Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (3) : 43    https://doi.org/10.1007/s11783-020-1220-6
RESEARCH ARTICLE
Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars
Ziwen Du1, Chuyi Huang1, Jiaqi Meng1, Yaru Yuan2, Ze Yin1, Li Feng1, Yongze Liu1, Liqiu Zhang1()
1. Beijing Key Laboratory for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
2. College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China
 Download: PDF(1174 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• TPhP showed faster and higher sorption on biochars than TPPO.

• Pyrochars had higher sorption capacity for TPPO than hydrochar.

• Hydrophobic interactions dominated TPhP sorption by biochars.

• The π-π EDA and electrostatic interactions are involved in sorption.

Aromatic organophosphate flame retardant (OPFR) pollutants and biochars are commonly present and continually released into soils due to their increasingly wide applications. In this study, for the first time, the sorption of OPFRs on biochars was investigated. Although triphenyl phosphate (TPhP) and triphenylphosphine oxide (TPPO) have similar molecular structures and sizes, TPhP exhibited much faster and higher sorption than TPPO due to its stronger hydrophobicity, suggesting the dominant role of hydrophobic interactions in TPhP sorption. The π-π electron donor–acceptor (EDA) interactions also contributed to the sorption process, as suggested by the negative correlation between the sorption capacity of the aromatic OPFRs and the aromatic index (H/C atomic ratios) of biochar. Density functional theory calculations further showed that one benzene ring of aromatic OPFRs has no electrons, which may interact with biochar via π-π EDA interactions. The electrostatic attraction between the protonated P = O in OPFRs and the negatively charged biochar was found to occur at pH below 7. This work provides insights into the sorption behaviors and mechanisms of aromatic OPFRs by biochars.

Keywords Organophosphate flame retardants      Hydrochar      Pyrochar      Adsorption      Emerging contaminants      Biochar     
Corresponding Author(s): Liqiu Zhang   
Issue Date: 09 March 2020
 Cite this article:   
Ziwen Du,Chuyi Huang,Jiaqi Meng, et al. Sorption of aromatic organophosphate flame retardants on thermally and hydrothermally produced biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 43.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1220-6
https://academic.hep.com.cn/fese/EN/Y2020/V14/I3/43
Bulk elemental composition Surface elemental composition SA
(m2/g)
Average pore width (nm) Pore volume
(cm3/g)
Samples C
(%)
O
(%)
N
(%)
H
(%)
O/C H/C (O+ N)
/C
Ash
(%)
C
(%)
O
(%)
N
(%)
Si
(%)
Ca
(%)
(O+ N) /C Surface enrichment of C a)
HRS200 48.1 5.4 0.8 4.9 0.11 1.21 0.10 40.8 55.0 34.9 1.7 8.5 0.0 0.50 1.14 6.8 18.4 0.031
PRS300 50.6 24.6 1.2 4.4 0.49 1.05 0.38 19.2 67.8 24.0 2.3 4.7 1.2 0.29 1.34 3.7 13.4 0.012
PRS450 51.7 7.7 1.3 3.1 0.15 0.74 0.13 36.2 57.5 26.4 2.6 11.6 1.8 0.38 1.02 9.8 9.3 0.023
PRS600 52.3 5.9 1.3 1.9 0.11 0.40 0.11 38.6 54.3 27.7 2.0 11.9 4.0 0.41 1.08 243.7 2.3 0.141
Tab.1  Bulk and surface elemental composition, surface area (SA), average pore width, and pore volume of the rice straw-derived hydrochar and pyrochars
Fig.1  Pore size distribution of the hydrochar (HRS200) (a) and pyrochars produced at 300 (PRS300) (b), 450 (PRS450) (c), and 600 (PRS600) °C (d).
Fig.2  Effects of the solution pH on the sorption of triphenyl phosphate (TPhP) and triphenylphosphine oxide (TPPO) by the pyrochar produced at 600°C (PRS600) (a); the zeta potentials (b) and particle sizes (c) of PRS600 at different pH values.
Samples KF n R2 logKd (mL/g) logKoca) (mL/g) Koc/Kow
Ce = 0.01 Sw Ce = 0.1 Sw Ce = 1 Sw Ce = 0.01 Sw Ce = 0.1 Sw Ce = 1 Sw Ce = 0.01 Sw
TPhP
PRS300 268.2±35.5b) 0.52±0.02 0.992 4.82 4.34 3.86 5.11 4.63 4.16 3.33
PRS450 355.2±0.5 0.50±0.01 0.998 4.92 4.43 3.94 5.21 4.72 4.23 4.17
PRS600 524.7±0.5 0.47±0.02 0.990 5.04 4.51 3.98 5.32 4.79 4.26 5.41
TPPO
HRS200 2.7±0.6 0.65±0.04 0.991 1.92 1.56 1.21 2.23 1.88 1.53 0.23
PRS300 5.2±2.3 0.61±0.04 0.996 2.04 1.65 1.26 2.33 1.95 1.56 0.29
PRS450 27.0±10.9 0.51±0.04 0.991 2.30 1.81 1.32 2.59 2.10 1.60 0.52
PRS600 60.4±12.5 0.44±0.02 0.994 2.38 1.82 1.27 2.66 2.10 1.55 0.62
Tab.2  Freundlich isotherm parameters and concentration-dependent distribution coefficients (logKd and logKoc) for triphenyl phosphate (TPhP) and triphenylphosphine oxide (TPPO) on the hydrochar and pyrochars
Fig.3  Correlations between the logKoc values of triphenyl phosphate (TPhP) and triphenylphosphine oxide (TPPO) by the biochars and their H/C atomic ratios (a and b), surface O content measured using XPS (c and d), and average pore width (e and f).
Fig.4  Highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) of triphenyl phosphate (TPhP) and triphenylphosphine oxide (TPPO) (a); sorption mechanisms of TPhP and TPPO onto biochar (b).
1 G Abdul, X Zhu, B Chen (2017). Structural characteristics of biochar-graphene nanosheet composites and their adsorption performance for phthalic acid esters. Chemical Engineering Journal, 319: 9–20
https://doi.org/10.1016/j.cej.2017.02.074
2 D Cao, J Guo, Y Wang, Z Li, K Liang, M B Corcoran, S Hosseini, S M C Bonina, K J Rockne, N C Sturchio, J P Giesy, J Liu, A Li, G Jiang (2017). Organophosphate esters in sediment of the Great Lakes. Environmental Science & Technology, 51(3): 1441–1449
https://doi.org/10.1021/acs.est.6b05484
3 J Ding, Z Xu, W Huang, L Feng, F Yang (2016). Organophosphate ester flame retardants and plasticizers in human placenta in Eastern China. Science of the Total Environment, 554–555: 211–217
https://doi.org/10.1016/j.scitotenv.2016.02.171
4 Z Du, S Deng, S Zhang, B Wang, J Huang, Y Wang, G Yu, B Xing (2016). Selective and high sorption of perfluorooctanesulfonate and perfluorooctanoate by fluorinated alkyl chain modified montmorillonite. Journal of Physical Chemistry C, 120(30): 16782–16790
https://doi.org/10.1021/acs.jpcc.6b04757
5 Y Fang, E Kim, T J Strathmann (2018). Mineral- and base-catalyzed hydrolysis of organophosphate flame retardants: Potential major fate-controlling sink in soil and aquatic environments. Environmental Science & Technology, 52(4): 1997–2006
https://doi.org/10.1021/acs.est.7b05911
6 M Frisch, G Trucks, H Schlegel, G Scuseria, M Robb, J Cheeseman, G Scalmani, V Barone, B Mennucci, G Petersson (2009). GAUSSIAN09. Gaussian Inc., Wallingford, CT, USA
7 A K Greaves, R J Letcher (2017). A review of organophosphate esters in the environment from biological effects to distribution and fate. Bulletin of Environmental Contamination and Toxicology, 98(1): 2–7
https://doi.org/10.1007/s00128-016-1898-0
8 S E Hale, H P H Arp, D Kupryianchyk, G Cornelissen (2016). A synthesis of parameters related to the binding of neutral organic compounds to charcoal. Chemosphere, 144: 65–74
https://doi.org/10.1016/j.chemosphere.2015.08.047
9 L Han, K S Ro, K Sun, H Sun, Z Wang, J A Libra, B Xing (2016). New evidence for high sorption capacity of hydrochar for hydrophobic organic pollutants. Environmental Science & Technology, 50(24): 13274–13282
https://doi.org/10.1021/acs.est.6b02401
10 W C Hockaday, A M Grannas, S Kim, P G Hatcher (2007). The transformation and mobility of charcoal in a fire-impacted watershed. Geochimica et Cosmochimica Acta, 71(14): 3432–3445
https://doi.org/10.1016/j.gca.2007.02.023
11 R Hou, Y Xu, Z Wang (2016). Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research. Chemosphere, 153: 78–90
https://doi.org/10.1016/j.chemosphere.2016.03.003
12 M Z Jacobson (2001). Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature, 409(6821): 695–697
https://doi.org/10.1038/35055518
13 Y Ji, Y Wang, Y Yao, C Ren, Z Lan, X Fang, K Zhang, W Sun, A C Alder, H Sun (2019). Occurrence of organophosphate flame retardants in farmland soils from Northern China: Primary source analysis and risk assessment. Environmental Pollution, 247: 832–838
https://doi.org/10.1016/j.envpol.2019.01.036
14 J Jin, M Kang, K Sun, Z Pan, F Wu, B Xing (2016). Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine. Science of the Total Environment, 550: 504–513
https://doi.org/10.1016/j.scitotenv.2016.01.117
15 J Jin, S Li, X Peng, W Liu, C Zhang, Y Yang, L Han, Z Du, K Sun, X Wang (2018a). HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresource Technology, 256: 247–253
https://doi.org/10.1016/j.biortech.2018.02.022
16 J Jin, K Sun, Z Wang, L Han, P Du, X Wang, B Xing (2017). Effects of chemical oxidation on phenanthrene sorption by grass-and manure-derived biochars. Science of the Total Environment, 598: 789–796
https://doi.org/10.1016/j.scitotenv.2017.04.160
17 J Jin, K Sun, Y Yang, Z Wang, L Han, X Wang, F Wu, B Xing (2018b). Comparison between soil- and biochar-derived humic acids: Composition, conformation, and phenanthrene sorption. Environmental Science & Technology, 52(4): 1880–1888
https://doi.org/10.1021/acs.est.7b04999
18 M Keiluweit, P S Nico, M G Johnson, M Kleber (2010). Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environmental Science & Technology, 44(4): 1247–1253
https://doi.org/10.1021/es9031419
19 S Kim, B E Dale (2004). Global potential bioethanol production from wasted crops and crop residues. Biomass and Bioenergy, 26(4): 361–375
https://doi.org/10.1016/j.biombioe.2003.08.002
20 C Lattao, X Cao, J Mao, K Schmidt-Rohr, J J Pignatello (2014). Influence of molecular structure and adsorbent properties on sorption of organic compounds to a temperature series of wood chars. Environmental Science & Technology, 48(9): 4790–4798
https://doi.org/10.1021/es405096q
21 J Lehmann, S Joseph (2015). Biochar for Environmental Management: Science, Technology and Implementation. Earthscan: London/New York
22 J Li, Z Xie, W Mi, S Lai, C Tian, K C Emeis, R Ebinghaus (2017). Organophosphate esters in air, snow, and seawater in the North Atlantic and the Arctic. Environmental Science & Technology, 51(12): 6887–6896
https://doi.org/10.1021/acs.est.7b01289
23 Y Li, A Meas, S Shan, R Yang, X Gai (2016). Production and optimization of bamboo hydrochars for adsorption of Congo red and 2-naphthol. Bioresource Technology, 207: 379–386
https://doi.org/10.1016/j.biortech.2016.02.012
24 T Lu, F Chen (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5): 580–592
https://doi.org/10.1002/jcc.22885
25 I Mihajlović, M V Miloradov, E Fries (2011). Application of Twisselmann extraction, SPME, and GC-MS to assess input sources for organophosphate esters into soil. Environmental Science & Technology, 45(6): 2264–2269
https://doi.org/10.1021/es103870f
26 T H Nguyen, H H Cho, D L Poster, W P Ball (2007). Evidence for a pore-filling mechanism in the adsorption of aromatic hydrocarbons to a natural wood char. Environmental Science & Technology, 41(4): 1212–1217
https://doi.org/10.1021/es0617845
27 M Qiu, K Sun, J Jin, B Gao, Y Yan, L Han, F Wu, B Xing (2015). Properties of the plant- and manure-derived biochars and their sorption of dibutyl phthalate and phenanthrene. Scientific Reports, 4(1): 5295
https://doi.org/10.1038/srep05295
28 A Salamova, Y Ma, M Venier, R A Hites (2014). High levels of organophosphate flame retardants in the great lakes atmosphere. Environmental Science & Technology Letters, 1(1): 8–14
https://doi.org/10.1021/ez400034n
29 M W Schmidt, A G Noack (2000). Black carbon in soils and sediments: Analysis, distribution, implications, and current challenges. Global Biogeochemical Cycles, 14(3): 777–793
https://doi.org/10.1029/1999GB001208
30 K Sun, J Jin, M Keiluweit, M Kleber, Z Wang, Z Pan, B Xing (2012). Polar and aliphatic domains regulate sorption of phthalic acid esters (PAEs) to biochars. Bioresource Technology, 118: 120–127
https://doi.org/10.1016/j.biortech.2012.05.008
31 K Sun, M Kang, Z Zhang, J Jin, Z Wang, Z Pan, D Xu, F Wu, B Xing (2013). Impact of deashing treatment on biochar structural properties and potential sorption mechanisms of phenanthrene. Environmental Science & Technology, 47(20): 11473–11481
https://doi.org/10.1021/es4026744
32 Y Sun, B Gao, Y Yao, J Fang, M Zhang, Y Zhou, H Chen, L Yang (2014). Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties. Chemical Engineering Journal, 240: 574–578
https://doi.org/10.1016/j.cej.2013.10.081
33 I van der Veen, J De Boer (2012). Phosphorus flame retardants: properties, production, environmental occurrence, toxicity and analysis. Chemosphere, 88(10): 1119–1153
https://doi.org/10.1016/j.chemosphere.2012.03.067
34 J C Vank, H Henry-Riyad, I G Csizmadia (2000). Successive protonation of phosphate (PO43‒), thiophosphate (PSO33‒), and selenophosphate (PSeO33‒). Journal of Molecular Structure THEOCHEM, 504(1‒3): 267–286
https://doi.org/10.1016/S0166-1280(00)00368-7
35 W Wan, S Zhang, H Huang, T Wu (2016). Occurrence and distribution of organophosphorus esters in soils and wheat plants in a plastic waste treatment area in China. Environmental Pollution, 214: 349–353
https://doi.org/10.1016/j.envpol.2016.04.038
36 W Wang, S Deng, D Li, L Ren, D Shan, B Wang, J Huang, Y Wang, G Yu (2018). Sorption behavior and mechanism of organophosphate flame retardants on activated carbons. Chemical Engineering Journal, 332: 286–292
https://doi.org/10.1016/j.cej.2017.09.085
37 G Wei, D Li, M Zhuo, Y Liao, Z Xie, T Guo, J Li, S Zhang, Z Liang (2015). Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure. Environmental Pollution, 196: 29–46
https://doi.org/10.1016/j.envpol.2014.09.012
38 L Xiang, X Wang, X Chen, C Mo, Y Li, H Li, Q Cai, D Zhou, M Wong, Q X Li (2019). Sorption mechanism, kinetics and isotherms of di-n-butyl phthalate to different soil particle-size fractions. Journal of Agricultural and Food Chemistry, 67(17): 4734–4745
https://doi.org/10.1021/acs.jafc.8b06357
39 X Xiao, B Chen, L Zhu (2014). Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environmental Science & Technology, 48(6): 3411–3419
https://doi.org/10.1021/es405676h
40 X Xiao, Z Chen, B Chen (2016). H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials. Scientific Reports, 6(1): 22644
https://doi.org/10.1038/srep22644
41 W Yan, L Yan, J Duan, C Jing (2014). Sorption of organophosphate esters by carbon nanotubes. Journal of Hazardous Materials, 273: 53–60
https://doi.org/10.1016/j.jhazmat.2014.03.030
42 Q Yu, R Zhang, S Deng, J Huang, G Yu (2009). Sorption of perfluorooctane sulfonate and perfluorooctanoate on activated carbons and resin: Kinetic and isotherm study. Water Research, 43(4): 1150–1158
https://doi.org/10.1016/j.watres.2008.12.001
43 G Zhang, Q Zhang, K Sun, X Liu, W Zheng, Y Zhao (2011). Sorption of simazine to corn straw biochars prepared at different pyrolytic temperatures. Environmental Pollution, 159(10): 2594–2601
https://doi.org/10.1016/j.envpol.2011.06.012
[1] FSE-19129-OF-DZW_suppl_1 Download
[1] Xiaoqiang Gong, Jinbiao Li, Scott X. Chang, Qian Wu, Zhengfeng An, Chengpeng Huang, Xiangyang Sun, Suyan Li, Hui Wang. Cattle manure biochar and earthworm interactively affected CO2 and N2O emissions in agricultural and forest soils: Observation of a distinct difference[J]. Front. Environ. Sci. Eng., 2022, 16(3): 39-.
[2] Hui Hu, Lei Jiang, Longli Sun, Yanling Gao, Tian Wang, Chenguang Lv. Effective and selective separation of perrhenate from acidic wastewater by super-stable, superhydrophobic, and recyclable biosorbent[J]. Front. Environ. Sci. Eng., 2022, 16(2): 21-.
[3] Peidong Su, Xiangyu Gao, Junke Zhang, Ridha Djellabi, Bo Yang, Qi Wu, Zhen Wen. Enhancing the adsorption function of biochar by mechanochemical graphitization for organic pollutant removal[J]. Front. Environ. Sci. Eng., 2021, 15(6): 130-.
[4] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[5] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[6] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[7] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[8] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[9] Wenqing Xu, Mark L. Segall, Zhao Li. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends[J]. Front. Environ. Sci. Eng., 2020, 14(5): 86-.
[10] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[11] Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute[J]. Front. Environ. Sci. Eng., 2020, 14(4): 70-.
[12] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
[13] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[14] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
[15] Tiancui Li, Yaocheng Fan, Deshou Cun, Yanran Dai, Wei Liang. Dibutyl phthalate adsorption characteristics using three common substrates in aqueous solutions[J]. Front. Environ. Sci. Eng., 2020, 14(2): 26-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed