758–769
https://doi.org/10.1016/j.apcatb.2017.06.016
2 J Andersen, C Han, K O’shea, D D Dionysiou (2014). Revealing the degradation intermediates and pathways of visible light-induced NF-TiO2 photocatalysis of microcystin-LR. Applied Catalysis B: Environmental, 154– 155: 259–266
https://doi.org/10.1016/j.apcatb.2014.02.025
3 V L Chandraboss, J Kamalakkannan, S Senthilvelan (2016). Synthesis of activated charcoal supported Bi-doped TiO2 nanocomposite under solar light irradiation for enhanced photocatalytic activity. Applied Surface Science, 387: 944–956
https://doi.org/10.1016/j.apsusc.2016.06.110
4 F Chang, J Zhang, Y C Xie, J Chen, C L Li, J Wang, J R Luo, B Q Deng, X F Hu (2014). Fabrication, characterization, and photocatalytic performance of exfoliated g-C3N4-TiO2 hybrids. Applied Surface Science, 311: 574–581
https://doi.org/10.1016/j.apsusc.2014.05.111
5 J S Chen, S Y Qin, Y D Liu, F Xin, X H Yin (2014). Preparation of a visible light-driven Bi2O3-TiO2 composite photocatalyst by an ethylene glycol-assisted sol-gel method, and its photocatalytic properties. Research on Chemical Intermediates, 40(2): 637–648
https://doi.org/10.1007/s11164-012-0989-8
6 W Chen, P Westerhoff, J A Leenheer, K Booksh (2003). Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environmental Science & Technology, 37(24): 5701–5710
https://doi.org/10.1021/es034354c
7 Y Q Chen, P C Xie, Z P Wang, R Shang, S L Wang (2017). UV/persulfate preoxidation to improve coagulation efficiency of Microcystis aeruginosa. Journal of Hazardous Materials, 322: 508–515
https://doi.org/10.1016/j.jhazmat.2016.10.017
8 L A Coral, A Zamyadi, B Barbeau, F J Bassetti, F R Lapolli, M Prevost (2013). Oxidation of Microcystis aeruginosa and Anabaena flos-aquae by ozone: Impacts on cell integrity and chlorination by-product formation. Water Research, 47(9): 2983–2994
https://doi.org/10.1016/j.watres.2013.03.012
9 K Dai, L H Lu, C H Liang, Q Liu, G P Zhu (2014). Heterojunction of facet coupled g-C3N4/surface-fluorinated TiO2 nanosheets for organic pollutants degradation under visible LED light irradiation. Applied Catalysis B: Environmental, 156– 157: 331–340
https://doi.org/10.1016/j.apcatb.2014.03.039
10 J Ding, W Xu, H Wan, D Yuan, C Chen, L Wang, G Guan, W L Dai (2018). Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes. Applied Catalysis B: Environmental, 221: 626–634
https://doi.org/10.1016/j.apcatb.2017.09.048
11 M Długosz, J Waś, K Szczubiałka, M Nowakowska (2014). TiO2-coated EP as a floating photocatalyst for water purification. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 2(19): 6931–6938
https://doi.org/10.1039/c3ta14951j
12 C L Dong, W Chen, C Liu (2014). Flocculation of algal cells by amphoteric chitosan-based flocculant. Bioresource Technology, 170: 239–247
https://doi.org/10.1016/j.biortech.2014.07.108
13 Y Fang, Y K Huang, Z J Ni, Z L Wang, S F Kang, Y G Wang, X Li (2017). Co-modified commercial P25 TiO2 by Fe doping and g-C3N4 coating as high performance photocatalyst under visible light irradiation. International Journal of Electrochemical Science, 12(7): 5951–5963
https://doi.org/10.20964/2017.07.77
14 Y Fang, Y Huang, J Yang, P Wang, G Cheng (2011). Unique ability of BiOBr to decarboxylate D-Glu and D-MeAsp in the photocatalytic degradation of microcystin-LR in water. Environmental Science & Technology, 45(4): 1593–1600
https://doi.org/10.1021/es103422j
15 M Y Gao, D Jiang, D K Sun, B Hou, D B Li (2014). Synthesis of Ag/N-TiO2/SBA-15 photocatalysts and photocatalytic reduction of CO2 under visible light irradiation. Acta Chimica Sinica, 72(10): 1092–1098
https://doi.org/10.6023/A14070535
16 S Hosseini, S Borghei, M Vossoughi, N Taghavinia (2007). Immobilization of TiO2 on perlite granules for photocatalytic degradation of phenol. Applied Catalysis B: Environmental, 74(1–2): 53–62
https://doi.org/10.1016/j.apcatb.2006.12.015
17 L J Hoyos, D F Rivera, A F Gualdrón-Reyes, R Ospina, J Rodríguez-Pereira, J L Ropero-Vega, M E Niño-Gómez (2017). Influence of immersion cycles during n-b-Bi2O3 sensitization on the photoelectrochemical behaviour of N-F-codoped TiO2 nanotubes. Applied Surface Science, 423: 917–926
https://doi.org/10.1016/j.apsusc.2017.06.209
18 Y Hu, Y T Cao, P X Wang, D Z Li, W Chen, Y H He, X Z Fu, Y Shao, Y Zheng (2012). A new perspective for effect of Bi on the photocatalytic activity of Bi-doped TiO2. Applied Catalysis B: Environmental, 125: 294–303
https://doi.org/10.1016/j.apcatb.2012.05.040
19 J Huang, W Cheuk, Y Wu, F S Lee, W Ho (2012). Fabrication of Bi-doped TiO2 spheres with ultrasonic spray pyrolysis and investigation of their visible-light photocatalytic properties. Journal of Nanotechnology, 2012: 214783
20 Z B Jiao, M D Shang, J M Liu, G X Lu, X S Wang, Y P Bi (2017). The charge transfer mechanism of Bi modified TiO2 nanotube arrays: TiO2 serving as a “charge-transfer-bridge”. Nano Energy, 31: 96–104
https://doi.org/10.1016/j.nanoen.2016.11.026
21 G Kai, P Greil, C Zollfrank (2011). Carbon auto-doping improves photocatalytic properties of biotemplated ceramics. Applied Catalysis B: Environmental, 103(1): 240–245
22 S C Kim, D K Lee (2005). Preparation of TiO2-coated hollow glass beads and their application to the control of algal growth in eutrophic water. Microchemical Journal, 80(2): 227–232
https://doi.org/10.1016/j.microc.2004.07.008
23 X Kong, J Ma, P Le-Clech, Z Wang, C Y Tang, T D Waite (2020). Management of concentrate and waste streams for membrane-based algal separation in water treatment: A review. Water Research, 183: 115969
https://doi.org/10.1016/j.watres.2020.115969
24 S W Lee, S Obregon, V Rodriguez-Gonzalez (2015). The role of silver nanoparticles functionalized on TiO2 for photocatalytic disinfection of harmful algae. RSC Advances, 5(55): 44470–44475
https://doi.org/10.1039/C5RA08313C
25 C Li, Z Sun, W Zhang, C Yu, S Zheng (2018). Highly efficient g-C3N4/TiO2/kaolinite composite with novel three-dimensional structure and enhanced visible light responding ability towards ciprofloxacin and S. aureus. Applied Catalysis B: Environmental, 220(Supplement C): 272–282
https://doi.org/10.1016/j.apcatb.2017.08.044
26 G Y Li, X Nie, J Y Chen, Q Jiang, T C An, P K Wong, H M Zhang, H J Zhao, H Yamashita (2015a). Enhanced visible-light-driven photocatalytic inactivation of Escherichia coli using g-C3N4/TiO2 hybrid photocatalyst synthesized using a hydrothermal-calcination approach. Water Research, 86: 17–24
https://doi.org/10.1016/j.watres.2015.05.053
27 H Y Li, D J Wang, P Wang, H M Fan, T F Xie (2009). Synthesis and studies of the visible-light photocatalytic properties of near-monodisperse Bi-doped TiO2 nanospheres. Chemistry-a European Journal, 15(45): 12521–12527
https://doi.org/10.1002/chem.200901193
28 J J Li, B Li, J J Li, J L Liu, L Wang, H W Zhang, Z H Zhang, B Zhao (2015b). Visible-light-driven photocatalyst of La-N-codoped TiO2 nano-photocatalyst: Fabrication and its enhanced photocatalytic performance and mechanism. Journal of Industrial and Engineering Chemistry, 25: 16–21
https://doi.org/10.1016/j.jiec.2014.09.042
29 P Li, Y Song, S Yu (2014). Removal of Microcystis aeruginosa using hydrodynamic cavitation: Performance and mechanisms. Water Research, 62: 241–248
https://doi.org/10.1016/j.watres.2014.05.052
30 X Li, J Yu, M Jaroniec (2016). Hierarchical photocatalysts. Chemical Society Reviews, 45(9): 2603–2636
https://doi.org/10.1039/C5CS00838G
31 X Li, J Yu, M Jaroniec, X Chen (2019). Cocatalysts for selective photoreduction of CO2 into solar fuels. Chemical Reviews, 119(6): 3965–3968
https://doi.org/10.1021/acs.chemrev.8b00400
32 C A Linkous, G J Carter, D B Locuson, A J Ouellette, D K Slattery, L A Smitha (2000). Photocatalytic inhibition of algae growth using TiO2, WO3, and cocatalyst modifications. Environmental Science & Technology, 34(22): 4754–4758
https://doi.org/10.1021/es001080+
33 J Z Ma, C X Wang, H He (2016). Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light. Applied Catalysis B: Environmental, 184: 28–34
https://doi.org/10.1016/j.apcatb.2015.11.013
34 M Ma, R P Liu, H J Liu, J H Qu (2012). Chlorination of Microcystis aeruginosa suspension: Cell lysis, toxin release and degradation. Journal of Hazardous Materials, 217– 218: 279–285
https://doi.org/10.1016/j.jhazmat.2012.03.030
35 T Matsunaga, R Tomoda, T Nakajima, H Wake (1985). Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiology Letters, 29(1–2): 211–214
https://doi.org/10.1111/j.1574-6968.1985.tb00864.x
36 M J Muñoz-Batista, M A Nasalevich, T J Savenije, F Kapteijn, J Gascon, A Kubacka, M Fernandez-Garcia (2015). Enhancing promoting effects in g-C3N4-Mn+/CeO2-TiO2 ternary composites: Photo-handling of charge carriers. Applied Catalysis B: Environmental, 176– 177: 687–698
https://doi.org/10.1016/j.apcatb.2015.04.051
37 L X Pinho, J Azevedo, Â Brito, A Santos, P Tamagnini, V J P Vilar, V M Vasconcelos, R A R Boaventura (2015a). Effect of TiO2 photocatalysis on the destruction of Microcystis aeruginosa cells and degradation of cyanotoxins microcystin-LR and cylindrospermopsin. Chemical Engineering Journal, 268: 144–152
https://doi.org/10.1016/j.cej.2014.12.111
38 L X Pinho, J Azevedo, S M Miranda, J Ângelo, A Mendes, V J P Vilar, V Vasconcelos, R A R Boaventura (2015b). Oxidation of microcystin-LR and cylindrospermopsin by heterogeneous photocatalysis using a tubular photoreactor packed with different TiO2 coated supports. Chemical Engineering Journal, 266: 100–111
https://doi.org/10.1016/j.cej.2014.12.023
39 P H Shao, J Y Tian, Z W Zhao, W X Shi, S S Gao, F Y Cui (2015). Amorphous TiO2 doped with carbon for visible light photodegradation of rhodamine B and 4-chlorophenol. Applied Surface Science, 324: 35–43
https://doi.org/10.1016/j.apsusc.2014.10.108
40 R Shen, C Jiang, Q Xiang, J Xie, X Li (2019). Surface and interface engineering of hierarchical photocatalysts. Applied Surface Science, 471: 43–87
https://doi.org/10.1016/j.apsusc.2018.11.205
41 J Song, X Wang, J Ma, X Wang, J Wang, S Xia, J Zhao (2018a). Removal of Microcystis aeruginosa and Microcystin-LR using a graphitic-C3N4/TiO2 floating photocatalyst under visible light irradiation. Chemical Engineering Journal, 348: 380–388
https://doi.org/10.1016/j.cej.2018.04.182
42 J Song, X Wang, J Ma, X Wang, J Wang, J Zhao (2018b). Visible-light-driven in situ inactivation of Microcystis aeruginosa with the use of floating g-C3N4 heterojunction photocatalyst: Performance, mechanisms and implications. Applied Catalysis B: Environmental, 226: 83–92
https://doi.org/10.1016/j.apcatb.2017.12.034
43 J F Su, S C Shao, F Ma, J S Lu, K Zhang (2016). Bacteriological control by Raoultella sp R11 on growth and toxins production of Microcystis aeruginosa. Chemical Engineering Journal, 293: 139–150
https://doi.org/10.1016/j.cej.2016.02.044
44 L Sun, S Wan, Z Yu, L Wang (2014). Optimization and modeling of preparation conditions of TiO2 nanoparticles coated on hollow glass microspheres using response surface methodology. Separation and Purification Technology, 125: 156–162
https://doi.org/10.1016/j.seppur.2014.01.042
45 Y Tang, J Chen, X Wang, X Wang, Y Zhao, Z Mao, D Wang (2019). Fabrication of highly N-Doped graphene-like carbon templated from g-C3N4 nanosheets as promising Li-ions battery anode. Electrochimica Acta, 324: 134880
https://doi.org/10.1016/j.electacta.2019.134880
46 X Wang, X Wang, J Zhao, J Song, C Su, Z Wang (2018). Adsorption-photocatalysis functional expanded graphite C/C composite for in-situ photocatalytic inactivation of Microcystis aeruginosa. Chemical Engineering Journal, 341: 516–525
https://doi.org/10.1016/j.cej.2018.02.054
47 X Wang, X Wang, J Zhao, J Song, J Wang, R Ma, J Ma (2017). Solar light-driven photocatalytic destruction of cyanobacteria by F-Ce-TiO2/expanded perlite floating composites. Chemical Engineering Journal, 320: 253–263
https://doi.org/10.1016/j.cej.2017.03.062
48 X Wang, C Zhou, R Shi, Q Liu, G I N Waterhouse, L Wu, C H Tung, T Zhang (2019). Supramolecular precursor strategy for the synthesis of holey graphitic carbon nitride nanotubes with enhanced photocatalytic hydrogen evolution performance. Nano Research, 12(9): 2385–2389
https://doi.org/10.1007/s12274-019-2357-0
49 Y Wang, L Rao, P Wang, Y Guo, Z Shi, X Guo, L Zhang (2020). Synthesis of nitrogen vacancies g-C3N4 with increased crystallinity under the controlling of oxalyl dihydrazide: Visible-light-driven photocatalytic activity. Applied Surface Science, 505: 144576
https://doi.org/10.1016/j.apsusc.2019.144576
50 G S Wu, J L Wen, J P Wang, D F Thomas, A C Chen (2010). A facile approach to synthesize N and B co-doped TiO2 nanomaterials with superior visible-light response. Materials Letters, 64(15): 1728–1731
https://doi.org/10.1016/j.matlet.2010.04.024
51 X Xiong, Z Wang, Y Zhang, Z Li, R Shi, T Zhang (2020). Wettability controlled photocatalytic reactive oxygen generation and Klebsiella pneumoniae inactivation over triphase systems. Applied Catalysis B: Environmental, 264: 118518
https://doi.org/10.1016/j.apcatb.2019.118518
52 J Xu, W Z Wang, M Shang, E P Gao, Z J Zhang, J Ren (2011). Electrospun nanofibers of Bi-doped TiO2 with high photocatalytic activity under visible light irradiation. Journal of Hazardous Materials, 196: 426–430
https://doi.org/10.1016/j.jhazmat.2011.09.010
53 N Yang, G Q Li, W L Wang, X L Yang, W F Zhang (2011). Photophysical and enhanced daylight photocatalytic properties of N-doped TiO2/g-C3N4 composites. Journal of Physics and Chemistry of Solids, 72(11): 1319–1324
https://doi.org/10.1016/j.jpcs.2011.07.028
54 Y M Yu, J F Geng, H Li, R Y Bao, H Y Chen, W Z Wang, J X Xia, W Y Wong (2017). Exceedingly high photocatalytic activity of g-C3N4/Gd-N-TiO2 composite with nanoscale heterojunctions. Solar Energy Materials and Solar Cells, 168: 91–99
https://doi.org/10.1016/j.solmat.2017.04.023
55 J Zhang, X Wang, X Wang, J Song, J Huang, B Louangsouphom, J Zhao (2015a). Floating photocatalysts based on loading Bi/N-doped TiO2 on expanded graphite C/C (EGC) composites for the visible light degradation of diesel. RSC Advances, 5(88): 71922–71931
https://doi.org/10.1039/C5RA12783A
56 W J Zhang, H L Xin, J L Chen, H B He (2014). Photocatalytic degradation of methyl orange on La-In co-doped TiO2. Current Nanoscience, 10(4): 582–587
https://doi.org/10.2174/1573413710666140124205732
57 Y Zhang, J N Lu, M R Hoffmann, Q Wang, Y Q Cong, Q Wang, H Jin (2015b). Synthesis of g-C3N4/Bi2O3/TiO2 composite nanotubes: enhanced activity under visible light irradiation and improved photoelectrochemical activity. RSC Advances, 5(60): 48983–48991
https://doi.org/10.1039/C5RA02750K
58 J Zhou, M Zhang, Y Zhu (2015). Photocatalytic enhancement of hybrid C3N4/TiO2 prepared via ball milling method. Physical Chemistry Chemical Physics, 17(5): 3647–3652
https://doi.org/10.1039/C4CP05173D
59 L Zhou, L Z Wang, J Y Lei, Y D Liu, J L Zhang (2017). Fabrication of TiO2/Co-g-C3N4 heterojunction catalyst and its photocatalytic performance. Catalysis Communications, 89: 125–128
https://doi.org/10.1016/j.catcom.2016.09.022
60 M Zhu, C Zhai, M Sun, Y Hu, B Yan, Y Du (2017). Ultrathin graphitic C3N4 nanosheet as a promising visible-light-activated support for boosting photoelectrocatalytic methanol oxidation. Applied Catalysis B: Environmental, 203: 108–115
https://doi.org/10.1016/j.apcatb.2016.10.012
61 Z D Zhu, M Murugananthan, J Gu, Y R Zhang (2018). Fabrication of a Z-scheme g-C3N4/Fe-TiO2 photocatalytic composite with enhanced photocatalytic activity under visible light irradiation. Catalysts, 8(3): 112
https://doi.org/10.3390/catal8030112
[1] FSE-21011-OF-SJK_suppl_1 Download
[1] Yan Zhang, Yuyan Zhang, Xue Li, Xiaohan Zhao, Cosmos Anning, John Crittenden, Xianjun Lyu. Photocatalytic water splitting of ternary graphene-like photocatalyst for the photocatalytic hydrogen production[J]. Front. Environ. Sci. Eng., 2020, 14(4): 69-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed