Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (6) : 74    https://doi.org/10.1007/s11783-021-1508-1
PERSPECTIVES
Developing “precise-acting” strategies for improving anaerobic methanogenesis of organic waste: Insights from the electron transfer system of syntrophic partners
Lei Li1, Shijie Yuan1, Chen Cai1, Xiaohu Dai1,2()
1. State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
 Download: PDF(285 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Methanogenesis is the last step in anaerobic digestion, which is usually a rate-limiting step in the biological treatment of organic waste. The low methanogenesis efficiency (low methane production rate, low methane yield, low methane content) substantially limits the development of anaerobic digestion technology. Traditional pretreatment methods and bio-stimulation strategies have impacts on the entire anaerobic system and cannot directly enhance methanogenesis in a targeted manner, which was defined as “broad-acting” strategies in this perspective. Further, we discussed our opinion of methanogenesis process with insights from the electron transfer system of syntrophic partners and provided potential targeted enhancing strategy for high-efficiency electron transfer system. These “precise-acting” strategies are expected to achieve an efficient methanogenesis process and enhance the bio-energy recovery of organic waste.

Keywords Methanogenesis      Anaerobic digestion      Enhancing strategy      Electron transfer      Organic waste     
Corresponding Author(s): Xiaohu Dai   
Issue Date: 30 September 2021
 Cite this article:   
Lei Li,Shijie Yuan,Chen Cai, et al. Developing “precise-acting” strategies for improving anaerobic methanogenesis of organic waste: Insights from the electron transfer system of syntrophic partners[J]. Front. Environ. Sci. Eng., 2022, 16(6): 74.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1508-1
https://academic.hep.com.cn/fese/EN/Y2022/V16/I6/74
Fig.1  Diagrammatic sketch of the evolution from “broad-acting” strategies to “precise-acting” strategies with different syntrophic methanogenesis efficiency (OW: organic waste).
1 X Bai, T Lin, N Liang, B Z Li, H Song, Y J Yuan (2021). Engineering synthetic microbial consortium for efficient conversion of lactate from glucose and xylose to generate electricity. Biochemical Engineering Journal, 172: 108052
https://doi.org/10.1016/j.bej.2021.108052
2 C M Dykstra, C Cheng, S G Pavlostathis (2020). Comparison of carbon dioxide with anaerobic digester biogas as a methanogenic biocathode feedstock. Environmental Science & Technology, 54(14): 8949–8957
https://doi.org/10.1021/acs.est.9b07438 pmid: 32544322
3 L M González, N Mukhitov, C A Voigt (2020). Resilient living materials built by printing bacterial spores. Nature Chemical Biology, 16(2): 126–133
https://doi.org/10.1038/s41589-019-0412-5 pmid: 31792444
4 F Li, L Wang, C Liu, D Wu, H Song (2018). Engineering exoelectrogens by synthetic biology strategies. Current Opinion in Electrochemistry, 10: 37–45
https://doi.org/10.1016/j.coelec.2018.03.030
5 L Li, C Cai, Y Chen, H Liu, R Liu, D Yang, B Dong, X Dai (2021a). Secondary acidogenic fermentation of waste activated sludge via voltage supplementation: Insights from sludge structure and enzymes activity. Science of the Total Environment, 797: 149161
https://doi.org/10.1016/j.scitotenv.2021.149161 pmid: 34303972
6 L Li, Y Xu, X Dai, L Dai (2021b). Principles and advancements in improving anaerobic digestion of organic waste via direct interspecies electron transfer. Renewable & Sustainable Energy Reviews, 148: 111367
https://doi.org/10.1016/j.rser.2021.111367
7 C Liu, J Xiao, H Li, Q Chen, D Sun, X Cheng, P Li, Y Dang, J A Smith, D E Holmes (2021). High efficiency in-situ biogas upgrading in a bioelectrochemical system with low energy input. Water Research, 197: 117055
https://doi.org/10.1016/j.watres.2021.117055 pmid: 33789202
8 D R Lovley (2017). Happy together: microbial communities that hook up to swap electrons. The ISME Journal, 11(2): 327–336
https://doi.org/10.1038/ismej.2016.136 pmid: 27801905
9 S A Pace, R Yazdani, A Kendall, C W Simmons, J S Vandergheynst (2018). Impact of organic waste composition on life cycle energy production, global warming and Water use for treatment by anaerobic digestion followed by composting. Resources, Conservation and Recycling, 137: 126–135
https://doi.org/10.1016/j.resconrec.2018.05.030
10 A J Stams, C M Plugge (2009). Electron transfer in syntrophic communities of anaerobic bacteria and archaea. Nature Reviews. Microbiology, 7(8): 568–577
https://doi.org/10.1038/nrmicro2166 pmid: 19609258
11 I Vassilev, N J H Averesch, P Ledezma, M Kokko (2021). Anodic electro-fermentation: Empowering anaerobic production processes via anodic respiration. Biotechnology Advances, 48: 107728
https://doi.org/10.1016/j.biotechadv.2021.107728 pmid: 33705913
12 C A Wilson, J T Novak (2009). Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Research, 43(18): 4489–4498
https://doi.org/10.1016/j.watres.2009.07.022 pmid: 19695659
13 Y Xu, H Gong, X Dai (2021). High-solid anaerobic digestion of sewage sludge: Achievements and perspectives. Frontiers of Environmental Science & Engineering, 15(4): 71
https://doi.org/10.1007/s11783-020-1364-4
14 W Yan, T Qian, Y N A Soh, Y Zhou (2020). Micro-level evaluation of organic compounds transformation in anaerobic digestion under feast and famine conditions assisted by iron-based materials: Revealing the true mechanism of AD enhancement. Environment International, 135: 105362
https://doi.org/10.1016/j.envint.2019.105362 pmid: 31830729
[1] Cheng Hou, Xinbai Jiang, Na Li, Zhenhua Zhang, Qian Zhang, Jinyou Shen, Xiaodong Liu. Enhanced 4-chlorophenol biodegradation by integrating Fe2O3 nanoparticles into an anaerobic reactor: Long-term performance and underlying mechanism[J]. Front. Environ. Sci. Eng., 2022, 16(8): 98-.
[2] Yingbin Hu, Ning Li, Jin Jiang, Yanbin Xu, Xiaonan Luo, Jie Cao. Simultaneous Feammox and anammox process facilitated by activated carbon as an electron shuttle for autotrophic biological nitrogen removal[J]. Front. Environ. Sci. Eng., 2022, 16(7): 90-.
[3] Qiong Guo, Zhichao Yang, Bingliang Zhang, Ming Hua, Changhong Liu, Bingcai Pan. Enhanced methane production during long-term UASB operation at high organic loads as enabled by the immobilized Fungi[J]. Front. Environ. Sci. Eng., 2022, 16(6): 71-.
[4] Yuqing Yan, Xin Wang. Integrated energy view of wastewater treatment: A potential of electrochemical biodegradation[J]. Front. Environ. Sci. Eng., 2022, 16(4): 52-.
[5] Qinxue Wen, Shuo Yang, Zhiqiang Chen. Mesophilic and thermophilic anaerobic digestion of swine manure with sulfamethoxazole and norfloxacin: Dynamics of microbial communities and evolution of resistance genes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 94-.
[6] Tianhao Xi, Xiaodan Li, Qihui Zhang, Ning Liu, Shu Niu, Zhaojun Dong, Cong Lyu. Enhanced catalytic oxidation of 2,4-dichlorophenol via singlet oxygen dominated peroxymonosulfate activation on CoOOH@Bi2O3 composite[J]. Front. Environ. Sci. Eng., 2021, 15(4): 55-.
[7] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[8] Wenbing Tan, Dongyu Cui, Xiaohui Zhang, Beidou Xi. Region-gridding recycling of bulk organic waste: Emerging views based on coordinated urban and rural development[J]. Front. Environ. Sci. Eng., 2020, 14(6): 112-.
[9] Chao Lu, Kanglan Deng, Chun Hu, Lai Lyu. Dual-reaction-center catalytic process continues Fenton’s story[J]. Front. Environ. Sci. Eng., 2020, 14(5): 82-.
[10] Wenrui Guo, Yue Wen, Yi Chen, Qi Zhou. Sulfur cycle as an electron mediator between carbon and nitrate in a constructed wetland microcosm[J]. Front. Environ. Sci. Eng., 2020, 14(4): 57-.
[11] Sijia Ai, Hongyu Liu, Mengjie Wu, Guangming Zeng, Chunping Yang. Roles of acid-producing bacteria in anaerobic digestion of waste activated sludge[J]. Front. Environ. Sci. Eng., 2018, 12(6): 3-.
[12] Yujiao Sun, Juanjuan Zhao, Lili Chen, Yueqiao Liu, Jiane Zuo. Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge[J]. Front. Environ. Sci. Eng., 2018, 12(4): 10-.
[13] Panagiotis G. Kougias, Irini Angelidaki. Biogas and its opportunities—A review[J]. Front. Environ. Sci. Eng., 2018, 12(3): 14-.
[14] Ping He, Guangxue Wu, Rui Tang, Peilun Ji, Shoujun Yuan, Wei Wang, Zhenhu Hu. Influence of arsanilic acid, Cu2+, PO43 and their interaction on anaerobic digestion of pig manure[J]. Front. Environ. Sci. Eng., 2018, 12(2): 9-.
[15] Bai-Hang Zhao, Jie Chen, Han-Qing Yu, Zhen-Hu Hu, Zheng-Bo Yue, Jun Li. Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example[J]. Front. Environ. Sci. Eng., 2017, 11(6): 17-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed