Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2020, Vol. 14 Issue (3) : 48    https://doi.org/10.1007/s11783-020-1225-1
RESEARCH ARTICLE
Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars
Alisa Salimova1, Jian’e Zuo1(), Fenglin Liu1,2, Yajiao Wang1, Sike Wang1, Konstantin Verichev3
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. Beijing JingYi Air Protection & Technology Company, Wanda Plaza, 93 Jianguo Road, Chaoyang District, Beijing 100022, China
3. Institute of Civil Engineering, Faculty of Engineering Sciences, Universidad Austral de Chile, Valdivia 5090000, Chile
 Download: PDF(2302 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Orange tree residuals biochar had a better ability to adsorb ammonia.

• Modified tea tree residuals biochar had a stronger ability to remove phosphorus.

• Partially-modified biochar could remove ammonia and phosphorus at the same time.

• The real runoff experiment showed an ammonia nitrogen removal rate of about 80%.

• The removal rate of total phosphorus in real runoff experiment was about 95%.

Adsorption of biochars (BC) produced from cash crop residuals is an economical and practical technology for removing nutrients from agricultural runoff. In this study, BC made of orange tree trunks and tea tree twigs from the Laoguanhe Basin were produced and modified by aluminum chloride (Al-modified) and ferric sulfate solutions (Fe-modified) under various pyrolysis temperatures (200°C–600°C) and residence times (2–5 h). All produced and modified BC were further analyzed for their abilities to adsorb ammonia and phosphorus with initial concentrations of 10–40 mg/L and 4–12 mg/L, respectively. Fe-modified Tea Tree BC 2h/400°C showed the highest phosphorus adsorption capacity of 0.56 mg/g. Al-modified Orange Tree BC 3h/500°C showed the best performance for ammonia removal with an adsorption capacity of 1.72 mg/g. FTIR characterization showed that P = O bonds were formed after the adsorption of phosphorus by modified BC, N-H bonds were formed after ammonia adsorption. XPS analysis revealed that the key process of ammonia adsorption was the ion exchange between K+ and NH4+. Phosphorus adsorption was related to oxidation and interaction between PO43– and Fe3+. According to XRD results, ammonia was found in the form of potassium amide, while phosphorus was found in the form of iron hydrogen phosphates. The sorption isotherms showed that the Freundlich equation fits better for phosphorus adsorption, while the Langmuir equation fits better for ammonia adsorption. The simulated runoff infiltration experiment showed that 97.3% of ammonia was removed by Al-modified Orange tree BC 3h/500°C, and 92.9% of phosphorus was removed by Fe-modified Tea tree BC 2h/400°C.

Keywords Biochar      Adsorption      Ammonia removal      Phosphorus removal      Agricultural runoff     
Corresponding Author(s): Jian’e Zuo   
Issue Date: 16 March 2020
 Cite this article:   
Alisa Salimova,Jian’e Zuo,Fenglin Liu, et al. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1225-1
https://academic.hep.com.cn/fese/EN/Y2020/V14/I3/48
Fig.1  SEM image of: (a) non-modified Orange Tree BC, (b) Al-modified Orange Tree BC after adsorption of phosphorus, (c) Fe-modified Tea Tree BC before phosphorus adsorption, (d) Fe-modified Tea Tree BC after phosphorus adsorption, (e) Al-modified Orange tree BC before adsorption, (f) Al-modified Orange tree BC before adsorption negative color image.
Fig.2  FTIR spectrum of (a) Al-modified Orange Tree BC 3h/500°C before and after the adsorption of ammonia and phosphorus, (b) Fe-modified Tea Tree 2h/400°C before and after the adsorption of phosphorus.
Fig.3  Atomic mass percentage of chosen BC elemental composition before and after the adsorption of ammonia and phosphorus (a) N, P, K, Fe, Al, (b) O, C.
Fig.4  XRD comparison of (a) Non-modified Orange Tree BC 3h/500°C and Al-modified OTBC 3h/500°C before and after phosphorus adsorption, (b) of Non-modified Orange Tree BC 5h/400°C before and after ammonia adsorption, (c) Non-modified Tea Tree BC 2h/400°C and Fe-modified Tea Tree BC before and after phosphorus adsorption, (d) Non-modified Tea Tree BC 3h/400°C before and after ammonia adsorption.
Fig.5  Removal efficiency of (a) Orange Tree BC after ammonia adsorption, (b) Orange Tree BC after phosphorus adsorption, (c) Tea Tree BC after ammonia adsorption, (d) Tea Tree BC after phosphorus adsorption.
Fig.6  The best performance BC in (a) ammonia adsorption, (b) phosphorus adsorption.
(a) Ammonia adsorption capacity
Initial Temp. 300°C 400°C 500°C 600°C
conc. duration a) b) c) a) b) c) a) b) c) a) b) c)
10 mg/L 2h 0.46 0.36 0.13 0.50 0.24 0.22 0.45 0.49 0.27 0.29 0.26 0.15
3h 0.30 0.34 0.44 0.58 0.52 0.32 0.45 0.65 0.25 0.12 0.17 0.34
4h 0.43 0.28 0.38 0.44 0.56 0.16 0.56 0.44 0.25 0.30 0.06 0.29
5h 0.41 0.27 0.45 0.66 0.38 0.34 0.50 0.37 0.37 0.29 0.13 0.31
20 mg/L 2h 0.83 0.45 0.28 1.08 0.37 0.49 0.90 0.89 0.74 0.47 0.49 0.49
3h 0.63 0.53 0.72 1.00 0.84 0.64 0.74 1.03 0.58 0.26 0.38 0.67
4h 0.85 0.47 0.52 0.91 0.76 0.33 0.99 0.70 0.33 0.55 0.14 0.33
5h 0.87 0.59 0.56 0.92 0.47 0.53 0.80 0.54 0.46 0.40 0.31 0.45
40 mg/L 2h 1.26 0.63 0.36 1.47 0.49 0.76 1.40 1.49 1.14 0.86 0.58 1.15
3h 0.85 0.85 1.01 1.54 1.51 0.94 1.15 1.72 0.88 0.58 0.63 0.96
4h 1.43 0.72 0.70 1.48 1.32 0.52 1.56 1.21 0.55 1.00 0.43 0.57
5h 1.42 1.21 0.92 1.60 1.04 0.86 1.02 0.68 0.85 0.41 0.75 0.83
(b) Phosphorus adsorption capacity
Initial Temp. 300°C 400°C 500°C 600°C
conc. duration d) e) f) d) e) f) d) e) f) d) e) f)
4 mg/L 2h 0.03 0.07 0.13 0.00 0.01 0.27 0.00 0.02 0.16 0.00 0.04 0.11
3h 0.02 0.07 0.13 0.04 0.01 0.21 0.01 0.04 0.06 0.00 0.07 0.03
4h 0.00 0.03 0.13 0.00 0.03 0.19 0.00 0.05 0.18 0.00 0.07 0.16
5h 0.01 0.02 0.12 0.00 0.11 0.19 0.00 0.08 0.14 0.00 0.05 0.08
8 mg/L 2h 0.02 0.07 0.13 0.00 0.03 0.49 0.00 0.04 0.18 0.00 0.10 0.12
3h 0.02 0.10 0.14 0.05 0.01 0.37 0.01 0.06 0.08 0.00 0.10 0.06
4h 0.00 0.03 0.14 0.00 0.03 0.35 0.00 0.07 0.20 0.00 0.10 0.18
5h 0.01 0.04 0.12 0.00 0.12 0.29 0.02 0.09 0.22 0.00 0.07 0.09
12 mg/L 2h 0.02 0.07 0.14 0.00 0.05 0.56 0.00 0.06 0.20 0.00 0.12 0.12
3h 0.03 0.17 0.16 0.06 0.00 0.42 0.02 0.10 0.09 0.01 0.14 0.08
4h 0.00 0.03 0.16 0.00 0.03 0.41 0.00 0.07 0.31 0.00 0.11 0.20
5h 0.00 0.06 0.13 0.00 0.13 0.35 0.03 0.10 0.26 0.00 0.07 0.10
Tab.1  Ammonia and phosphorus adsorption capacity of all BC samples (mg/g)
(a) Ammonia removal speed by Orange Tree BC
Initial conc.(mg/L) 1 h 2 h 3 h 6 h 12 h 24 h 48 h
10.00 7.32 7.04 6.68 5.33 4.84 3.46 3.45
20.00 16.42 14.66 12.97 12.74 11.78 10.81 10.82
40.00 35.02 33.49 30.66 29.52 26.11 23.94 23.95
(b) Phosphorus removal speed by Tea Tree BC
Initial conc. 5 min 15 min 30 min 1 h 3 h 6 h 12 h
4.00 3.31 2.21 1.52 1.31 1.30 1.31 1.31
8.00 6.68 4.42 3.54 3.14 3.15 3.14 3.14
12.00 10.10 7.51 6.91 6.43 6.42 6.44 6.43
Tab.2  Ammonia and phosphorus adsorption kinetics by selected BC (mg/L)
BC sample Langmuir equation Freundlich equation
B (L/mg) Q (mg/g) R2 K (mg/g) n R2
Non-modified TTBC 3h/400 °C I 0.06 1.52 0.99 0.12 1.62 0.98
Al-modified Orange Tree BC 3h/500 °C I 0.22 1.77 0.98 2.66 2.24 0.98
Fe-modified Tea Tree 2h/400 °C II 0.96 0.58 0.95 0.25 2.15 0.98
Al-modified Tea Tree BC 3h/500 °C II 0.14 0.37 0.98 0.14 0.37 0.98
Tab.3  Ammonia and phosphorus adsorption characteristics for the selected BC
BC sample Runoff volume (L) Influent concentration (mg/L) Effluent concentration (mg/L) Removal efficiency (%)
Non-modified TTBC 3h/400 °C I 45 1.11 0.0 92.8
Al-modified Orange Tree BC 3h/500 °C I 45 1.11 0.03 97.3
Fe-modified Tea Tree 2h/400 °C II 45 0.56 0.04 92.9
Al-modified Tea Tree BC 3h/500 °C II 45 0.56 0.09 83.9
Tab.4  Ammonia and phosphorus removal efficiency in the column leaching experiment
1 A Ansari, S S Gill (2011). Eutrophication: Causes, Consequences, and Control. London, New York: Springer Dordrecht Heidelberg, 262
2 N Ashoori, M Teixido, S Spahr, G H Le Fevre, D L Sedlak, R G Luthy (2019). Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban stormwater runoff. Water Research, 154: 1–11
https://doi.org/10.1016/j.watres.2019.01.040
3 P S Barker, P L Dold (1996). Denitrification behaviour in biological excess phosphorus removal activated sludge systems. Water Research, 30(4): 769–780
https://doi.org/10.1016/0043-1354(95)00217-0
4 S R Carpenter, N F Caraco, D L Correll, R W Howarth, A N Sharpley, V H Smith (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Ecological Applications, 8(3): 559–568
https://doi.org/10.1890/1051-0761(1998)008[0559:NPOSWW]2.0.CO;2
5 B Chen, Z Chen, S Lv (2011). A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technology, 102(2): 716–723
https://doi.org/10.1016/j.biortech.2010.08.067
6 T Chi, J Zuo, F Liu (2017). Performance and mechanism for cadmium and lead adsorption from water and soil by corn straw biochar. Frontiers of Environmental Science & Engineering, 11(2): 15
https://doi.org/10.1007/s11783-017-0921-y
7 C T Chiou (2002). Fundamentals of the Adsorption. In: Partition and Adsorption of Organic Contaminants in Environmental Systems. Theory Wiley Online Books,39–52
8 S H Conrad, J L Wilson, W R Mason, W J Peplinski (1992). Visualization of residual organic liquid trapped in aquifers. Water Resources Research, 28(2): 467–478
https://doi.org/10.1029/91WR02054
9 B S L Coleman, Z M Easton, E M Bock (2019). Biochar fails to enhance nutrient removal in woodchip bioreactor columns following saturation. Journal of Environmental Management, 232: 490–498
https://doi.org/10.1016/j.jenvman.2018.11.074
10 S A Doydora, M L Cabrera, K C Das, J W Gaskin, L S Sonon, W P Miller (2011). Release of nitrogen and phosphorus from poultry litter amended with acidified biochar. International Journal of Environmental Research and Public Health, 8(5): 1491–1502
https://doi.org/10.3390/ijerph8051491
11 M Fafchamps (1992). Cash crop production, food price volatility, and rural market integration in the third world. American Journal of Agricultural Economics, 74(1): 90–99
https://doi.org/10.2307/1242993
12 M Inyang, B Gao, Y Yao, Y Xue, A R Zimmerman, P Pullammanappallil, X Cao (2012). Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource Technology, 110: 50–56
https://doi.org/10.1016/j.biortech.2012.01.072
13 J Lehmann, J Stephen (2009). Biochar for Environmental Management: Science and Technology. An Introduction. 1st ed. Buyer: Earthscan Publications Ltd.,1–12
14 F Liu, J Zuo, T Chi, P Wang, B Yang (2015). Removing phosphorus from aqueous solutions by using iron-modified corn straw biochar. Frontiers of Environmental Science & Engineering, 9(6): 1066–1075
https://doi.org/10.1007/s11783-015-0769-y
15 Q Liu, L Wu, M Gorring, Y Deng (2019). Aluminum-impregnated biochar for adsorption of Arsenic(V) in urban stormwater runoff. Journal of Environmental Engineering, 145(4): 04019008
https://doi.org/10.1061/(ASCE)EE.1943-7870.0001503
16 L Piscitelli, P A Rivier, D Mondelli, T Miano, E J Joner (2018). Assessment of addition of biochar to filtering mixtures for potential water pollutant removal. Environmental Science and Pollution Research International, 25(3): 2167–2174
https://doi.org/10.1007/s11356-017-0650-6
17 L Reimer (1998). Scanning Electron Microscopy: Physics of Image Formation and Microanalysis. 2nd ed. Berlin: Springer-Verlag Heidelberg, 529
18 D V Sarkhot, T A Ghezzehei, A A Berhe (2013). Effectiveness of biochar for sorption of ammonium and phosphate from dairy effluent. Journal of Environmental Quality, 42(5): 1545–1554
https://doi.org/10.2134/jeq2012.0482
19 A M Scheidegger, D L Sparks (1996). A critical assessment of sorption-desorption mechanisms at the soil mineral/water interface. Soil Science, 161(12): 813–831
https://doi.org/10.1097/00010694-199612000-00002
20 B Singhs, M Camps-Arbestain, J Lehmann (2017). Biochar: A Guide to Analytical Methods. Boca Raton: CRC Press, 320
21 P Srinivasan, A K Sarmah, R Smernik, O Das, M Farid, W Gao (2015). A feasibility study of agricultural and sewage biomass as biochar, bioenergy, and biocomposite feedstock: Production, characterization, and potential applications. Science of the Total Environment, 512–513: 495–505
https://doi.org/10.1016/j.scitotenv.2015.01.068
22 H Sun, W C Hockaday, C A Masiello, K Zygourakis (2012). Multiple controls on the chemical and physical structure of biochars. Industrial & Engineering Chemistry Research, 51(9): 3587–3597
https://doi.org/10.1021/ie201309r
23 L Sun, M Xu, J Jia, C Li (2016). Risk identification of water pollution sources in water source areas of middle route of the South-to-North Water Diversion Project. International Journal of Environmental Sciences and Development, 7(8): 576–580
https://doi.org/10.18178/ijesd.2016.7.8.842
24 L Tang, J Yu, Y Pang, G Zeng, Y Deng, J Wang, X Ren, S Ye, B Peng, H Feng (2018). Sustainable, efficient adsorbent: Alkali-acid modified magnetic biochar derived from sewage sludge for aqueous organic contaminant removal. Chemical Engineering Journal, 336: 160–169
https://doi.org/10.1016/j.cej.2017.11.048
25 G Wang, H Zuo, J Wei, Y Huang (2010). Identification of key source areas of agricultural non-point source pollution in the Laoyu River Basin in the water source area of the middle route of the South-to-North Water Transfer Project. Earth Science Frontiers (China University of Geosciences) 17(6): 13 (in Chinese)
26 J Wu (1994). Techniques and Applications of Modern FTIR Spectroscopy. Beijing: Scientific and Technical Documents Publishing House (in Chinese)
27 T Xie, K R Reddy, C Wang, E Yargicoglu, K Spokas (2015). Characteristics and applications of biochar for environmental remediation: A review. Critical Reviews in Environmental Science and Technology, 45(9): 939–969
https://doi.org/10.1080/10643389.2014.924180
28 C Xu, H Chunru, D C Taylor (1992). Sustainable agricultural development in China. World Development, 20(8): 1127–1144
https://doi.org/10.1016/0305-750X(92)90005-G
29 X Yang, X Wu, H Hao, Z He (2008). Mechanisms and assessment of water eutrophication. Journal of Zhejiang University. Science. B., 9(3): 197–209
https://doi.org/10.1631/jzus.B0710626
30 Y Yao, B Gao, M Inyang, A R Zimmerman, X Cao, P Pullammanappallil, L Yang (2011). Biochar derived from anaerobically digested sugar beet tailings: Characterization and phosphate removal potential. Bioresource Technology, 102(10): 6273–6278
https://doi.org/10.1016/j.biortech.2011.03.006
31 J Yu, L Tang, Y Pang, G Zeng, J Wang, Y Deng, Y Liu, H Feng, S Chen, X Ren (2019). Magnetic nitrogen-doped sludge-derived biochar catalysts for persulfate activation: Internal electron transfer mechanism. Chemical Engineering Journal, 364: 146–159
https://doi.org/10.1016/j.cej.2019.01.163
32 J Zhang, F Lü, H Zhang, L Shao, D Chen, P He (2015). Multiscale visualization of the structural and characteristic changes of sewage sludge biochar oriented towards potential agronomic and environmental implication. Scientific Reports, 5(1): 9406
https://doi.org/10.1038/srep09406
33 L Zhang, M Scholz, A Mustafa, R Harrington (2008). Assessment of the nutrient removal performance in integrated constructed wetlands with the self-organizing map. Water Research, 42(13): 3519–3527
https://doi.org/10.1016/j.watres.2008.04.027
34 Y Zhang, Z Li, I B Mahmood (2014). Recovery of NH4+ by corn cob produced biochars and its potential application as a soil conditioner. Frontiers of Environmental Science & Engineering, 8(6): 825–834
https://doi.org/10.1007/s11783-014-0682-9
35 T Zheng, Z Sun, X Yang, A Holmgren (2012). Sorption of phosphate onto mesoporous-alumina studied with in-situ ATR-FTIR spectroscopy. Chemistry Central Journal, 6(26): 1–10
[1] Xiaoqiang Gong, Jinbiao Li, Scott X. Chang, Qian Wu, Zhengfeng An, Chengpeng Huang, Xiangyang Sun, Suyan Li, Hui Wang. Cattle manure biochar and earthworm interactively affected CO2 and N2O emissions in agricultural and forest soils: Observation of a distinct difference[J]. Front. Environ. Sci. Eng., 2022, 16(3): 39-.
[2] Hui Hu, Lei Jiang, Longli Sun, Yanling Gao, Tian Wang, Chenguang Lv. Effective and selective separation of perrhenate from acidic wastewater by super-stable, superhydrophobic, and recyclable biosorbent[J]. Front. Environ. Sci. Eng., 2022, 16(2): 21-.
[3] Peidong Su, Xiangyu Gao, Junke Zhang, Ridha Djellabi, Bo Yang, Qi Wu, Zhen Wen. Enhancing the adsorption function of biochar by mechanochemical graphitization for organic pollutant removal[J]. Front. Environ. Sci. Eng., 2021, 15(6): 130-.
[4] Chengjie Xue, Juan Wu, Kuang Wang, Yunqiang Yi, Zhanqiang Fang, Wen Cheng, Jianzhang Fang. Effects of different types of biochar on the properties and reactivity of nano zero-valent iron in soil remediation[J]. Front. Environ. Sci. Eng., 2021, 15(5): 101-.
[5] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[6] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[7] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[8] Kuo Fang, Fei Peng, Hui Gong, Huanzhen Zhang, Kaijun Wang. Ammonia removal from low-strength municipal wastewater by powdered resin combined with simultaneous recovery as struvite[J]. Front. Environ. Sci. Eng., 2021, 15(1): 8-.
[9] Xiling Li, Tianwei Hao, Yuxin Tang, Guanghao Chen. A “Seawater-in-Sludge” approach for capacitive biochar production via the alkaline and alkaline earth metals activation[J]. Front. Environ. Sci. Eng., 2021, 15(1): 3-.
[10] Wenqing Xu, Mark L. Segall, Zhao Li. Reactivity of Pyrogenic Carbonaceous Matter (PCM) in mediating environmental reactions: Current knowledge and future trends[J]. Front. Environ. Sci. Eng., 2020, 14(5): 86-.
[11] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[12] Nima Kamali, Abdollah Rashidi Mehrabadi, Maryam Mirabi, Mohammad Ali Zahed. Synthesis of vinasse-dolomite nanocomposite biochar via a novel developed functionalization method to recover phosphate as a potential fertilizer substitute[J]. Front. Environ. Sci. Eng., 2020, 14(4): 70-.
[13] Quan Zheng, Minglu Zhang, Tingting Zhang, Xinhui Li, Minghan Zhu, Xiaohui Wang. Insights from metagenomic, metatranscriptomic, and molecular ecological network analyses into the effects of chromium nanoparticles on activated sludge system[J]. Front. Environ. Sci. Eng., 2020, 14(4): 60-.
[14] Zhenyu Yang, Rong Xing, Wenjun Zhou, Lizhong Zhu. Adsorption characteristics of ciprofloxacin onto g-MoS2 coated biochar nanocomposites[J]. Front. Environ. Sci. Eng., 2020, 14(3): 41-.
[15] Jing Li, Haiqin Yu, Xue Zhang, Rixin Zhu, Liangguo Yan. Crosslinking acrylamide with EDTA-intercalated layered double hydroxide for enhanced recovery of Cr(VI) and Congo red: Adsorptive and mechanistic study[J]. Front. Environ. Sci. Eng., 2020, 14(3): 52-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed