Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (4) : 48    https://doi.org/10.1007/s11783-021-1482-7
REVIEW ARTICLE
Recent advances in antimony removal using carbon-based nanomaterials: A review
Xuemei Hu1, Shijie You2(), Fang Li1, Yanbiao Liu1()
1. Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
2. State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
 Download: PDF(1578 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• The synthesis and physicochemical properties of various CNMs are reviewed.

• Sb removal using carbon-based nano-adsorbents and membranes are summarized.

• Details on adsorption behavior and mechanisms of Sb uptake by CNMs are discussed.

• Challenges and future prospects for rational design of advanced CNMs are provided.

Recently, special attention has been deserved to environmental risks of antimony (Sb) element that is of highly physiologic toxicity to human. Conventional coagulation and ion exchange methods for Sb removal are faced with challenges of low efficiency, high cost and secondary pollution. Adsorption based on carbon nanomaterials (CNMs; e.g., carbon nanotubes, graphene, graphene oxide, reduced graphene oxide and their derivatives) may provide effective alternative because the CNMs have high surface area, rich surface chemistry and high stability. In particular, good conductivity makes it possible to create linkage between adsorption and electrochemistry, thereby the synergistic interaction will be expected for enhanced Sb removal. This review article summarizes the state of art on Sb removal using CNMs with the form of nano-adsorbents and/or filtration membranes. In details, procedures of synthesis and functionalization of different forms of CNMs were reviewed. Next, adsorption behavior and the underlying mechanisms toward Sb removal using various CNMs were presented as resulting from a retrospective analysis of literatures. Last, we prospect the needs for mass production and regeneration of CNMs adsorbents using more affordable precursors and objective assessment of environmental impacts in future studies.

Keywords Antimony      Carbon nanomaterials      Adsorption      Membrane separation     
Corresponding Author(s): Shijie You,Yanbiao Liu   
Issue Date: 11 August 2021
 Cite this article:   
Xuemei Hu,Shijie You,Fang Li, et al. Recent advances in antimony removal using carbon-based nanomaterials: A review[J]. Front. Environ. Sci. Eng., 2022, 16(4): 48.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1482-7
https://academic.hep.com.cn/fese/EN/Y2022/V16/I4/48
Fig.1  Graphene is the basic building block for other carbon allotropes (Reprint from Wan et al. (2012) with permission of American Chemical Society).
Fig.2  Modification techniques to functionalize carbon-based nano-adsorbents with various functional groups (Reprint from Yang et al. (2019) with permission of Elsevier).
Fig.3  (a) Proposed mechanisms for the adsorption of Sb(III) onto polyamide/graphene. (Adapted from Saleh et al. (2017)). (b) Proposed mechanism for adsorption of Sb (III) on graphite nanoplatelets (Adapted from Capra et al. (2018)).
No. Adsorbents Sorption capacities
(mg/g)
pH T
(°C)
Initial
Concentration
(mg/L)
BET
surface
area (m2/g)
Adsorption
isotherm
Kinetics
model
References
Sb(III) Sb(V) Sb(total)
1 Graphene 10.9 ? ? 11.0 30 1?10 154.4 Langmuir second-order Leng et al., 2012
2 Polyamide/Graphene 158.2 ? ? 5.0 20 1?25 421 Langmuir second-order Saleh et al., 2017
3 GO 36.5 ? ? 7.0 25 0?30 315.6 Langmuir first-order Yang et al., 2015
4 Graphite Nanoplatelets 18.2 ? ? 7.0 20 0?1 205 Langmuir second-order Capra et al., 2018
5 GO/Schwertmannite ? 158.6 ? 7.0 25 0?60 287.6 Langmuir second-order Dong et al., 2015
6 Fe3O4/GO 9.6 ? ? 7.0 25 0?500 ? Langmuir first-order Yang et al., 2017
7 rGO/Mn3O4 151.8 105.5 ? 6.8 20 10?1000 44 Langmuir second-order Zou et al., 2016
8 Co3O4/rGO 151.0 165.5 ? ? 25 0?280 53.6 Langmuir second-order Jiang et al, 2020
9 CNT 0.3 ? ? 7.0 25 4 89.2 Langmuir second-order Salam & Mohamed, 2013
10 Iodide-functionalized CNT 200.0 ? ? 7.0 25 10?100 105.8 Langmuir second-order Mishra & Sankararamakrishnan, 2018
11 Thiol-functionalized CNT 140.9 ? ? 7.0 25 10?100 111.9 Langmuir second-order Mishra & Sankararamakrishnan, 2018
12 nZVI/CNT 250.0 ? ? 5.0 25 0?200 132 Langmuir second-order Mishra et al., 2016
13 Fe2O3/CNT 6.2 ? ? 7.0 25 0?3.2 96.9 Freundlich first-order Yu et al., 2013
14 Biochar 85% 68% ? 5.0 25 0.5?5.0 20.2 Langmuir ? Vithanage et al., 2015
15 Ce-doped magnetic biochar ? 25.0 ? 7.5 25 10?100 230.7 Langmuir second-order Wang et al., 2019
16 MnFe2O4/biochar 237.5 ? ? 7.0 25 25–500 30.4 Langmuir second-order Wang et al., 2018c
17 La-doped magnetic biochar ? 18.9 ? 7.0 25 10–100 287.1 Langmuir second-order Wang et al., 2018b
18 Fe3O4/Fe2O3/carbon nanosphere 234.3 ? ? 5.0 20 100?1000 192.6 Langmuir second-order Ren et al., 2020
19 Fe2O3/carbon nanosphere 102.8 ? ? 5.0 20 10?200 134.9 Langmuir second-order Ren et al., 2020
20 Iron oxides/carbon nanosphere 233.6 ? ? 6.0 20 50?1000 88.3 Langmuir second-order Wang et al., 2018a
21 FeCl3/activated carbon 2.6 ? ? 7 25 0.5?3.5 940.0 Langmuir first-order Yu et al., 2014
22 ZrO2-carbon nanofiber 70.8 57.2 ? 7 25 10?500 106.3 Langmuir second-order Luo et al., 2015
23 TiO2-CNT (filter) ? ? 95 7 25 0?12 178 Langmuir second-order Liu et al., 2019c
24 Titanate-CNT (filter) ? ? 82.4 7 25 0?5 128.6 Langmuir second-order Liu et al., 2019b
25 MIL-88B(Fe)-CNT (filter) ? ? 13.1 7 25 1 382.3 Langmuir first-order Li et al., 2020
26 Goethite/CNT (filter) ? ? 63.5 7 25 0-5 98.1 Langmuir first-order Hu et al., 2021
Tab.1  Applications of carbon-based nanomaterials for the removal of antimony.
Fig.4  Schematic diagram of the formation of Ce-doped magnetic biochar and its mechanisms for Sb(V) adsorption. Adapted from Wang et al. (2019).
Fig.5  Adsorption isotherm with different temperatures for (a) Sb(III) and (b) Sb(V) on ZCN. (c) Proposed mechanisms for the adsorption of Sb(III)/Sb(V) onto ZCN. Adapted from Luo et al. (2015).
Fig.6  (a) Schematic illustration of the proposed working mechanism toward Sb(III) removal using the electrochemical filtration system (Reprint from Liu et al. (2019c) with permission of American Chemical Society). Effect of (b) applied voltage (0-2 V) and (c) pH (3-11) on Sb (III) sorption (Reprint from Liu et al. (2019c) with permission of American Chemical Society). (d) Schematic illustration of the plausible photoelectrochemical decontamination mechanism of Sb(III) (Reprint from Li et al. (2020) with permission of Elsevier).
Fig.7  Schematic approach for Cu adsorption-electrodesorption process on CNT (Adapted from Ganzoury et al. (2020)).
1 O V Alekseeva, N A Bagrovskaya, A V Noskov (2016). Sorption of heavy metal ions by fullerene and polystyrene/fullerene film compositions. Protection of Metals and Physical Chemistry of Surfaces, 52(3): 443–447
https://doi.org/10.1134/S2070205116030035
2 C J Boreiko, T G Rossman (2020). Antimony and its compounds: Health impacts related to pulmonary toxicity, cancer, and genotoxicity. Toxicology and Applied Pharmacology, 403: 115156
https://doi.org/10.1016/j.taap.2020.115156 pmid: 32710957
3 L Capra, M Manolache, I Ion, R Stoica, G Stinga, S M Doncea, E Alexandrescu, R Somoghi, M R Calin, I Radulescu, G R Ivan, M Deaconu, A C Ion (2018). Adsorption of Sb (III) on oxidized exfoliated graphite nanoplatelets. Nanomaterials (Basel), 8(12): 992
https://doi.org/10.3390/nano8120992 pmid: 30513681
4 A Y Cetinkaya (2018). Performance and mechanism of direct As(III) removal from aqueous solution using low-pressure graphene oxide-coated membrane. Chemical Papers, 72(9): 2363–2373
https://doi.org/10.1007/s11696-018-0474-y
5 A S C Chen, L Wang, T J Sorg, D A Lytle (2020). Removing arsenic and co-occurring contaminants from drinking water by full-scale ion exchange and point-of-use/point-of-entry reverse osmosis systems. Water Research, 172: 115455
https://doi.org/10.1016/j.watres.2019.115455 pmid: 31958595
6 N Cheng, B Wang, P Wu, X Lee, Y Xing, M Chen, B Gao (2021). Adsorption of emerging contaminants from water and wastewater by modified biochar: A review. Environmental pollution (Barking, Essex: 1987), 273: 116448
https://doi.org/10.1016/j.envpol.2021.116448 pmid: 33486256
7 A M Croitoru, A Ficai, D Ficai, R Trusca, G Dolete, E Andronescu, S C Turculet (2020). Chitosan/graphene oxide nanocomposite membranes as adsorbents with applications in water purification. Materials (Basel), 13(7): 1687
https://doi.org/10.3390/ma13071687 pmid: 32260385
8 R Das, B F Leo, F Murphy (2018). The toxic truth about carbon nanotubes in water purification: a perspective view. Nanoscale Research Letters, 13(1): 183
https://doi.org/10.1186/s11671-018-2589-z pmid: 29915874
9 S B Deng, Y Bei, X Y Lu, Z W Du, B Wang, Y J Wang, J Huang, G Yu (2015). Effect of co-existing organic compounds on adsorption of perfluorinated compounds onto carbon nanotubes. Frontiers of Environmental Science & Engineering, 9(5): 784–792
https://doi.org/10.1007/s11783-015-0790-1
10 K M Dimpe, L Nyaba, C Magoda, J C Ngila, P N Nomngongo (2017). Synthesis, modification, characterization and application of AC@Fe2O3@MnO2 composite for ultrasound assisted dispersive solid phase microextraction of refractory metals in environmental samples. Chemical Engineering Journal, 308: 169–176
https://doi.org/10.1016/j.cej.2016.09.079
11 P Dong, W J Liu, S J Wang, H L Wang, Y Q Wang, C C Zhao (2019). In suit synthesis of Fe3O4 on carbon fiber paper@polyaniline substrate as novel self-supported electrode for heterogeneous electro-Fenton oxidation. Electrochimica Acta, 308: 54–63
https://doi.org/10.1016/j.electacta.2019.03.215
12 S X Dong, X M Dou, D Mohan, C U Pittman, J M Luo (2015). Synthesis of graphene oxide/schwertmannite nanocomposites and their application in Sb(V) adsorption from water. Chemical Engineering Journal, 270: 205–214
https://doi.org/10.1016/j.cej.2015.01.071
13 X Du, F S Qu, H Liang, K Li, H R Yu, L M Bai, G B Li (2014). Removal of antimony (III) from polluted surface water using a hybrid coagulation-flocculation-ultrafiltration (CF-UF) process. Chemical Engineering Journal, 254: 293–301
https://doi.org/10.1016/j.cej.2014.05.126
14 C Y Duan, T Y Ma, J Y Wang, Y B Zhou (2020). Removal of heavy metals from aqueous solution using carbon-based adsorbents: A review. Journal of Water Process Engineering, 37: 101339
https://doi.org/10.1016/j.jwpe.2020.101339
15 M A Ganzoury, C Chidiac, J Kurtz, C F de Lannoy (2020). CNT-sorbents for heavy metals: Electrochemical regeneration and closed-loop recycling. Journal of Hazardous Materials, 393: 122432
https://doi.org/10.1016/j.jhazmat.2020.122432 pmid: 32151932
16 G Ghasemzadeh, M Momenpour, F Omidi, M R Hosseini, M Ahani, A Barzegari (2014). Applications of nanomaterials in water treatment and environmental remediation. Frontiers of Environmental Science & Engineering, 8(4): 471–482
https://doi.org/10.1007/s11783-014-0654-0
17 W Guo, Z Zhang, H Wang, H Qin, Z Fu (2021). Exposure characteristics of antimony and coexisting arsenic from multi-path exposure in typical antimony mine area. Journal of Environmental Management, 289: 112493
https://doi.org/10.1016/j.jenvman.2021.112493 pmid: 33823409
18 X Guo, Z Wu, M He, X Meng, X Jin, N Qiu, J Zhang (2014). Adsorption of antimony onto iron oxyhydroxides: adsorption behavior and surface structure. Journal of Hazardous Materials, 276: 339–345
https://doi.org/10.1016/j.jhazmat.2014.05.025 pmid: 24910911
19 R Gusain, N Kumar, S S Ray (2020). Recent advances in carbon nanomaterial-based adsorbents for water purification. Coordination Chemistry Reviews, 405: 213111
https://doi.org/10.1016/j.ccr.2019.213111
20 M He, N Wang, X Long, C Zhang, C Ma, Q Zhong, A Wang, Y Wang, A Pervaiz, J Shan (2019). Antimony speciation in the environment: Recent advances in understanding the biogeochemical processes and ecological effects. Journal of Environmental Sciences (China), 75: 14–39
https://doi.org/10.1016/j.jes.2018.05.023 pmid: 30473279
21 M He, X Wang, F Wu, Z Fu (2012). Antimony pollution in China. The Science of the total environment, 421-422: 41–50
https://doi.org/10.1016/j.scitotenv.2011.06.009 pmid: 21741676
22 X Hu, Y Liu, F Liu, H Jiang, F Li, C Shen, X Fang, J Yang (2021). Simultaneous decontamination of arsenite and antimonite using an electrochemical CNT filter functionalized with nanoscale goethite. Chemosphere, 274: 129790
https://doi.org/10.1016/j.chemosphere.2021.129790 pmid: 33540306
23 D Y Huang, B X Li, M Wu, S Kuga, Y Huang (2018). Graphene oxide-based Fe-Mg (hydr)oxide nanocomposite as heavy metals adsorbent. Journal of Chemical & Engineering Data, 63(6): 2097–2105
https://doi.org/10.1021/acs.jced.8b00100
24 T Huang, X Q Tang, K X Luo, Y Wu, X D Hou, S Tang (2021). An overview of graphene-based nanoadsorbent materials for environmental contaminants detection. Trends in Analytical Chemistry, 139: 116255
https://doi.org/10.1016/j.trac.2021.116255
25 H Jiang, L Tian, P Chen, Y Bai, X Li, H Shu, X Luo (2020). Efficient antimony removal by self-assembled core-shell nanocomposite of Co3O4@rGO and the analysis of its adsorption mechanism. Environmental Research, 187: 109657
https://doi.org/10.1016/j.envres.2020.109657 pmid: 32450426
26 S Jiang, H Sun, H Wang, B P Ladewig, Z Yao (2021). A comprehensive review on the synthesis and applications of ion exchange membranes. Chemosphere, 282: 130817
https://doi.org/10.1016/j.chemosphere.2021.130817 pmid: 34091294
27 N Khan, A Nawaz, B Islam, M H Sayyad, Y F Joya, S Islam, S Bibi (2021). Evaluating humidity sensing response of graphene quantum dots synthesized by hydrothermal treatment of glucose. Nanotechnology, 32(29): 295504
https://doi.org/10.1088/1361-6528/abe670 pmid: 33588387
28 A S Krishna Kumar, S J Jiang, W L Tseng (2015). Effective adsorption of chromium(VI)/Cr(III) from aqueous solution using ionic liquid functionalized multiwalled carbon nanotubes as a super sorbent. Journal of Materials Chemistry. A, Materials for Energy and Sustainability, 3(13): 7044–7057
https://doi.org/10.1039/C4TA06948J
29 H W Kroto, J R Heath, S C O’brien, R F Curl, R E Smalley (1985). C60: Buckminsterfullerene. Nature, 318(6042): 162–163
https://doi.org/10.1038/318162a0
30 H J Lee, W Cho, M Oh (2012). Advanced fabrication of metal-organic frameworks: template-directed formation of polystyrene@ZIF-8 core-shell and hollow ZIF-8 microspheres. Chemical communications (Cambridge, England), 48(2): 221–223
https://doi.org/10.1039/C1CC16213F pmid: 22089881
31 Y Q Leng, W L Guo, S N Su, C L Yi, L T Xing (2012). Removal of antimony(III) from aqueous solution by graphene as an adsorbent. Chemical Engineering Journal, 211–212: 406–411
https://doi.org/10.1016/j.cej.2012.09.078
32 F F Li, L Y Long, Y X Weng (2020a). A review on the contemporary development of composite materials comprising graphene/graphene derivatives. Advances in Materials Science and Engineering, 2020: 7915641
https://doi.org/10.1155/2020/7915641
33 M Li, Y Liu, C Shen, F Li, C C Wang, M Huang, B Yang, Z Wang, J Yang, W Sand (2020). One-step Sb(III) decontamination using a bifunctional photoelectrochemical filter. Journal of Hazardous Materials, 389: 121840
https://doi.org/10.1016/j.jhazmat.2019.121840 pmid: 31859170
34 X Li, X Dou, J Li (2012). Antimony(V) removal from water by iron-zirconium bimetal oxide: performance and mechanism. Journal of Environmental Sciences (China), 24(7): 1197–1203
https://doi.org/10.1016/S1001-0742(11)60932-7 pmid: 23513439
35 Z Z Li, C S Shen, Y B Liu, C Y Ma, F Li, B Yang, M H Huang, Z W Wang, L M Dong, S Wolfgang(2020b). Carbon nanotube filter functionalized with iron oxychloride for flow-through electro-Fenton. Applied Catalysis B: Environmental, 260: 118204
https://doi.org/10.1016/j.apcatb.2019.118204
36 Y Liu, G Gao, C D Vecitis (2020a). Prospects of an electroactive carbon nanotube membrane toward environmental applications. Accounts of Chemical Research, 53(12): 2892–2902
https://doi.org/10.1021/acs.accounts.0c00544 pmid: 33170634
37 Y Liu, F Liu, N Ding, C Shen, F Li, L Dong, M Huang, B Yang, Z Wang, W Sand (2019a). Boosting Cr(VI) detoxification and sequestration efficiency with carbon nanotube electrochemical filter functionalized with nanoscale polyaniline: Performance and mechanism. The Science of the total environment, 695: 133926
https://doi.org/10.1016/j.scitotenv.2019.133926 pmid: 31425976
38 Y Liu, F Liu, Z Qi, C Shen, F Li, C Ma, M Huang, Z Wang, J Li (2019b). Simultaneous oxidation and sorption of highly toxic Sb(III) using a dual-functional electroactive filter. Environmental pollution (Barking, Essex: 1987), 251: 72–80
https://doi.org/10.1016/j.envpol.2019.04.116 pmid: 31071635
39 Y Liu, P Wu, F Liu, F Li, X An, J Liu, Z Wang, C Shen, W Sand (2019c). Electroactive modified carbon nanotube filter for simultaneous detoxification and sequestration of Sb(III). Environmental Science & Technology, 53(3): 1527–1535
https://doi.org/10.1021/acs.est.8b05936 pmid: 30620181
40 Y B Liu, F Q Liu, N Ding, X M Hu, C S Shen, F Li, M H Huang, Z W Wang, W Sand, C C Wang (2020b). Recent advances on electroactive CNT-based membranes for environmental applications: the perfect match of electrochemistry and membrane separation. Chinese Chemical Letters, 31(10): 2539–2548
https://doi.org/10.1016/j.cclet.2020.03.011
41 J Luo, X Luo, J Crittenden, J Qu, Y Bai, Y Peng, J Li (2015). Removal of antimonite (Sb(III)) and antimonate (Sb(V)) from aqueous solution using carbon nanofibers that are decorated with zirconium oxide (ZrO2). Environmental Science & Technology, 49(18): 11115–11124
https://doi.org/10.1021/acs.est.5b02903 pmid: 26301862
42 R Madannejad, N Shoaie, F Jahanpeyma, M H Darvishi, M Azimzadeh, H Javadi (2019). Toxicity of carbon-based nanomaterials: Reviewing recent reports in medical and biological systems. Chemico-Biological Interactions, 307: 206–222
https://doi.org/10.1016/j.cbi.2019.04.036 pmid: 31054282
43 K V Maheshkumar, K Krishnamurthy, P Sathishkumar, S Sahoo, E Uddin, S K Pal, R Rajasekar (2014). Research updates on graphene oxide-based polymeric nanocomposites. Polymer Composites, 35(12): 2297–2310
https://doi.org/10.1002/pc.22899
44 S Mishra, J Dwivedi, A Kumar, N Sankararamakrishnan (2016). Removal of antimonite (Sb(III)) and antimonate (Sb(V)) using zerovalent iron decorated functionalized carbon nanotubes. RSC Advances, 6(98): 95865–95878
https://doi.org/10.1039/C6RA18965B
45 S Mishra, N Sankararamakrishnan (2018). Characterization, evaluation, and mechanistic insights on the adsorption of antimonite using functionalized carbon nanotubes. Environmental Science and Pollution Research International, 25(13): 12686–12701
https://doi.org/10.1007/s11356-018-1347-1 pmid: 29468398
46 I Mobasherpour, E Salahi, M Ebrahimi (2012). Removal of divalent nickel cations from aqueous solution by multi-walled carbon nano tubes: Equilibrium and kinetic processes. Research on Chemical Intermediates, 38(9): 2205–2222
https://doi.org/10.1007/s11164-012-0537-6
47 A M Nasir, P S Goh, M S Abdullah, B C Ng, A F Ismail (2019). Adsorptive nanocomposite membranes for heavy metal remediation: Recent progresses and challenges. Chemosphere, 232: 96–112
https://doi.org/10.1016/j.chemosphere.2019.05.174 pmid: 31152909
48 P Navarro, F J Alguacil (2002). Adsorption of antimony and arsenic from a copper electrorefining solution onto activated carbon. Hydrometallurgy, 66(1–3): 101–105
https://doi.org/10.1016/S0304-386X(02)00108-1
49 G F Norra, J Radjenovic (2021). Removal of persistent organic contaminants from wastewater using a hybrid electrochemical-granular activated carbon (GAC) system. Journal of Hazardous Materials, 415: 125557
https://doi.org/10.1016/j.jhazmat.2021.125557 pmid: 33721781
50 M Pal, M K Mondal, T K Paine, P Pal (2018). Purifying arsenic and fluoride-contaminated water by a novel graphene-based nanocomposite membrane of enhanced selectivity and sustained flux. Environmental Science and Pollution Research International, 25(17): 16579–16589
https://doi.org/10.1007/s11356-018-1829-1 pmid: 29594887
51 M Pan, C Shan, X Zhang, Y Zhang, C Zhu, G Gao, B Pan (2018). Environmentally friendly in situ regeneration of graphene aerogel as a model conductive adsorbent. Environmental Science & Technology, 52(2): 739–746
https://doi.org/10.1021/acs.est.7b02795 pmid: 29244489
52 S C Ren, Y J Ai, X Y Zhang, M Ruan, Z N Hu, L Liu, J F Li, Y Wang, J X Liang, H N Jia, Y Y Liu, D Niu, H B Sun, Q L Liang (2020). Recycling antimony(III) by magnetic carbon nanospheres: turning waste to recoverable catalytic for synthesis of esters and triazoles. ACS Sustainable Chemistry & Engineering, 8(1): 469–477
https://doi.org/10.1021/acssuschemeng.9b05802
53 Y M Ren, N Yan, J Feng, J Ma, Q Wen, N Li, Q Dong (2012). Adsorption mechanism of copper and lead ions onto graphene nanosheet/δ-MnO2. Materials Chemistry and Physics, 136(2–3): 538–544
https://doi.org/10.1016/j.matchemphys.2012.07.023
54 A Saerens, M Ghosh, J Verdonck, L Godderis (2019). Risk of cancer for workers exposed to antimony compounds: A systematic review. International Journal of Environmental Research and Public Health, 16(22): 4474
https://doi.org/10.3390/ijerph16224474 pmid: 31739404
55 M A Salam, R M Mohamed (2013). Removal of antimony(III) by multi-walled carbon nanotubes from model solution and environmental samples. Chemical Engineering Research & Design, 91(7): 1352–1360
https://doi.org/10.1016/j.cherd.2013.02.007
56 T A Saleh, A Sarı, M Tuzen (2017). Effective adsorption of antimony(III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chemical Engineering Journal, 307: 230–238
https://doi.org/10.1016/j.cej.2016.08.070
57 B Sarkar, S Mandal, Y F Tsang, P Kumar, K H Kim, Y S Ok (2018). Designer carbon nanotubes for contaminant removal in water and wastewater: A critical review. The Science of the total environment, 612: 561–581
https://doi.org/10.1016/j.scitotenv.2017.08.132 pmid: 28865273
58 S Shahrin, W J Lau, P S Goh, A F Ismail, J Jaafar (2019). Adsorptive mixed matrix membrane incorporating graphene oxide-manganese ferrite (GMF) hybrid nanomaterial for efficient As(V) ions removal. Composites. Part B, Engineering, 175: 107150
https://doi.org/10.1016/j.compositesb.2019.107150
59 A K Shukla, J Alam, M Alhoshan, L A Dass, F A A Ali, M R Muthumareeswaran, U Mishra, M A Ansari (20 18). Removal of heavy metal ions using a carboxylated graphene oxide-incorporated polyphenylsulfone nanofiltration membrane. Environmental Science. Water Research & Technology, 4(3): 438–448
https://doi.org/10.1039/C7EW00506G
60 P D Su, X Y Gao, J K Zhang, R Djellabi, B Yang, Q Wu, Z Wen (2021). Enhancing the adsorption function of biochar by mechanochemical graphitization for organic pollutant removal. Frontiers of Environmental Science & Engineering, 15(6): 130
61 B M Thamer, A Aldalbahi, M Moydeen A, A M Al-Enizi, H El-Hamshary, M H El-Newehy (2019). Fabrication of functionalized electrospun carbon nanofibers for enhancing lead-ion adsorption from aqueous solutions. Scientific Reports, 9(1): 19467
https://doi.org/10.1038/s41598-019-55679-6 pmid: 31857619
62 M Tripathy, S Padhiari, G Hota (2020). L-cysteine-functionalized mesoporous magnetite nanospheres: synthesis and adsorptive application toward arsenic remediation. Journal of Chemical & Engineering Data, 65(8): 3906–3919
https://doi.org/10.1021/acs.jced.0c00250
63 M Vakili, W Qiu, G Cagnetta, J Huang, G Yu (2021). Solvent-free mechanochemical mild oxidation method to enhance adsorption properties of chitosan. Frontiers of Environmental Science & Engineering, 15(6): 128
https://doi.org/10.1007/s11783-021-1416-4
64 M Vithanage, A U Rajapaksha, M Ahmad, M Uchimiya, X Dou, D S Alessi, Y S Ok (2015). Mechanisms of antimony adsorption onto soybean stover-derived biochar in aqueous solutions. Journal of Environmental Management, 151: 443–449
https://doi.org/10.1016/j.jenvman.2014.11.005 pmid: 25602696
65 X Wan, Y Huang, Y Chen (2012). Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale. Accounts of Chemical Research, 45(4): 598–607
https://doi.org/10.1021/ar200229q pmid: 22280410
66 J T Wang, Y X Chen, Z Q Zhang, Y J Ai, L Liu, L Qi, J J Zhou, Z N Hu, R H Jiang, H J Bao, S C Ren, J X Liang, H B Sun, D Niu, Q L Liang (2018a). Microwell confined iron oxide nanoparticles in honeycomblike carbon spheres for the adsorption of Sb(III) and sequential utilization as a catalyst. ACS Sustainable Chemistry & Engineering, 6(10): 12925–12934
https://doi.org/10.1021/acssuschemeng.8b02300
67 L Wang, J Y Wang, Z X Wang, J T Feng, S S Li, W Yan (2019). Synthesis of Ce-doped magnetic biochar for effective Sb(V) removal: performance and mechanism. Powder Technology, 345: 501–508
https://doi.org/10.1016/j.powtec.2019.01.022
68 L Wang, J Y Wang, Z X Wang, C He, W Lyu, W Yan, L Yang (2018b). Enhanced antimonate (Sb(V)) removal from aqueous solution by La-doped magnetic biochars. Chemical Engineering Journal, 354: 623–632
https://doi.org/10.1016/j.cej.2018.08.074
69 X X Wang, Z S Chen, S B Yang (2015a). Application of graphene oxides for the removal of Pb(II) ions from aqueous solutions: experimental and DFT calculation. Journal of Molecular Liquids, 211: 957–964
https://doi.org/10.1016/j.molliq.2015.08.020
70 Y Wang, R Yang, M Li, Z J Zhao (2015b). Hydrothermal preparation of highly porous carbon spheres from hemp (Cannabis sativa L.) stem hemicellulose for use in energy-related applications. Industrial Crops and Products, 65: 216–226
https://doi.org/10.1016/j.indcrop.2014.12.008
71 Y Y Wang, H Y Ji, H H Lu, Y X Liu, R Q Yang, L L He, S M Yang (2018c). Simultaneous removal of Sb(III) and Cd(II) in water by adsorption onto a MnFe2O4-biochar nanocomposite. RSC Advances, 8(6): 3264–3273
https://doi.org/10.1039/C7RA13151H
72 B R White, B T Stackhouse, J A Holcombe (2009). Magnetic gamma-Fe2O3 nanoparticles coated with poly-L-cysteine for chelation of As(III), Cu(II), Cd(II), Ni(II), Pb(II) and Zn(II). Journal of Hazardous Materials, 161(2–3): 848–853
https://doi.org/10.1016/j.jhazmat.2008.04.105 pmid: 18571848
73 S C Wilson, P V Lockwood, P M Ashley, M Tighe (2010). The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environmental pollution (Barking, Essex: 1987), 158(5): 1169–1181
https://doi.org/10.1016/j.envpol.2009.10.045 pmid: 19914753
74 J H Xi, M C He, K P Wang, G Z Zhang (2015). Comparison of masking agents for antimony speciation analysis using hydride generation atomic fluorescence spectrometry. Frontiers of Environmental Science & Engineering, 9(6): 970–978
https://doi.org/10.1007/s11783-014-0716-3
75 C Xu, B Zhang, L Zhu, S Lin, X Sun, Z Jiang, P G Tratnyek (2016). Sequestration of antimonite by zerovalent iron: using weak magnetic field effects to enhance performance and characterize reaction mechanisms. Environmental Science & Technology, 50(3): 1483–1491
https://doi.org/10.1021/acs.est.5b05360 pmid: 26727297
76 X Yang, T Zhou, B Ren, Z Shi, A Hursthouse (2017). Synthesis, characterization, and adsorptive properties of Fe3O4/GO nanocomposites for antimony removal. Journal of Analytical Methods in Chemistry, 2017: 3012364
https://doi.org/10.1155/2017/3012364 pmid: 28808598
77 X D Yang, Y S Wan, Y L Zheng, F He, Z Yu, J Huang, H Wang, Y S Ok, Y Jiang, B Gao (2019). Surface functional groups of carbon-based adsorbents and their roles in the removal of heavy metals from aqueous solutions: A critical review. Chemical Engineering Journal, 366: 608–621
https://doi.org/10.1016/j.cej.2019.02.119
78 X Z Yang, Z Shi, M Y Yuan, L S Liu (2015). Adsorption of trivalent antimony from aqueous solution using graphene oxide: kinetic and thermodynamic studies. Journal of Chemical & Engineering Data, 60(3): 806–813
https://doi.org/10.1021/je5009262
79 Y Yang, Z Xiong, Z Wang, Y Liu, Z J He, A K Cao, L Zhou, L J Zhu, S F Zhao (2021). Super-adsorptive and photo-regenerable carbon nanotube based membrane for highly efficient water purification. Journal of Membrane Science, 621: 119000
https://doi.org/10.1016/j.memsci.2020.119000
80 P L Yap, T T Tung, S Kabiri, N Matulick, D N H Tran, D Losic (2020). Polyamine-modified reduced graphene oxide: A new and cost-effective adsorbent for efficient removal of mercury in waters. Separation and Purification Technology, 238(238): 116441
https://doi.org/10.1016/j.seppur.2019.116441
81 G Yi, X F Fan, X Quan, S Chen, H T Yu (2019). Comparison of CNT-PVA membrane and commercial polymeric membranes in treatment of emulsified oily wastewater. Frontiers of Environmental Science & Engineering, 13(2): 23
https://doi.org/10.1007/s11783-019-1103-x
82 S H Yoo, L Liu, S Park (2009). Nanoparticle films as a conducting layer for anodic aluminum oxide template-assisted nanorod synthesis. Journal of Colloid and Interface Science, 339(1): 183–186
https://doi.org/10.1016/j.jcis.2009.07.049 pmid: 19699485
83 H Yu, Y He, G Q Xiao, Y Fan, J Ma, Y X Gao, R T Hou, X Y Yin, Y Q Wang, X Mei (2020). The roles of oxygen-containing functional groups in modulating water purification performance of graphene oxide-based membrane. Chemical Engineering Journal, 389: 124375
https://doi.org/10.1016/j.cej.2020.124375
84 T Yu, C Zeng, M Ye, Y Shao (2013). The adsorption of Sb(III) in aqueous solution by Fe2O3-modified carbon nanotubes. Water science and technology: A journal of the International Association on Water Pollution Research, 68(3): 658–664
https://doi.org/10.2166/wst.2013.290 pmid: 23925195
85 T C Yu, X H Wang, C Li (2014). Removal of antimony by FeCl3-modified granular-activated carbon in aqueous solution. Journal of Environmental Engineering, 140(9): A4014001
https://doi.org/10.1061/(ASCE)EE.1943-7870.0000736
86 G N Zeng, C X Hong, Y Zhang, H Z You, W Y Shi, M M Du, N Ai, B Chen (2020a). Adsorptive removal of Cr(VI) by sargassum horneri-based activated carbon coated with chitosan. Water, Air, and Soil Pollution, 231(2): 77
https://doi.org/10.1007/s11270-020-4440-2
87 J Q Zeng, P F Qi, J J Shi, T Pichler, F W Wang, Y Wang, K Y Sui (2020b). Chitosan functionalized iron nanosheet for enhanced removal of As(III) and Sb(III): synergistic effect and mechanism. Chemical Engineering Journal, 382: 122999
https://doi.org/10.1016/j.cej.2019.122999
88 B B Zhang, J L Song, G Y Yang, B X Han (2014). Large-scale production of high-quality graphene using glucose and ferric chloride. Chemical Science (Cambridge), 5(12): 4656–4660
https://doi.org/10.1039/C4SC01950D
89 D Y Zhao, S B Deng (2015). Environmental applications and implications of nanotechnologies. Frontiers of Environmental Science & Engineering, 9(5): 745
https://doi.org/10.1007/s11783-015-0810-1
90 X X Zhou, Y Wang, C C Gong, B Liu, G Wei (2020). Production, structural design, functional control, and broad applications of carbon nanofiber-based nanomaterials: A comprehensive review. Chemical Engineering Journal, 402: 126189
https://doi.org/10.1016/j.cej.2020.126189
91 K C Zhu, Y Y Duan, F Wang, P Gao, H Z Jia, C Y Ma, C Y Wang (2017). Silane-modified halloysite/Fe3O4 nanocomposites: simultaneous removal of Cr(VI) and Sb(V) and positive effects of Cr(VI) on Sb(V) adsorption. Chemical Engineering Journal, 311: 236–246
https://doi.org/10.1016/j.cej.2016.11.101
92 J P Zou, H L Liu, J Luo, Q J Xing, H M Du, X H Jiang, X B Luo, S L Luo, S L Suib (2016). Three-dimensional reduced graphene oxide coupled with Mn3O4 for highly efficient removal of Sb(III) and Sb(V) from water. ACS Applied Materials & Interfaces, 8(28): 18140–18149
https://doi.org/10.1021/acsami.6b05895 pmid: 27355752
93 S J Zou, Y F Chen, Y Zhang, X F Wang, N You, H T Fan (2021). A hybrid sorbent of α-iron oxide/reduced graphene oxide: studies for adsorptive removal of tetracycline antibiotics. Journal of Alloys and Compounds, 863: 158475
https://doi.org/10.1016/j.jallcom.2020.158475
[1] Ning Wang, Jiangtao Feng, Wei Yan, Luohong Zhang, Yonghong Liu, Ruihua Mu. Dual-functional sites for synergistic adsorption of Cr(VI) and Sb(V) by polyaniline-TiO2 hydrate: Adsorption behaviors, sites and mechanisms[J]. Front. Environ. Sci. Eng., 2022, 16(8): 105-.
[2] Jie Wu, Jian Lu, Jun Wu. Effect of gastric fluid on adsorption and desorption of endocrine disrupting chemicals on microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(8): 104-.
[3] Yanlin Li, Bo Wang, Lei Zhu, Yixing Yuan, Lujun Chen, Jun Ma. Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal oxides[J]. Front. Environ. Sci. Eng., 2022, 16(6): 68-.
[4] Feng Chen, Shihao Guo, Yihao Wang, Lulu Ma, Bing Li, Zhimin Song, Lei Huang, Wen Zhang. Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon adsorbent derived from loofah sponge[J]. Front. Environ. Sci. Eng., 2022, 16(5): 57-.
[5] Hui Hu, Lei Jiang, Longli Sun, Yanling Gao, Tian Wang, Chenguang Lv. Effective and selective separation of perrhenate from acidic wastewater by super-stable, superhydrophobic, and recyclable biosorbent[J]. Front. Environ. Sci. Eng., 2022, 16(2): 21-.
[6] Yanhui Dai, Jian Zhao, Chunxiao Sun, Diying Li, Xia Liu, Zhenyu Wang, Tongtao Yue, Baoshan Xing. Interaction and combined toxicity of microplastics and per- and polyfluoroalkyl substances in aquatic environment[J]. Front. Environ. Sci. Eng., 2022, 16(10): 136-.
[7] Xianying Ma, Xinhui Zhou, Mengjie Zhao, Wenzhuo Deng, Yanxiao Cao, Junfeng Wu, Jingcheng Zhou. Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions[J]. Front. Environ. Sci. Eng., 2022, 16(1): 3-.
[8] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[9] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[10] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[11] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[12] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[13] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[14] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[15] Ziwen Du, Chuyi Huang, Jiaqi Meng, Yaru Yuan, Ze Yin, Li Feng, Yongze Liu, Liqiu Zhang. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed