Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (8) : 98    https://doi.org/10.1007/s11783-022-1519-6
RESEARCH ARTICLE
Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism
Cheng Hou1, Xinbai Jiang1, Na Li1(), Zhenhua Zhang2, Qian Zhang3, Jinyou Shen1, Xiaodong Liu1()
1. Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
2. Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Nanjing 210042, China
3. School of Life and Environmental Science, Guilin University of Electronic Technology, Guilin 541004, China
 Download: PDF(3295 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• 4-chlorophenol biodegradation could be enhanced in Fe2O3 coupled anaerobic system.

• Metabolic activity and electron transport could be improved by Fe2O3 nanoparticles.

• Functional microbial communities could be enriched in coupled anaerobic system.

• Possible synergistic mechanism involved in enhanced dechlorination was proposed.

Fe2O3 nanoparticles have been reported to enhance the dechlorination performance of anaerobic systems, but the underlying mechanism has not been clarified. This study evaluated the technical feasibility, system stability, microbial biodiversity and the underlying mechanism involved in a Fe2O3 nanoparticle-coupled anaerobic system treating 4-chlorophenol (4-CP) wastewater. The results demonstrated that the 4-CP and total organic carbon (TOC) removal efficiencies in the Fe2O3-coupled up-flow anaerobic sludge blanket (UASB) were always higher than 97% and 90% during long-term operation, verifying the long-term stability of the Fe2O3-coupled UASB. The 4-CP and TOC removal efficiencies in the coupled UASB increased by 42.9±0.4% and 27.5±0.7% compared to the control UASB system. Adding Fe2O3 nanoparticles promoted the enrichment of species involved in dechlorination, fermentation, electron transfer and acetoclastic methanogenesis, and significantly enhanced the extracellular electron transfer ability, electron transport activity and conductivity of anaerobic sludge, leading to enhanced 4-CP biodegradation performance. A possible synergistic mechanism involved in enhanced anaerobic 4-CP biodegradation by Fe2O3 nanoparticles was proposed.

Keywords Dechlorination      Fe2O3 nanoparticles      Electron transfer      Microbial community     
Corresponding Author(s): Na Li,Xiaodong Liu   
About author:

Tongcan Cui and Yizhe Hou contributed equally to this work.

Issue Date: 09 December 2021
 Cite this article:   
Cheng Hou,Xinbai Jiang,Na Li, et al. Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism[J]. Front. Environ. Sci. Eng., 2022, 16(8): 98.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-022-1519-6
https://academic.hep.com.cn/fese/EN/Y2022/V16/I8/98
Phase Purpose Time (d) 4-CP (mg/L) Glucose (mg/L) HRT (h)
I Start-up 1–38 5–20 1000 24
II Effect of 4-CP concentration 39–90 50–150 1000 24
III Effect of HRT 91–151 100 1000 24–6
IV Effect of glucose dosage 152–201 100 1000–100 12
V Long-term performance 202–250 100 500 12
Tab.1  Summary of operational condition at different phases
Fig.1  Effect of 4-CP concentration (a), HRT (b) and glucose dosage (c) on 4-CP biodegradation, TOC removal and Cl formation, and long-term performance (d) of the coupled UASB. RE4-CP, REtoc and FECl- refer to 4-CP removal efficiency, TOC removal efficiency and Cl formation efficiency, respectively.
Fig.2  Profiles of CH4 (a), VFAs (b), composition and content of EPS (c) in the control UASB and coupled UASB during long-term operation (R1: control UASB, R2: coupled UASB).
Fig.3  ETS activity (a), sludge conductivity (b), cytochrome c concentration (c), and the content of F420 and FDX (d) in the control UASB and the coupled UASB.
Fig.4  SEM image and EDS mapping of the sludge surface from the coupled UASB.
Microorganism Sample Estimated at 3% distance
Effective reads OTUs Chao1 Shannon ACE
Bacteria Seed sludge 72347 535 621 4.07 616
Control UASB 71593 391 430 3.27 426
Coupled UASB 74276 748 865 4.14 828
Archaea Seed sludge 47114 20 20 1.09 21
Control UASB 32450 16 17 1.08 18
Coupled UASB 37425 18 18 1.03 18
Tab.2  Biodiversity estimation of 16S rRNA gene libraries
Fig.5  Microbial community structure in the seed sludge, control UASB and coupled UASB: bacterial community at phyla level (a), bacterial community at genera level (b), archaea community at phyla level (c) and archaea community at genera level (d).
Fig.6  Synergistic mechanism for enhanced 4-CP biodegradation in Fe2O3 nanoparticles coupled UASB.
1 H A Bandal, A R Jadhav, A A Chaugule, W-J Chung, H Kim (2016). Fe2O3 hollow nanorods/CNT composites as an efficient electrocatalyst for oxygen evolution reaction. Electrochimica Acta, 222: 1316–1325
https://doi.org/10.1016/j.electacta.2016.11.107
2 T Bao, M M Damtie, A Hosseinzadeh, R L Frost, Z M Yu, J Jin, K Wu (2020). Catalytic degradation of P-chlorophenol by muscovite-supported nano zero valent iron composite: Synthesis, characterization, and mechanism studies. Applied Clay Science, 195: 105735
https://doi.org/10.1016/j.clay.2020.105735
3 L K Chan, T S Weber, R M Morgan-Kiss, T E Hanson (2008). A genomic region required for phototrophic thiosulfate oxidation in the green sulfur bacterium Chlorobium tepidum (syn. Chlorobaculum tepidum). Microbiology (Reading, England), 154(Pt 3): 818–829
https://doi.org/10.1099/mic.0.2007/012583-0 pmid: 18310028
4 D Chen, J Shen, X Jiang, G Su, W Han, X Sun, J Li, Y Mu, L Wang (2019). Simultaneous debromination and mineralization of bromophenol in an up-flow electricity-stimulated anaerobic system. Water Research, 157: 8–18
https://doi.org/10.1016/j.watres.2019.03.054 pmid: 30947080
5 M Elsamadony, A Elreedy, A Mostafa, M Fujii, J Gescher, S S Yekta, A Schnürer, J F Gaillard, D Pant (2021a). Perspectives on potential applications of nanometal derivatives in gaseous bioenergy pathways: Mechanisms, life cycle, and toxicity. ACS Sustainable Chemistry & Engineering, 9(29): 9563–9589
https://doi.org/10.1021/acssuschemeng.1c02260
6 M Elsamadony, A Mostafa, M Fujii, A Tawfik, D Pant (2021b). Advances towards understanding long chain fatty acids-induced inhibition and overcoming strategies for efficient anaerobic digestion process. Water Research, 190: 116732
https://doi.org/10.1016/j.watres.2020.116732 pmid: 33316662
7 C S He, P P He, H Y Yang, L L Li, Y Lin, Y Mu, H Q Yu (2017a). Impact of zero-valent iron nanoparticles on the activity of anaerobic granular sludge: From macroscopic to microcosmic investigation. Water Research, 127: 32–40
https://doi.org/10.1016/j.watres.2017.09.061 pmid: 29031797
8 K He, Q D Yin, A K Liu, S Echigo, S Itoh, G X Wu (2017b). Enhanced anaerobic degradation of amide pharmaceuticals by dosing ferroferric oxide or anthraquinone-2,6-disulfonate. Journal of Water Process Engineering, 18: 192–197
https://doi.org/10.1016/j.jwpe.2017.06.018
9 X B Jiang, Y Z Chen, C Hou, X D Liu, C J Ou, W Q Han, X Y Sun, J S Li, L J Wang, J Y Shen (2018). Promotion of para-chlorophenol reduction and extracellular electron transfer in an anaerobic system at the presence of iron-oxides. Frontiers in Microbiology, 9: 2052
https://doi.org/10.3389/fmicb.2018.02052 pmid: 30214440
10 Y Jing, J Wan, I Angelidaki, S Zhang, G Luo (2017). iTRAQ quantitative proteomic analysis reveals the pathways for methanation of propionate facilitated by magnetite. Water Research, 108: 212–221
https://doi.org/10.1016/j.watres.2016.10.077 pmid: 27817893
11 S Kato, K Hashimoto, K Watanabe (2012). Methanogenesis facilitated by electric syntrophy via (semi)conductive iron-oxide minerals. Environmental Microbiology, 14(7): 1646–1654
https://doi.org/10.1111/j.1462-2920.2011.02611.x pmid: 22004041
12 F Kong, A Wang, H Y Ren (2014). Improved 4-chlorophenol dechlorination at biocathode in bioelectrochemical system using optimized modular cathode design with composite stainless steel and carbon-based materials. Bioresource Technology, 166: 252–258
https://doi.org/10.1016/j.biortech.2014.05.049 pmid: 24926596
13 O S Kwean, S Y Cho, J W Yang, W Cho, S Park, Y Lim, M C Shin, H S Kim, J Park, H S Kim (2018). 4-Chlorophenol biodegradation facilitator composed of recombinant multi-biocatalysts immobilized onto montmorillonite. Bioresource Technology, 259: 268–275
https://doi.org/10.1016/j.biortech.2018.03.066 pmid: 29571170
14 D J Lea-Smith, P Bombelli, R Vasudevan, C J Howe (2016). Photosynthetic, respiratory and extracellular electron transport pathways in cyanobacteria. Biochimica et Biophysica Acta, 1857(3): 247–255
https://doi.org/10.1016/j.bbabio.2015.10.007 pmid: 26498190
15 L L Li, Z H Tong, C Y Fang, J Chu, H Q Yu (2015). Response of anaerobic granular sludge to single-wall carbon nanotube exposure. Water Research, 70: 1–8
https://doi.org/10.1016/j.watres.2014.11.042 pmid: 25499894
16 B Liang, D Y Kong, M Y Qi, H Yun, Z L Li, K Shi, E Chen, A S Vangnai, A J Wang (2019). Anaerobic biodegradation of trimethoprim with sulfate as an electron acceptor. Frontiers of Environmental Science & Engineering, 13(6): 84
https://doi.org/10.1007/s11783-019-1168-6
17 J Liang, W Li, H L Zhang, X B Jiang, L J Wang, X D Liu, J Y Shen (2018). Coaggregation mechanism of pyridine-degrading strains for the acceleration of the aerobic granulation process. Chemical Engineering Journal, 338: 176–183
https://doi.org/10.1016/j.cej.2018.01.029
18 D Liu, L Lei, B Yang, Q Yu, Z Li (2013). Direct electron transfer from electrode to electrochemically active bacteria in a bioelectrochemical dechlorination system. Bioresource Technology, 148: 9–14
https://doi.org/10.1016/j.biortech.2013.08.108 pmid: 24035815
19 F Liu, A E Rotaru, P M Shrestha, N S Malvankar, K P Nevin, D R Lovley (2015a). Magnetite compensates for the lack of a pilin-associated c-type cytochrome in extracellular electron exchange. Environmental Microbiology, 17(3): 648–655
https://doi.org/10.1111/1462-2920.12485 pmid: 24725505
20 F H Liu, A E Rotaru, P M Shrestha, N S Malvankar, K P Nevin, D R Lovley (2012a). Promoting direct interspecies electron transfer with activated carbon. Energy & Environmental Science, 5(10): 8982–8989
https://doi.org/10.1039/c2ee22459c
21 X M Liu, G P Sheng, H W Luo, F Zhang, S J Yuan, J Xu, R J Zeng, J G Wu, H Q Yu (2010). Contribution of extracellular polymeric substances (EPS) to the sludge aggregation. Environmental Science & Technology, 44(11): 4355–4360
https://doi.org/10.1021/es9016766 pmid: 20446688
22 Y Liu, Y Zhang, B J Ni (2015b). Zero valent iron simultaneously enhances methane production and sulfate reduction in anaerobic granular sludge reactors. Water Research, 75: 292–300
https://doi.org/10.1016/j.watres.2015.02.056 pmid: 25867207
23 Y W Liu, Y B Zhang, X Quan, Y Li, Z Q Zhao, X S Meng, S Chen (2012b). Optimization of anaerobic acidogenesis by adding Fe powder to enhance anaerobic wastewater treatment. Chemical Engineering Journal, 192: 179–185
https://doi.org/10.1016/j.cej.2012.03.044
24 K H Lo, C W Lu, W H Lin, C C Chien, S C Chen, C M Kao (2020). Enhanced reductive dechlorination of trichloroethene with immobilized Clostridium butyricum in silica gel. Chemosphere, 238: 124596
25 J Luo, L Feng, Y Chen, X Li, H Chen, N Xiao, D Wang (2014). Stimulating short-chain fatty acids production from waste activated sludge by nano zero-valent iron. Journal of Biotechnology, 187: 98–105
https://doi.org/10.1016/j.jbiotec.2014.07.444 pmid: 25093934
26 L R Lynd, P J Weimer, W H van Zyl, I S Pretorius (2002). Microbial cellulose utilization: Fundamentals and biotechnology. Microbiology and Molecular Biology Reviews: MMBR, 66(3): 506–577
https://doi.org/10.1128/MMBR.66.3.506-577.2002 pmid: 12209002
27 D Ma, J Wang, T H Chen, C B Shi, S C Peng, Z B Yue (2015). Iron-oxide-promoted anaerobic process of the aquatic plant of curly leaf pondweed. Energy & Fuels, 29(7): 4356–4360
https://doi.org/10.1021/acs.energyfuels.5b00573
28 C Pan, D Giammar (2020). Interplay of transport processes and interfacial chemistry affecting chromium reduction and reoxidation with iron and manganese. Frontiers of Environmental Science & Engineering, 14(5): 81
https://doi.org/10.1007/s11783-020-1260-y
29 A E Rotaru, P M Shrestha, F H Liu, M Shrestha, D Shrestha, M Embree, K Zengler, C Wardman, K P Nevin, D R Lovley (2014a). A new model for electron flow during anaerobic digestion: Direct interspecies electron transfer to Methanosaeta for the reduction of carbon dioxide to methane. Energy & Environmental Science, 7(1): 408–415
https://doi.org/10.1039/C3EE42189A
30 A E Rotaru, P M Shrestha, F Liu, B Markovaite, S Chen, K P Nevin, D R Lovley (2014b). Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri. Applied and Environmental Microbiology, 80(15): 4599–4605
https://doi.org/10.1128/AEM.00895-14 pmid: 24837373
31 L Shen, Q C Zhao, X E Wu, X Z Li, Q B Li, Y P Wang (2016). Interspecies electron transfer in syntrophic methanogenic consortia: From cultures to bioreactors. Renewable & Sustainable Energy Reviews, 54: 1358–1367
https://doi.org/10.1016/j.rser.2015.12.006
32 J Shi, Y Han, C Xu, H Han (2019). Enhanced biodegradation of coal gasification wastewater with anaerobic biofilm on polyurethane (PU), powdered activated carbon (PAC), and biochar. Bioresource Technology, 289: 121487
https://doi.org/10.1016/j.biortech.2019.121487 pmid: 31279321
33 P M Shrestha, N S Malvankar, J J Werner, A E Franks, A Elena-Rotaru, M Shrestha, F Liu, K P Nevin, L T Angenent, D R Lovley (2014). Correlation between microbial community and granule conductivity in anaerobic bioreactors for brewery wastewater treatment. Bioresource Technology, 174: 306–310
https://doi.org/10.1016/j.biortech.2014.10.004 pmid: 25443621
34 A Siggins, A M Enright, V O’Flaherty (2011). Temperature dependent (37–15°C) anaerobic digestion of a trichloroethylene-contaminated wastewater. Bioresource Technology, 102(17): 7645–7656
https://doi.org/10.1016/j.biortech.2011.05.055 pmid: 21715158
35 A Tawfik, G K Hassan, H Awad, M Hassan, P Rojas, J L Sanz, M Elsamadony, D Pant, M Fujii (2021). Strengthen “the sustainable farm” concept via efficacious conversion of farm wastes into methane. Bioresource Technology, 341(1): 125838
https://doi.org/10.1016/j.biortech.2021.125838 pmid: 34467888
36 C C Viggi, S Rossetti, S Fazi, P Paiano, M Majone, F Aulenta (2014). Magnetite particles triggering a faster and more robust syntrophic pathway of methanogenic propionate degradation. Environmental Science & Technology, 48(13): 7536–7543
https://doi.org/10.1021/es5016789 pmid: 24901501
37 D Wang, X Liu, G Zeng, J Zhao, Y Liu, Q Wang, F Chen, X Li, Q Yang (2018). Understanding the impact of cationic polyacrylamide on anaerobic digestion of waste activated sludge. Water Research, 130: 281–290
https://doi.org/10.1016/j.watres.2017.12.007 pmid: 29241114
38 S Wang, C Chen, S Zhao, J He (2019). Microbial synergistic interactions for reductive dechlorination of polychlorinated biphenyls. Science of the Total Environment, 666: 368–376
https://doi.org/10.1016/j.scitotenv.2019.02.283 pmid: 30798243
39 Z Wang, M Gao, S Wang, Y Xin, D Ma, Z She, Z Wang, Q Chang, Y Ren (2014). Effect of hexavalent chromium on extracellular polymeric substances of granular sludge from an aerobic granular sequencing batch reactor. Chemical Engineering Journal, 251: 165–174
https://doi.org/10.1016/j.cej.2014.04.078
40 M K H Winkler, C Meunier, O Henriet, J Mahillon, M E Suárez-Ojeda, G Del Moro, M De Sanctis, C Di Iaconi, D G Weissbrodt (2018). An integrative review of granular sludge for the biological removal of nutrients and recalcitrant organic matter from wastewater. Chemical Engineering Journal, 336: 489–502
https://doi.org/10.1016/j.cej.2017.12.026
41 C Y Wu, L Zhuang, S G Zhou, F B Li, X M Li (2010). Fe(III)-enhanced anaerobic transformation of 2,4-dichlorophenoxyacetic acid by an iron-reducing bacterium Comamonas koreensis CY01. FEMS Microbiology Ecology, 71(1): 106–113
https://doi.org/10.1111/j.1574-6941.2009.00796.x pmid: 19895639
42 T H Xi, X D Li, Q H Zhang, N Liu, S Niu, Z J Dong, C Lyu (2021). Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite. Frontiers of Environmental Science & Engineering, 15(4): 55
https://doi.org/10.1007/s11783-020-1347-5
43 Y Xiao, F Zhao (2017). Electrochemical roles of extracellular polymeric substances in biofilms. Current Opinion in Electrochemistry, 4(1): 206–211
https://doi.org/10.1016/j.coelec.2017.09.016
44 L Xu, J Wang (2012). Magnetic nanoscaled Fe3O4/CeO2 composite as an efficient Fenton-like heterogeneous catalyst for degradation of 4-chlorophenol. Environmental Science & Technology, 46(18): 10145–10153
https://doi.org/10.1021/es300303f pmid: 22924545
45 W Yan, N Shen, Y Xiao, Y Chen, F Sun, V K Tyagi, Y Zhou (2017). The role of conductive materials in the start-up period of thermophilic anaerobic system. Bioresource Technology, 239: 336–344
https://doi.org/10.1016/j.biortech.2017.05.046 pmid: 28531859
46 Y Yang, J Guo, Z Hu (2013). Impact of nano zero valent iron (NZVI) on methanogenic activity and population dynamics in anaerobic digestion. Water Research, 47(17): 6790–6800
https://doi.org/10.1016/j.watres.2013.09.012 pmid: 24112628
47 Q D Yin, J Miao, B Li, G X Wu (2017). Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon. International Biodeterioration & Biodegradation, 119: 104–110
https://doi.org/10.1016/j.ibiod.2016.09.023
48 Q D Yin, S Yang, Z Z Wang, L Z Xing, G X Wu (2018). Clarifying electron transfer and metagenomic analysis of microbial community in the methane production process with the addition of ferroferric oxide. Chemical Engineering Journal, 333: 216–225
https://doi.org/10.1016/j.cej.2017.09.160
49 N Yoshida, Y Yoshida, Y Handa, H K Kim, S Ichihara, A Katayama (2007). Polyphasic characterization of a PCP-to-phenol dechlorinating microbial community enriched from paddy soil. Science of the Total Environment, 381(1–3): 233–242
https://doi.org/10.1016/j.scitotenv.2007.03.021 pmid: 17477955
50 D J Zhang, W Li, C Hou, J Y Shen, X B Jiang, X Y Sun, J S Li, W Q Han, L J Wang, X D Liu (2017). Aerobic granulation accelerated by biochar for the treatment of refractory wastewater. Chemical Engineering Journal, 314: 88–97
https://doi.org/10.1016/j.cej.2016.12.128
51 F Zhang, J Hou, L Z Miao, J Chen, Y Xu, G X You, S Q Liu, J J Ma (2018). Chlorpyrifos and 3,5,6-trichloro-2-pyridinol degradation in zero valent iron coupled anaerobic system: Performances and mechanisms. Chemical Engineering Journal, 353: 254–263
https://doi.org/10.1016/j.cej.2018.07.136
52 J Zhang, Y Zhang, X Quan, S Chen (2013). Effects of ferric iron on the anaerobic treatment and microbial biodiversity in a coupled microbial electrolysis cell (MEC): Anaerobic reactor. Water Research, 47(15): 5719–5728
https://doi.org/10.1016/j.watres.2013.06.056 pmid: 23886545
53 J Zhao, Y Li, X Chen, Y Li (2018). Effects of carbon sources on sludge performance and microbial community for 4-chlorophenol wastewater treatment in sequencing batch reactors. Bioresource Technology, 255: 22–28
https://doi.org/10.1016/j.biortech.2018.01.106 pmid: 29414169
54 J G Zhao, X R Chen, L Wang, Y Xu, J H Li, Y H Li (2017a). Effects of elevated 4-chlorophenol loads on components of polysaccharides and proteins and toxicity in an activated sludge process. Chemical Engineering Journal, 330: 236–244
https://doi.org/10.1016/j.cej.2017.07.009
55 J G Zhao, X R Chen, J Zhao, F K Lin, Z Bao, Y X He, L Wang, Z D Shi (2015). Toxicity in different molecular-weight fractions of sludge treating synthetic wastewater containing 4-chlorophenol. International Biodeterioration & Biodegradation, 104: 251–257
https://doi.org/10.1016/j.ibiod.2015.06.005
56 Z Zhao, Y Li, X Quan, Y Zhang (2017b). Towards engineering application: Potential mechanism for enhancing anaerobic digestion of complex organic waste with different types of conductive materials. Water Research, 115: 266–277
https://doi.org/10.1016/j.watres.2017.02.067 pmid: 28284093
57 Z Zhao, Y Zhang, X Quan, H Zhao (2016a). Evaluation on direct interspecies electron transfer in anaerobic sludge digestion of microbial electrolysis cell. Bioresource Technology, 200: 235–244
https://doi.org/10.1016/j.biortech.2015.10.021 pmid: 26492177
58 Z Zhao, Y Zhang, Q Yu, Y Dang, Y Li, X Quan (2016b). Communities stimulated with ethanol to perform direct interspecies electron transfer for syntrophic metabolism of propionate and butyrate. Water Research, 102: 475–484
https://doi.org/10.1016/j.watres.2016.07.005 pmid: 27403870
[1] FSE-21114-OF-HC_suppl_1 Download
[1] Yingbin Hu, Ning Li, Jin Jiang, Yanbin Xu, Xiaonan Luo, Jie Cao. Simultaneous Feammox and anammox process facilitated by activated carbon as an electron shuttle for autotrophic biological nitrogen removal[J]. Front. Environ. Sci. Eng., 2022, 16(7): 90-.
[2] Zecong Yu, Keke Xiao, Yuwei Zhu, Mei Sun, Sha Liang, Jingping Hu, Huijie Hou, Bingchuan Liu, Jiakuan Yang. Comparison of different valent iron on anaerobic sludge digestion: Focusing on oxidation reduction potential, dissolved organic nitrogen and microbial community[J]. Front. Environ. Sci. Eng., 2022, 16(6): 80-.
[3] Lei Li, Shijie Yuan, Chen Cai, Xiaohu Dai. Developing “precise-acting” strategies for improving anaerobic methanogenesis of organic waste: Insights from the electron transfer system of syntrophic partners[J]. Front. Environ. Sci. Eng., 2022, 16(6): 74-.
[4] Qiong Guo, Zhichao Yang, Bingliang Zhang, Ming Hua, Changhong Liu, Bingcai Pan. Enhanced methane production during long-term UASB operation at high organic loads as enabled by the immobilized Fungi[J]. Front. Environ. Sci. Eng., 2022, 16(6): 71-.
[5] Yuqing Yan, Xin Wang. Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation[J]. Front. Environ. Sci. Eng., 2022, 16(4): 52-.
[6] Yanan Bai, Xiuning Wang, Fang Zhang, Raymond Jianxiong Zeng. Acid Orange 7 degradation using methane as the sole carbon source and electron donor[J]. Front. Environ. Sci. Eng., 2022, 16(3): 34-.
[7] Zaishan Wei, Meiru Tang, Zhenshan Huang, Huaiyong Jiao. Mercury removal from flue gas using nitrate as an electron acceptor in a membrane biofilm reactor[J]. Front. Environ. Sci. Eng., 2022, 16(2): 20-.
[8] Yifan Liu, Qiongfang Zhang, Ainiwaer Sidike, Nuerla Ailijiang, Anwar Mamat, Guangxiao Zhang, Miao Pu, Wenhu Cheng, Zhengtao Pang. The impact of different voltage application modes on biodegradation of chloramphenicol and shift of microbial community structure[J]. Front. Environ. Sci. Eng., 2022, 16(11): 141-.
[9] Shuhan Li, Xin Zhou, Xiwei Cao, Jiabo Chen. Insights into simultaneous anammox and denitrification system with short-term pyridine exposure: Process capability, inhibition kinetics and metabolic pathways[J]. Front. Environ. Sci. Eng., 2021, 15(6): 139-.
[10] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[11] Ruijie Li, Mengmeng Zhou, Shilong He, Tingting Pan, Jing Liu, Jiabao Zhu. Deciphering the effect of sodium dodecylbenzene sulfonate on up-flow anaerobic sludge blanket treatment of synthetic sulfate-containing wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(5): 91-.
[12] Tianhao Xi, Xiaodan Li, Qihui Zhang, Ning Liu, Shu Niu, Zhaojun Dong, Cong Lyu. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite[J]. Front. Environ. Sci. Eng., 2021, 15(4): 55-.
[13] Weichuan Qiao, Rong Li, Tianhao Tang, Achuo Anitta Zuh. Removal, distribution and plant uptake of perfluorooctane sulfonate (PFOS) in a simulated constructed wetland system[J]. Front. Environ. Sci. Eng., 2021, 15(2): 20-.
[14] Yanqing Duan, Aijuan Zhou, Xiuping Yue, Zhichun Zhang, Yanjuan Gao, Yanhong Luo, Xiao Zhang. Acceleration of the particulate organic matter hydrolysis by start-up stage recovery and its original microbial mechanism[J]. Front. Environ. Sci. Eng., 2021, 15(1): 12-.
[15] Chao Lu, Kanglan Deng, Chun Hu, Lai Lyu. Dual-reaction-center catalytic process continues Fenton’s story[J]. Front. Environ. Sci. Eng., 2020, 14(5): 82-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed