Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (5) : 91    https://doi.org/10.1007/s11783-020-1385-z
RESEARCH ARTICLE
Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater
Ruijie Li, Mengmeng Zhou, Shilong He(), Tingting Pan, Jing Liu, Jiabao Zhu
School of Environment and Spatial Informatics, China University of Mining & Technology, Xuzhou 221116, China
 Download: PDF(1669 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• UASB reactor can work efficiently with high COD/SO42- ratios when SDBS exists.

• Outcome of the competition between SRB and MPA was affected by SDBS.

• Presence of SDBS makes methanogens with H2/CO2 as a substrate dominant.

• Microbial diversity decreases in the presence of SDBS.

In this study, the effects of organic sulfur on anaerobic biological processes were investigated by operating two up-flow anaerobic sludge blanket (UASB) reactors with sodium dodecylbenzene sulfonate (SDBS) as a representative of organic sulfur. The results indicated that the specific methanogenic activity (SMA) and chemical oxygen demand (COD) removal efficiency of R2 (with SDBS added) were higher than those of R1 (without SDBS) when the COD/SO42 ratio was above 5.0. However, when the COD/SO42 ratio was lower than 5.0, the sulfate reduction efficiency of R2 was higher than that of R1. These results and the observed SDBS transformation efficiency in anaerobic reactors indicate that low concentrations of SDBS accelerate methane production and the continuous accumulation of SDBS does not weaken the reduction of sulfate. Similarly, the calculated electron flux for a COD/SO42 ratio of 1.0 indicates that the utilization intensity of electrons by sulfate-reducing bacteria (SRB) in R2 was 36.48% higher than that of SRB in R1 and exceeded that of methane-producing archaea (MPA) under identical working conditions. Moreover, the addition of SDBS in R2 made sulfidogenesis the dominant reaction at low COD/SO42, and Methanobacterium and Methanobrevibacter with H2/CO2 as the substrate and Desulfomicrobium were the dominant MPA and SRB, respectively. However, methanogenesis was still the dominant reaction in R1, and Methanosaeta with acetic acid as the substrate and Desulfovibrio were the dominant MPA and SRB, respectively.

Keywords Up-flow anaerobic sludge blanket      Organic sulfur      Sodium dodecylbenzene sulfonate      COD/SO42 ratio      Microbial community     
Corresponding Author(s): Shilong He   
Issue Date: 17 December 2020
 Cite this article:   
Ruijie Li,Mengmeng Zhou,Shilong He, et al. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1385-z
https://academic.hep.com.cn/fese/EN/Y2021/V15/I5/91
Compound
(SDBS g SDBS/L; Others g/L)
R1 R2 Compound (g/L) R1 R2
SDBS 0 0.03 MgCl2?6H2O 0.125 0.125
C6H12O6 1.874 1.406 CaCl2 0.015 0.015
KCl 0.75 0.75 FeCl2?4H2O 0.042 0.042
NH4Cl 0.85 0.85 CoCl2?6H2O 0.005 0.005
KH2PO4 0.1 0.1 NiCl2?6H2O 0.0045 0.0045
K2HPO4 0.25 0.25
Tab.1  Composition and content of synthetic wastewater
Fig.1  Structural diagram of the laboratory-scale UASB system setup.
Parameter Experimental periods
I II III IV V
Days 0–30 d 31–60 d 61–90 d 91–117 d 118–144 d
Influent SO42 (mg/L) 200 300 400 1000 2000
COD/SO42 ratios 10 7 5 2 1
Influent COD (mg/L) 1970±30
pH 7.4±0.2
HRT (d) 0.67
Tab.2  Operating conditions of the R1 and R2 reactors
Fig.2  Temporal profiles of COD, SO42-, S2 and SDBS in the influent (Inf.) and effluent (Eff.) in R1 and R2: (a) COD; (b) SO42; (c) S2; (d) SDBS.
Fig.3  Boxplot of COD(a, b) and SO42 (c, d) removal, SMA (e, f) and VFA (g, h).
Fig.4  Effects of the COD/SO42 ratio and SDBS on (a) sulfate and (b) COD conversion.
Fig.5  Effects of the COD/SO42 ratio on electron flow.
Reactor Sampling period Coverage Ace Chao Simpson Shannon
R1 I 0.999 716.03 721.20 0.025 4.64
II 0.998 740.40 759.73 0.032 4.49
III 0.998 711.37 724.31 0.043 4.45
IV 0.998 666.20 681.80 0.033 4.49
V 0.998 701.50 724.02 0.074 3.85
R2 I 0.999 727.98 721.63 0.094 3.91
II 0.999 445.34 445.06 0.143 3.04
III 0.999 367.02 364.00 0.183 2.73
IV 0.999 269.60 210.00 0.174 2.38
V 0.998 578.86 433.04 0.164 2.42
Tab.3  Bacterial diversity indices
Fig.6  Community structure component diagram with different COD/SO42 ratios in R1 and R2: (a) classification of archaea at the phylum level; (b) classification of archaea at the genus level; (c) classification of bacteria at the phylum level; (d) classification of bacteria at the genus level; and (e) classification of SRB at the genus level.
1 APHA (2005). Standard methods for the examination of water and wastewater. American Water Works Association/American Public Works Association/Water Environment Federation, 21st ed. Washington, DC: American Public Health Association
2 M F Carosia, D Y Okada, I K Sakamoto, E L Silva, M B A Varesche (2014). Microbial characterization and degradation of linear alkylbenzene sulfonate in an anaerobic reactor treating wastewater containing soap powder. Bioresource Technology, 167: 316–323
https://doi.org/10.1016/j.biortech.2014.06.002
3 Y Chen, S He, M Zhou, T Pan, Y Xu, Y Gao, H Wang (2018). Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater. Frontiers of Environmental Science & Engineering, 12(5): 13
https://doi.org/10.1007/s11783-018-1069-0
4 L L de Oliveira, R B Costa, D Y Okada, D V Vich, I C S Duarte, E L Silva, M B A Varesche (2010). Anaerobic degradation of linear alkylbenzene sulfonate (LAS) in fluidized bed reactor by microbial consortia in different support materials. Bioresource Technology, 101(14): 5112–5122
https://doi.org/10.1016/j.biortech.2010.01.141
5 L L de Oliveira, I C S Duarte, I K Sakamoto, M B A Varesche (2009). Influence of support material on the immobilization of biomass for the degradation of linear alkylbenzene sulfonate in anaerobic reactors. Journal of Environmental Management, 90(2): 1261–1268
https://doi.org/10.1016/j.jenvman.2008.07.013
6 K Denger, A M Cook (1999). Note: Linear alkylbenzenesulphonate (LAS) bioavailable to anaerobic bacteria as a source of sulphur. Journal of Applied Microbiology, 86(1): 165–168
https://doi.org/10.1046/j.1365-2672.1999.00643.x
7 K Denger, M A Kertesz, E H Vock, R Schon, A Magli, A M Cook (1996). Anaerobic desulfonation of 4-tolylsulfonate and 2-(4-sulfophenyl) butyrate by a Clostridium sp. Applied and Environmental Microbiology, 62(5): 1526–1530
https://doi.org/10.1128/AEM.62.5.1526-1530.1996
8 M A Dojka, P Hugenholtz, S K Haack, N R Pace (1998). Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Applied and Environmental Microbiology, 64(10): 3869–3877
https://doi.org/10.1128/AEM.64.10.3869-3877.1998
9 M T Garcia, E Campos, M Dalmau, P Illan, J Sanchez-Leal (2006). Inhibition of biogas production by alkyl benzene sulfonates (LAS) in a screening test for anaerobic biodegradability. Biodegradation, 17(1): 39–46
https://doi.org/10.1007/s10532-005-2798-x
10 Y Hu, Z Jing, Y Sudo, Q Niu, J Du, J Wu, Y Y Li (2015). Effect of influent COD/SO42− ratios on UASB treatment of a synthetic sulfate-containing wastewater. Chemosphere, 130: 24–33
https://doi.org/10.1016/j.chemosphere.2015.02.019
11 Z Q Jing, Y Hu, Q G Niu, Y Y Liu, Y Y Li, X C C Wang (2013). UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. Bioresource Technology, 137: 349–357
https://doi.org/10.1016/j.biortech.2013.03.137
12 E F Khalil, T N Whitmore, H Gamal-El-Din, A El-Bassel, D Lloyd (1988). The effects of detergents on anaerobic digestion. Applied Microbiology and Biotechnology, 29(5): 517–522
https://doi.org/10.1007/BF00269079
13 E F Khalil, T N Whitmore, H Gamel-El-Din, A El-Bassel, D Lloyd (1989). The effect of detergent on methanogenesis by Methanosarcina barkeri. FEMS Microbiology Letters, 57(3): 313–316
https://doi.org/10.1111/j.1574-6968.1989.tb03355.x
14 W Li, Q Niu, H Zhang, Z Tian, Y Zhang, Y Gao, Y Y Li, O Nishimura, M Yang (2015). UASB treatment of chemical synthesis-based pharmaceutical wastewater containing rich organic sulfur compounds and sulfate and associated microbial characteristics. Chemical Engineering Journal, 260: 55–63
https://doi.org/10.1016/j.cej.2014.08.085
15 X Lu, G Zhen, M Chen, K Kubota, Y Y Li (2015). Biocatalysis conversion of methanol to methane in an upflow anaerobic sludge blanket (UASB) reactor: Long-term performance and inherent deficiencies. Bioresource Technology, 198: 691–700
https://doi.org/10.1016/j.biortech.2015.09.073
16 X Q Lu, J L Ni, G Y Zhen, K Kubota, Y Y Li (2018). Response of morphology and microbial community structure of granules to influent COD/SO42− ratios in an upflow anaerobic sludge blanket (UASB) reactor treating starch wastewater. Bioresource Technology, 256: 456–465
https://doi.org/10.1016/j.biortech.2018.02.055
17 X Q Lu, G Y Zhen, J L Ni, T Hojo, K Kubota, Y Y Li (2016). Effect of influent COD/SO42− ratios on biodegradation behaviors of starch wastewater in an upflow anaerobic sludge blanket (UASB) reactor. Bioresource Technology, 214: 175–183
https://doi.org/10.1016/j.biortech.2016.04.100
18 X Q Lu, G Y Zhen, J L Ni, K Kubota, Y Y Li (2017). Sulfidogenesis process to strengthen re-granulation for biodegradation of methanolic wastewater and microorganisms evolution in an UASB reactor. Water Research, 108: 137–150
https://doi.org/10.1016/j.watres.2016.10.073
19 F A MacLeod, S R Guiot, J W Costerton (1990). Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Applied and Environmental Microbiology, 56(6): 1598–1607
https://doi.org/10.1128/AEM.56.6.1598-1607.1990
20 A S Mayer, L Zhong, G A Pope (1999). Measurement of mass-transfer rates for surfactant-enhanced solubilization of nonaqueous phase liquids. Environmental Science & Technology, 33(17): 2965–2972
https://doi.org/10.1021/es9813515
21 J McEvoy, W J N Giger (1985). Accumulation of linear alkylbenzenesulphonate surfactants in sewage sludges. Naturwissenschaften, 72(8): 429–431
https://doi.org/10.1007/BF00404885
22 A S Mogensen, F Haagensen, B K Ahring (2003). Anaerobic degradation of linear alkylbenzene sulfonate. Environmental Toxicology and Chemistry, 22(4): 706–711
https://doi.org/10.1002/etc.5620220404
23 V O’Flaherty, T Mahony, R O’Kennedy, E Colleran (1998). Effect of pH on growth kinetics and sulphide toxicity thresholds of a range of methanogenic, syntrophic and sulphate-reducing bacteria. Process Biochemistry, 33(5): 555–569
https://doi.org/10.1016/S0032-9592(98)00018-1
24 X Pan, J Sun, Y Zhang, G Zhu (2020). Effect of sodium dodecyl benzene sulfonate (SDBS) on the performance of anaerobic co-digestion with sewage sludge, food waste, and green waste. Chemical Engineering Communications, 207(2): 242–252
https://doi.org/10.1080/00986445.2019.1581615
25 P L Paulo, M V G Vallero, R H M Trevino, G Lettinga, P N L Lens (2004). Thermophilic (55°C) conversion of methanol in methanogenic-UASB reactors: Influence of sulphate on methanol degradation and competition. Journal of Biotechnology, 111(1): 79–88
https://doi.org/10.1016/j.jbiotec.2004.02.015
26 B Perez-Armendariz, Y M Moreno, O Monroy-Hermosillo, J P Guyot, R O Gonzalez (2010). Anaerobic biodegradability and inhibitory effects of some anionic and cationic surfactants. Bulletin of Environmental Contamination and Toxicology, 85(3): 269–273
https://doi.org/10.1007/s00128-010-0096-8
27 A F Rezende Silva, N C Magalhaes, P V Martinelli Cunha, M C Santos Amaral, K Koch (2020). Influence of COD/SO42− ratio on vinasse treatment performance by two-stage anaerobic membrane bioreactor. Journal of Environmental Management, 259:110034
https://doi.org/10.1016/j.jenvman.2019.110034
28 J L Sanz, E Culubret, J D Ferrer, A Moreno, J L Berna (2003). Anaerobic biodegradation of linear alkylbenzene sulfonate (LAS) in upflow anaerobic sludge blanket (UASB) reactors. Biodegradation, 14(1): 57–64
https://doi.org/10.1023/A:1023557915653
29 J E Schmidt, B K Ahring (1993). Effects of hydrogen and formate on the degradation of propionate and butyrate in thermophilic granules from an upflow anaerobic sludge blanket reactor. Applied and Environmental Microbiology, 59(8): 2546–2551
https://doi.org/10.1128/AEM.59.8.2546-2551.1993
30 K S Smith, C Ingram-Smith (2007). Methanosaeta, the forgotten methanogen? Trends in Microbiology, 15(4): 150–155
https://doi.org/10.1016/j.tim.2007.02.002
31 Y Tanimoto, M Tasaki, K Okamura, M Yamaguchi, K Minami (1989). Screening growth inhibitors of sulfate-reducing bacteria and their effects on methane fermentation. Journal of Fermentation and Bioengineering, 68(5): 353–359
https://doi.org/10.1016/0922-338X(89)90011-1
32 R C Van Leerdam, F A M de Bok, M Bonilla-Salinas, W Van Doesburg , B P Lomans, P N L Lens, A J M Stams, A J H Janssen (2008). Methanethiol degradation in anaerobic bioreactors at elevated pH (≥8): Reactor performance and microbial community analysis. Bioresource Technology, 99(18): 8967–8973
https://doi.org/10.1016/j.biortech.2008.05.007
33 R S Vilela, M H R Z Damianovic, E Foresti (2014). Removing organic matter from sulfate-rich wastewater via sulfidogenic and methanogenic pathways. Water Science and Technology, 69(8): 1669–1675
https://doi.org/10.2166/wst.2014.066
34 W Yang, S He, M Han, B Wang, Q Niu, Y Xu, Y Chen, H Wang (2018). Nitrogen removal performance and microbial community structure in the start-up and substrate inhibition stages of an anammox reactor. Journal of Bioscience and Bioengineering, 126(1): 88–95
https://doi.org/10.1016/j.jbiosc.2018.02.004
35 L Zhang, Q Ban, J Li, A K Jha (2016). Response of syntrophic propionate degradation to pH decrease and microbial community shifts in an UASB reactor. Journal of Microbiology and Biotechnology, 26(8): 1409–1419
https://doi.org/10.4014/jmb.1602.02015
36 P Zhang, Y Chen, T Y Huang, Q Zhou (2009). Waste activated sludge hydrolysis and short-chain fatty acids accumulation in the presence of SDBS in semi-continuous flow reactors: effect of solids retention time and temperature. Chemical Engineering Journal, 148(2–3): 348–353
https://doi.org/10.1016/j.cej.2008.09.007
37 P Zhang, Y Chen, Q Zhou (2010). Effect of surfactant on hydrolysis products accumulation and short-chain fatty acids (SCFA) production during mesophilic and thermophilic fermentation of waste activated sludge: Kinetic studies. Bioresource Technology, 101(18): 6902–6909
https://doi.org/10.1016/j.biortech.2010.03.124
[1] FSE-20151-OF-LRJ_suppl_1 Download
[1] Yanan Bai, Xiuning Wang, Fang Zhang, Raymond Jianxiong Zeng. Acid Orange 7 degradation using methane as the sole carbon source and electron donor[J]. Front. Environ. Sci. Eng., 2022, 16(3): 34-.
[2] Zaishan Wei, Meiru Tang, Zhenshan Huang, Huaiyong Jiao. Mercury removal from flue gas using nitrate as an electron acceptor in a membrane biofilm reactor[J]. Front. Environ. Sci. Eng., 2022, 16(2): 20-.
[3] Shuhan Li, Xin Zhou, Xiwei Cao, Jiabo Chen. Insights into simultaneous anammox and denitrification system with short-term pyridine exposure: Process capability, inhibition kinetics and metabolic pathways[J]. Front. Environ. Sci. Eng., 2021, 15(6): 139-.
[4] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[5] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[6] Yanqing Duan, Aijuan Zhou, Xiuping Yue, Zhichun Zhang, Yanjuan Gao, Yanhong Luo, Xiao Zhang. Acceleration of the particulate organic matter hydrolysis by start-up stage recovery and its original microbial mechanism[J]. Front. Environ. Sci. Eng., 2021, 15(1): 12-.
[7] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[8] Aoshuang Jing, Tao Liu, Xie Quan, Shuo Chen, Yaobin Zhang. Enhanced nitrification in integrated floating fixed-film activated sludge (IFFAS) system using novel clinoptilolite composite carrier[J]. Front. Environ. Sci. Eng., 2019, 13(5): 69-.
[9] Shihao Sun, Tipei Jia, Kaiqi Chen, Yongzhen Peng, Liang Zhang. Simultaneous removal of hydrogen sulfide and volatile organic sulfur compounds in off-gas mixture from a wastewater treatment plant using a two-stage bio-trickling filter system[J]. Front. Environ. Sci. Eng., 2019, 13(4): 60-.
[10] Qinqin Liu, Miao Li, Rui Liu, Quan Zhang, Di Wu, Danni Zhu, Xuhui Shen, Chuanping Feng, Fawang Zhang, Xiang Liu. Removal of trimethoprim and sulfamethoxazole in artificial composite soil treatment systems and diversity of microbial communities[J]. Front. Environ. Sci. Eng., 2019, 13(2): 28-.
[11] Xiaohui Wang, Shuai Du, Tao Ya, Zhiqiang Shen, Jing Dong, Xiaobiao Zhu. Removal of tetrachlorobisphenol A and the effects on bacterial communities in a hybrid sequencing biofilm batch reactor-constructed wetland system[J]. Front. Environ. Sci. Eng., 2019, 13(1): 14-.
[12] Yonglei Wang, Baozhen Liu, Kefeng Zhang, Yongjian Liu, Xuexin Xu, Junqi Jia. Investigate of in situ sludge reduction in sequencing batch biofilm reactor: Performances, mechanisms and comparison of different carriers[J]. Front. Environ. Sci. Eng., 2018, 12(5): 5-.
[13] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
[14] Guangqing Song, Hongbo Xi, Xiumei Sun, Yudong Song, Yuexi Zhou. Effect of 2-butenal manufacture wastewater to methanogenic activity and microbial community[J]. Front. Environ. Sci. Eng., 2018, 12(5): 10-.
[15] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed