Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (2) : 20    https://doi.org/10.1007/s11783-021-1454-y
RESEARCH ARTICLE
Mercury removal from flue gas using nitrate as an electron acceptor in a membrane biofilm reactor
Zaishan Wei(), Meiru Tang, Zhenshan Huang, Huaiyong Jiao
School of Environmental Science and Engineering, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou 510275, China
 Download: PDF(1313 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Membrane bioreactor achieved mercury removal using nitrate as an electron acceptor.

The biological mercury oxidation increased with the increase of oxygen concentration.

Ferrous sulfide could make both Hg2+ and MeHg transform into HgS-like substances.

Nitrate drives mercury oxidation through katE, katG, nar, nir, nor, and nos.

Mercury (Hg0) is a hazardous air pollutant for its toxicity, and bioaccumulation. This study reported that membrane biofilm reactor achieved mercury removal from flue gas using nitrate as the electron acceptor. Hg0 removal efficiency was up to 88.7% in 280 days of operation. Oxygen content in flue gas affected mercury redox reactions, mercury biooxidation and microbial methylation. The biological mercury oxidation increased with the increase of oxygen concentration (2%‒17%), methylation of mercury reduced with the increase of oxygen concentration. The dominant bacteria at oxygen concentration of 2%, 6%, 17%, 21% were Halomonas, Anaerobacillus, Halomonas and Pseudomonas, respectively. The addition of ferrous sulfide could immobilize Hg2+ effectively, and make both Hg2+ and MeHg transform into HgS-like substances, which could achieve the inhibition effect of methylation, and promote conversion of mercury. The dominant bacteria changed from Halomonas to Planctopirus after FeS addition. Nitrate drives mercury oxidation through katE, katG, nar, nir, nor, and nos for Hg0 removal in flue gas.

Keywords Mercury removal      Oxygen      Ferrous sulfide      Transformation of mercury      Microbial community     
Corresponding Author(s): Zaishan Wei   
Issue Date: 28 May 2021
 Cite this article:   
Zaishan Wei,Meiru Tang,Zhenshan Huang, et al. Mercury removal from flue gas using nitrate as an electron acceptor in a membrane biofilm reactor[J]. Front. Environ. Sci. Eng., 2022, 16(2): 20.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1454-y
https://academic.hep.com.cn/fese/EN/Y2022/V16/I2/20
Fig.1  Schematic diagram of the membrane biofilm reactor experiment system: ① air compressor; ② Hg0 gas generator; ③ gas mixing container1; ④ gas mixing container2; ⑤ membrane biofilm reactor; ⑥ nutrient tank, peristaltic pump; ⑦ tail gas absorber.
Fig.2  Hg0 removal performance of the membrane biofilm reactor for during 280-d continuous running test.
Fig.3  Hg2+ (a) and MeHg (b) content in the biofilm under different oxygen concentration; (c) the influence of FeS addition on MeHg and Hg2+ content.
Fig.4  XPS spectrum (a) of biofilm after FeS addition, and XRD (b) of surface of FeS before and after FeS addition.
Fig.5  The influence of oxygen content on bacterial community at phylum (a) and genus (b).
Fig.6  Influence of FeS addition on bacterial community at phylum (a) and genus (b).
Fig.7  Metagenomic function gene of mercury (nitrogen) metabolism.
Fig.8  Electron transport diagram of mercury oxidation using nitrate as the electron acceptor.
1 M H Abu-Dieyeh, H M Alduroobi, M A Al-Ghouti (2019). Potential of mercury-tolerant bacteria for bio-uptake of mercury leached from discarded fluorescent lamps. Journal of Environmental Management, 237: 217–227
https://doi.org/10.1016/j.jenvman.2019.02.066 pmid: 30798040
2 H S Bae, F E Dierberg, A Ogram (2014). Syntrophs dominate sequences associated with the mercury methylation-related gene hgcA in the water conservation areas of the Florida Everglades. Applied and Environmental Microbiology, 80(20): 6517–6526
https://doi.org/10.1128/AEM.01666-14 pmid: 25107983
3 T Barkay, S M Miller, A O Summers (2003). Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Ecology, 27(2-3): 355–384
https://doi.org/10.1016/S0168-6445(03)00046-9 pmid: 12829275
4 F Beckers, Y M Awad, J Beiyuan, J Abrigata, S Mothes, D C W Tsang, Y S Ok, J Rinklebe (2019). Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil. Environment International, 127: 276–290
https://doi.org/10.1016/j.envint.2019.03.040 pmid: 30951944
5 S E Bone, J R Bargar, G Sposito (2014). Mackinawite (FeS) reduces mercury(II) under sulfidic conditions. Environmental Science & Technology, 48(18): 10681–10689
https://doi.org/10.1021/es501514r pmid: 25180562
6 C M Canavan, C A Caldwell, N S Bloom (2000). Discharge of methylmercury-enriched hypolimnetic water from a stratified reservoir. The Science of the Total Environment, 260(1-3): 159–170
https://doi.org/10.1016/S0048-9697(00)00560-X pmid: 11032124
7 S C Choi, T Chase Jr, R Bartha (1994). Metabolic Pathways Leading to Mercury Methylation in Desulfovibrio desulfuricans LS. Applied and Environmental Microbiology, 60(11): 4072–4077
https://doi.org/10.1128/AEM.60.11.4072-4077.1994 pmid: 16349435
8 C A Coles, S R Rao, R N Yong (2000). Lead and cadmium interactions with mackinawite: retention mechanisms and the role of pH. Environmental Science & Technology, 34(6): 996–1000
https://doi.org/10.1021/es990773r
9 M J Colombo, J Ha, J R Reinfelder, T Barkay, N Yee (2013). Anaerobic oxidation of Hg(0) and methylmercury formation by Desulfovibrio desulfuricansND132. Geochimica et Cosmochimica Acta, 112: 166–177
https://doi.org/10.1016/j.gca.2013.03.001
10 M J Colombo, J Y Ha, J R Reinfelder, T Barkay, N Yee (2014). Oxidation of Hg(0) to Hg(II) by diverse anaerobic bacteria. Chemical Geology, 363: 334–340
https://doi.org/10.1016/j.chemgeo.2013.11.020
11 G C Compeau, R Bartha (1985). Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology, 50(2): 498–502
https://doi.org/10.1128/AEM.50.2.498-502.1985 pmid: 16346866
12 D Cossa, J M Marti, J Sanjuan (1994). Dimethylmercury formation in the Alboran Sea. Marine Pollution Bulletin, 28(6): 381–384
https://doi.org/10.1016/0025-326X(94)90276-3
13 H R Dash, M Sahu, B Mallick, S Das (2017). Functional efficiency of MerA protein among diverse mercury resistant bacteria for efficient use in bioremediation of inorganic mercury. Biochimie, 142: 207–215
https://doi.org/10.1016/j.biochi.2017.09.016 pmid: 28966143
14 R D DeLaune, A Jugsujinda, I Devai, W H Patrick Jr (2004). Relationship of sediment redox conditions to methyl mercury in surface sediment of Louisiana Lakes. Environmental Sciences, 39(8): 1925–1933
https://doi.org/10.1081/ESE-120039365 pmid: 15332659
15 L Y Ding, N N He, S Yang, L J Zhang, P Liang, S C Wu, M H Wong, H C Tao (2019). Inhibitory effects of Skeletonema costatum on mercury methylation by Geobacter sulfurreducensPCA. Chemosphere, 216: 179–185
https://doi.org/10.1016/j.chemosphere.2018.10.121 pmid: 30368082
16 C S Eckley, H Hintelmann (2006). Determination of mercury methylation potentials in the water column of lakes across Canada. Science of the Total Environment, 368(1): 111–125
https://doi.org/10.1016/j.scitotenv.2005.09.042 pmid: 16216310
17 A M Graham, K T Cameron-Burr, H A Hajic, C Lee, D Msekela, C C Gilmour (2017). Sulfurization of dissolved organic matter increases Hg-sulfide–dissolved organicmatter bioavailability to a Hg-methylating bacterium. Environmental Science & Technology, 51(16): 9080–9088
https://doi.org/10.1021/acs.est.7b02781 pmid: 28703002
18 L Han, H Shaobin, W Zhendong, C Pengfei, Z Yongqing (2016). Performance of a new suspended filler biofilter for removal of nitrogen oxides under thermophilic conditions and microbial community analysis. Science of the Total Environment, 562: 533–541
https://doi.org/10.1016/j.scitotenv.2016.04.084 pmid: 27110967
19 R Hao, Z Wang, X Mao, Y Gong, B Yuan, Y Zhao, B Tian, M Qi (2019). Elemental mercury removal by a novel advanced oxidation process of ultraviolet/chlorite-ammonia: Mechanism and kinetics. Journal of Hazardous Materials, 374: 120–128
https://doi.org/10.1016/j.jhazmat.2019.03.134 pmid: 30986639
20 F P Hu, Y M Guo (2021). Health impacts of air pollution in China. Frontiers of Environmental Science & Engineering, 15 (4): 74
21 H Y Hu, H Lin, W Zheng, S J Tomanicek, A Johs, X B Feng, D A Elias, L Y Liang, B H Gu (2013a). Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nature Geoscience, 6(9): 751–754
https://doi.org/10.1038/ngeo1894
22 Z Huang, Z Wei, X Xiao, M Tang, B Li, S Ming, X Cheng (2019b). Bio-oxidation of elemental mercury into mercury sulfide and humic acid-bound mercury by sulfate reduction for Hg0 removal in flue gas. Environmental Science & Technology, 53(21): 12923–12934
https://doi.org/10.1021/acs.est.9b04029 pmid: 31589025
23 Z Huang, Z Wei, X Xiao, M Tang, B Li, X Zhang (2019a). Nitrification/denitrification shaped the mercury-oxidizing microbial community for simultaneous Hg0 and NO removal. Bioresource Technology, 274: 18–24
https://doi.org/10.1016/j.biortech.2018.11.069 pmid: 30500759
24 Y Qian, W C Qiao, Y H Zhang (2021). Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression. Frontiers of Environmental Science & Engineering, 2021, 15 (5): 100
25 H Liu, Y Zhao, Y Zhou, L Chang, J Zhang (2019). Removal of gaseous elemental mercury by modified diatomite. Science of the Total Environment, 652: 651–659
https://doi.org/10.1016/j.scitotenv.2018.10.291 pmid: 30380473
26 J Liu, K T Valsaraj, I Devai, R D DeLaune (2008). Immobilization of aqueous Hg(II) by mackinawite (FeS). Journal of Hazardous Materials, 157(2-3): 432–440
https://doi.org/10.1016/j.jhazmat.2008.01.006 pmid: 18280650
27 K R Mahbub, K Krishnan, M Megharaj, R Naidu (2016a). Bioremediation potential of a highly mercury resistant bacterial strain Sphingobium SA2 isolated from contaminated soil. Chemosphere, 144: 330–337
https://doi.org/10.1016/j.chemosphere.2015.08.061 pmid: 26378869
28 K R Mahbub, K Krishnan, R Naidu, M Megharaj (2016b). Mercury resistance and volatilization by Pseudoxanthomonas sp. SE1 isolated from soil. Environmental Technology Innovation, 6: 94–104
https://doi.org/10.1016/j.eti.2016.08.001
29 R P Mason, K R Rolfhus, W F Fitzgerald (1995). Methylated and elemental mercury cycling in surface and deep ocean waters of the North Atlantic. Water, Air, and Soil Pollution, 80(1-4): 665–677
https://doi.org/10.1007/BF01189719
30 D O’Connor, D Hou, Y S Ok, J Mulder, L Duan, Q Wu, S Wang, F M G Tack, J Rinklebe (2019). Mercury speciation, transformation, and transportation in soils, atmospheric flux, and implications for risk management: A critical review. Environment International, 126: 747–761
https://doi.org/10.1016/j.envint.2019.03.019 pmid: 30878870
31 R S Oremland, L G Miller, P Dowdle, T Connell, T Barkay (1995). Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the Carson River, Nevada. Applied and Environmental Microbiology, 61(7): 2745–2753
https://doi.org/10.1128/AEM.61.7.2745-2753.1995 pmid: 16535081
32 G O Oyetibo, K Miyauchi, H Suzuki, G Endo (2019). Bio-oxidation of elemental mercury during growth of mercury resistant yeasts in simulated hydrosphere. Journal of Hazardous Materials, 373: 243–249
https://doi.org/10.1016/j.jhazmat.2019.02.075 pmid: 30921575
33 J M Parks, A Johs, M Podar, R Bridou, R A Hurt Jr, S D Smith, S J Tomanicek, Y Qian, S D Brown, C C Brandt, A V Palumbo, J C Smith, J D Wall, D A Elias, L Liang (2013). The genetic basis for bacterial mercury methylation. Science, 339(6125): 1332–1335
https://doi.org/10.1126/science.1230667 pmid: 23393089
34 L Philip, M A Deshusses (2008). The control of mercury vapor using biotrickling filters. Chemosphere, 70(3): 411–417
https://doi.org/10.1016/j.chemosphere.2007.06.073 pmid: 17692357
35 B B Sheng, D P Wang, X R Liu, G X Yang, W Zeng, Y Q Yang, F G Meng (2020). Taxonomic and functional variations in the microbial community during the upgrade process of a full-scale landfill leachate treatment plant – from conventional to partial nitrification-denitrification. Frontiers of Environmental Science & Engineering, 14 (6): 93
36 Y Si, Y Zou, X Liu, X Si, J Mao (2015). Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere, 122: 206–212
https://doi.org/10.1016/j.chemosphere.2014.11.054 pmid: 25496739
37 S Silver, J L Hobman (2007). Mercury microbiology: Resistance systems, environmental aspects, methylation, and human health. Molecular Microbiology of Heavy Metals,357–370
38 T Smith, K Pitts, J A McGarvey, A O Summers (1998). Bacterial oxidation of mercury metal vapor, Hg0. Applied and Environmental Microbiology, 64(4): 1328–1332
https://doi.org/10.1128/AEM.64.4.1328-1332.1998 pmid: 9546169
39 J J Su, B Y Liu, C Y Liu (2001). Comparison of aerobic denitrification under high oxygen atmosphere by Thiosphaera pantotrophaATCC 35512 and Pseudomonas stutzeriSU2 newly isolated from the activated sludge of a piggery wastewater treatment system. Journal of Applied Microbiology, 90(3): 457–462
https://doi.org/10.1046/j.1365-2672.2001.01265.x pmid: 11298242
40 Y Sun, Z Lou, J Yu (2017). Immobilization of mercury (II) from aqueous solution using Al2O3 -supported nanoscale FeS. Chemical Engineering Journal, 362: 323
41 Y Sun, Z M Lou, J B Yu, X X Zhou, D Lv, J S Zhou, S A Baig, X H Xu (2017). Immobilization of mercury(II) from aqueous solution using Al2O3-supported nanoscale FeS. Chemical Engineering Journal, 323: 483–491
https://doi.org/10.1016/j.cej.2017.04.095
42 P F William, A A William, M B Joni, D L Brady (2002). Development of gas phase bioreactors for the removal of nitrogen oxides from synthetic flue gas streams. Fuel, 81(15): 1953–1961
https://doi.org/10.1016/S0016-2361(02)00130-8
43 M Wolthers, L Charlet, P R V D Linde (2015). Surface chemistry of disordered mackinawite (FeS). Geochimica et Cosmochimica Acta, 69(14): 3469–3481
https://doi.org/10.1016/j.gca.2005.01.027
44 Y P Xiang, H X Du, H Shen, C Zhang, D Y Wang (2014). Dynamics of total culturable bacteria and its relationship with methylmercury in the soils of the water level fluctuation zone of the Three Gorges Reservoir. Chinese Science Bulletin, 59(24): 2966–2972
https://doi.org/10.1007/s11434-014-0324-4
45 X Xu, M Yan, L Liang, Q Lu, J Han, L Liu, X Feng, J Guo, Y Wang, G Qiu (2019). Impacts of selenium supplementation on soil mercury speciation, and inorganic mercury and methylmercury uptake in rice (Oryza sativa L.). Environmental Pollution, 249: 647–654
https://doi.org/10.1016/j.envpol.2019.03.095 pmid: 30933762
46 K Yin, Q N Wang, M Lv, L X Chen (2019). Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal, 360: 1553–1563
https://doi.org/10.1016/j.cej.2018.10.226
47 S Yoshie, T Ogawa, H Makino, H Hirosawa, S Tsuneda, A Hirata (2006). Characteristics of bacteria showing high denitrification activity in saline wastewater. Letters in Applied Microbiology, 42(3): 277–283
https://doi.org/10.1111/j.1472-765X.2005.01839.x pmid: 16478517
48 S Zhang, H Chen, Y Xia, J Zhao, N Liu, W Li (2015). Re-acclimation performance and microbial characteristics of a thermophilic biofilter for NOx removal from flue gas. Applied Microbiology and Biotechnology, 99(16): 6879–6887
https://doi.org/10.1007/s00253-015-6585-2 pmid: 25900192
49 Y Zhang, Y R Liu, P Lei, Y J Wang, H Zhong (2018). Biochar and nitrate reduce risk of methylmercury in soils under straw amendment. Science of the Total Environment, 619–620: 384–390
https://doi.org/10.1016/j.scitotenv.2017.11.106 pmid: 29156259
50 L Zhao, H Chen, X Lu, H Lin, G A Christensen, E M Pierce, B Gu (2017). Contrasting effects of dissolved organic matter on mercury methylation by Geobacter sulfurreducensPCA and Desulfovibrio desulfuricansND132. Environmental Science & Technology, 51(18): 10468–10475
https://doi.org/10.1021/acs.est.7b02518 pmid: 28806071
51 W Zheng, L Liang, B Gu (2012). Mercury reduction and oxidation by reduced natural organic matter in anoxic environments. Environmental Science & Technology, 46(1): 292–299
https://doi.org/10.1021/es203402p pmid: 22107154
52 J Zhou, H Wang, K Yang, Y Sun, J Tian (2015). Nitrate removal by nitrate-dependent Fe(II) oxidation in an upflow denitrifying biofilm reactor. Water Science and Technology, 72(3): 377–383
https://doi.org/10.2166/wst.2015.211 pmid: 26204069
[1] Yingchao Zhang, Hongqiong Zhang, Xinwei Dong, Dongbei Yue, Ling Zhou. Effects of oxidizing environment on digestate humification and identification of substances governing the dissolved organic matter (DOM) transformation process[J]. Front. Environ. Sci. Eng., 2022, 16(8): 99-.
[2] Cheng Hou, Xinbai Jiang, Na Li, Zhenhua Zhang, Qian Zhang, Jinyou Shen, Xiaodong Liu. Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism[J]. Front. Environ. Sci. Eng., 2022, 16(8): 98-.
[3] Zecong Yu, Keke Xiao, Yuwei Zhu, Mei Sun, Sha Liang, Jingping Hu, Huijie Hou, Bingchuan Liu, Jiakuan Yang. Comparison of different valent iron on anaerobic sludge digestion: Focusing on oxidation reduction potential, dissolved organic nitrogen and microbial community[J]. Front. Environ. Sci. Eng., 2022, 16(6): 80-.
[4] Qiong Guo, Zhichao Yang, Bingliang Zhang, Ming Hua, Changhong Liu, Bingcai Pan. Enhanced methane production during long-term UASB operation at high organic loads as enabled by the immobilized Fungi[J]. Front. Environ. Sci. Eng., 2022, 16(6): 71-.
[5] Yanan Bai, Xiuning Wang, Fang Zhang, Raymond Jianxiong Zeng. Acid Orange 7 degradation using methane as the sole carbon source and electron donor[J]. Front. Environ. Sci. Eng., 2022, 16(3): 34-.
[6] Hasti Daraei, Kimia Toolabian, Ian Thompson, Guanglei Qiu. Biotoxicity evaluation of zinc oxide nanoparticles on bacterial performance of activated sludge at COD, nitrogen, and phosphorus reduction[J]. Front. Environ. Sci. Eng., 2022, 16(2): 19-.
[7] Shuhan Li, Xin Zhou, Xiwei Cao, Jiabo Chen. Insights into simultaneous anammox and denitrification system with short-term pyridine exposure: Process capability, inhibition kinetics and metabolic pathways[J]. Front. Environ. Sci. Eng., 2021, 15(6): 139-.
[8] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[9] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[10] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[11] Ting Wang, Renxian Zhou. PM-support interfacial effect and oxygen mobility in Pt, Pd or Rh-loaded (Ce,Zr,La)O2 catalysts[J]. Front. Environ. Sci. Eng., 2021, 15(4): 76-.
[12] Tianhao Xi, Xiaodan Li, Qihui Zhang, Ning Liu, Shu Niu, Zhaojun Dong, Cong Lyu. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite[J]. Front. Environ. Sci. Eng., 2021, 15(4): 55-.
[13] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[14] Huan He, Qinjin Yu, Chaochao Lai, Chen Zhang, Muhan Liu, Bin Huang, Hongping Pu, Xuejun Pan. The treatment of black-odorous water using tower bipolar electro-flocculation including the removal of phosphorus, turbidity, sulfion, and oxygen enrichment[J]. Front. Environ. Sci. Eng., 2021, 15(2): 18-.
[15] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed