Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (1) : 3    https://doi.org/10.1007/s11783-021-1437-z
RESEARCH ARTICLE
Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions
Xianying Ma1,2, Xinhui Zhou1,2, Mengjie Zhao1,2, Wenzhuo Deng1,2, Yanxiao Cao1,2(), Junfeng Wu3, Jingcheng Zhou1,2()
1. School of Information and Safety Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China
2. Research Center for Environment and Health, Zhongnan University of Economics and Law, Wuhan 430073, China
3. Wuhan Regen Environmental Remediation Co., Ltd, Wuhan 430073, China
 Download: PDF(1754 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• PP-MPs reduced the adsorption capacity of the bulk soil for Cd in aqueous medium.

• The responses of the POM, OMC and mineral fractions to PP-MPs were different.

• PP-MPs reduced the adsorption of POM and OMC fractions to Cd.

• PP-MPs increased the adsorption of mineral fraction to Cd.

• Effect of MPs on soil may be controlled by proportion of POM, OMC and mineral fractions.

Microplastics (MPs) are widely present in a variety of environmental media and have attracted more and more attention worldwide. However, the effect of MPs on the the interaction between heavy metals and soil, especially in soil fraction level, is not well understood. In this study, batch experiments were performed to investigate the adsorption characteristics of Cd in bulk soil and three soil fractions (i.e. particulate organic matter (POM), organic-mineral compounds (OMC), and mineral) with or without polypropylene (PP) MPs. The results showed that the addition of PP-MPs reduced the Cd adsorption capacity of the bulk soil in aqueous solution, and the effects varied with PP-MPs dose and aging degree. Whereas, the responses of the three fractions to PP-MPs were different. In presence of PP-MPs, the POM and OMC fractions showed negative adsorption effects, while the mineral fraction showed positive adsorption. For the bulk soil, POM and OMC fractions, the adsorption isotherm fitted to the Langmuir model better than the Freundlich model, whereas, the Freundlich isotherm model is more fitted for the mineral fraction. Combined with the comprehensive analysis of the partitioning coefficients, XRD and FTIR results, it was found that OMC fraction extremely likely play a leading role in the bulk soil adsorption of Cd in this study. Overall, the effect of MPs on adsorption capacity of the bulk soil for Cd may be determined by the proportion of POM, OMC, and mineral fractions in the soil, but further confirmation is needed.

Keywords Polypropylene microplastics      Cadmium      Adsorption      POM      OMC      Mineral     
Corresponding Author(s): Yanxiao Cao,Jingcheng Zhou   
Issue Date: 14 September 2021
 Cite this article:   
Xianying Ma,Xinhui Zhou,Mengjie Zhao, et al. Polypropylene microplastics alter the cadmium adsorption capacity on different soil solid fractions[J]. Front. Environ. Sci. Eng., 2022, 16(1): 3.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1437-z
https://academic.hep.com.cn/fese/EN/Y2022/V16/I1/3
Fig.1  The experimental kinetics data for Cd adsorption onto bulk soil and three soil fractions [(a) bulk soil; (b) POM; (c) OMC; and (d) mineral].
Parameter Bulk soil POM OMC Mineral
+ + + +
α 27.31 10.05 7.12 6.42 0.31 0.05 8.80 10.45
β 70.85 75.33 2.89 4.15 29.08 40.02 48.87 42.61
A 0.107 0.088 1.047 0.791 0.075 0.020 0.124 0.143
Kt 0.014 0.013 0.346 0.241 0.034 0.025 0.020 0.023
R2 0.923 0.910 0.867 0.886 0.848 0.866 0.863 0.941
Tab.1  Kinetic parameters of Cd adsorption by the bulk soil and three soil fractions obtained from the Elovich model before and after adding MPs
Soil fraction Vaverage Vfast Vslow
Bulk soil 0.032 0.293 0.009
Bulk soil+ 10% MPs 0.029 0.290 0.006
POM 0.032 0.296 0.009
POM+ 10% MPs 0.031 0.276 0.008
OMC 0.021 0.202 0.008
OMC+ 10% MPs 0.012 0.189 0.007
Mineral 0.010 0.098 0.002
Mineral+ 10% MPs 0.018 0.163 0.005
Tab.2  The average, fast and slow reaction rate [mg/(L·min)] of Cd adsorption to bulk soil and three soil fractions (POM, OMC, and mineral) before and after adding MPs
Fig.2  The isotherm models of of Cd on bulk soil and three soil fractions (POM, OMC, and mineral) before (a) and after (b) adding PP-MPs. (bulk soil, POM and OMC fractions fit by the Langmuir isotherm model; mineral fration fit by Freundlich isotherm model; The left Y-axis are bulk soil, OMC, and mineral fraction; The right Y axis is POM).
Soil fraction Langmuir model Freundlich model
Qm (mg/g) b (L/mg) R2 KF 1/n R2
Bulk soil 0.545 0.087 0.916 0.073 0.503 0.826
Bulk soil+ 10% MPs 0.527 0.075 0.927 0.062 0.523 0.850
POM 4.190 0.216 0.973 1.212 0.326 0.852
POM+ 10% MPs 3.566 0.246 0.986 1.137 0.301 0.869
OMC 1.040 0.046 0.975 0.075 0.616 0.934
OMC+ 10% MPs 0.680 0.062 0.917 0.073 0.526 0.869
Mineral 0.427 0.225 0.859 0.139 0.290 0.943
Mineral+ 10% MPs 0.546 0.160 0.907 0.142 0.338 0.927
Tab.3  The Langmuir and Freundlich isotherm models parameter values of Cd adsorption to bulk soil and three soil fractions (POM, OMC, and mineral) before and after adding MPs
Cd initial concentration C0 (mg/L) Kd (L/g)
Bulk soil POM OMC Mineral
+ + + +
5 0.021 0.017 0.616 0.512 0.029 0.017 0.068 0.048
10 0.031 0.022 0.462 0.413 0.032 0.03 0.041 0.033
20 0.028 0.021 0.345 0.248 0.034 0.015 0.018 0.017
30 0.027 0.022 0.197 0.160 0.030 0.023 0.015 0.019
50 0.012 0.010 0.097 0.076 0.018 0.012 0.009 0.011
Tab.4  Partitioning coefficients Kd (L/g) of Cd in different solid fractions under different initial concentrations
Fig.3  SEM images of PP-MPs [virgin PP-MPs: (a) magnification: 100×, (b) magnification: 400×; aged PP-MPs: (c) magnification: 100×, (d) magnification: 400×].
Fig.4  XRD patterns of virgin PP-MPs (before and after adsorption in bulk soil, POM, OMC and mineral systems) [pdf-paraffin [(CH2)x] in the figure is the standard card of paraffin (JCPDS No.40-1995)].
Fig.5  FTIR spectra of virgin PP-MPs (before and after adsorption in bulk soil, POM, OMC and mineral systems) and aged PP-MPs.
Fig.6  The effect of MPs dosage on Cd adsorption to bulk soil and three soil fractions (POM, OMC, and mineral).
Fig.7  The effect of virgin and aged PP-MPs on Cd adsorption to bulk soil and three soil fractions (POM, OMC, and mineral).
1 N Altunay, B Hazer, M Tuzen, A Elik (2021). A new analytical approach for preconcentration, separation and determination of Pb(II) and Cd(II) in real samples using a new adsorbent: Synthesis, characterization and application. Food Chemistry, 359: 129923
https://doi.org/10.1016/j.foodchem.2021.129923 pmid: 33964654
2 M R Awual, M M Hasan, A Islam, M M Rahman, A M Asiri, M A Khaleque, M C Sheikh (2019a). Introducing an amine functionalized novel conjugate material for toxic nitrite detection and adsorption from wastewater. Journal of Cleaner Production, 228: 778–785
https://doi.org/10.1016/j.jclepro.2019.04.280
3 M R Awual, M M Hasan, A Islam, M M Rahman, A M Asiri, M A Khaleque, M C Sheikh (2019b). Offering an innovative composited material for effective lead(II) monitoring and removal from polluted water. Journal of Cleaner Production, 231: 214–223
https://doi.org/10.1016/j.jclepro.2019.05.125
4 M Balabane, F van Oort (2002). Metal enrichment of particulate organic matter in arable soils with low metal contamination. Soil Biology and Biochemistry, 34(10): 1513–1516
https://doi.org/10.1016/S0038-0717(02)00066-4
5 E Besnard, C Chenu, J Balesdent, P Puget, D Arrouays (1996). Fate of particulate organic matter in soil aggregates during cultivation. European Journal of Soil Science, 47(4): 495–503
https://doi.org/10.1111/j.1365-2389.1996.tb01849.x
6 N Bolan, A Kunhikrishnan, R Thangarajan, J Kumpiene, J Park, T Makino, M B Kirkham, K Scheckel (2014). Remediation of heavy metal(loid)s contaminated soils--to mobilize or to immobilize? Journal of Hazardous Materials, 266: 141–166
https://doi.org/10.1016/j.jhazmat.2013.12.018 pmid: 24394669
7 B Boots, C W Russell, D S Green (2019). Effects of microplastics in soil ecosystems: Above and below ground. Environmental Science & Technology, 53(19): 11496–11506
https://doi.org/10.1021/acs.est.9b03304 pmid: 31509704
8 H B Bradl (2004). Adsorption of heavy metal ions on soils and soils constituents. Journal of Colloid and Interface Science, 277(1): 1–18
https://doi.org/10.1016/j.jcis.2004.04.005 pmid: 15276031
9 D Brennecke, B Duarte, F Paiva, I Caçador, J Canning-Clode (2016). Microplastics as vector for heavy metal contamination from the marine environment. Estuarine, Coastal and Shelf Science, 178: 189–195
https://doi.org/10.1016/j.ecss.2015.12.003
10 C Cabrera, E Ortega, M L Lorenzo, M C López (1998). Cadmium contamination of vegetable crops, farmlands, and irrigation waters. Reviews of Environmental Contamination and Toxicology, 154: 55–81
https://doi.org/10.1007/978-1-4612-2208-8_2 pmid: 9414631
11 X Chen, M Xu, L M Yuan, G Z Huang, X J Chen, W Shi (2021). Degradation degree analysis of environmental microplastics by micro FT-IR imaging technology. Chemosphere, 274(1): 1297
12 A A de Souza Machado, C W Lau, J Till, W Kloas, A Lehmann, R Becker, M C Rillig (2018). Impacts of microplastics on the soil biophysical environment. Environmental Science & Technology, 52(17): 9656–9665
https://doi.org/10.1021/acs.est.8b02212 pmid: 30053368
13 A A de Souza Machado, C W Lau, W Kloas, J Bergmann, J B Bachelier, E Faltin, R Becker, A S Görlich, M C Rillig (2019). Microplastics can change soil properties and affect plant performance. Environmental Science & Technology, 53(10): 6044–6052
14 J Deng, P Guo, X Zhang, H Su, Y Zhang, Y Wu, Y Li (2020). Microplastics and accumulated heavy metals in restored mangrove wetland surface sediments at Jinjiang Estuary (Fujian, China). Marine Pollution Bulletin, 159: 111482
https://doi.org/10.1016/j.marpolbul.2020.111482 pmid: 32892917
15 S Dobaradaran, T C Schmidt, I Nabipour, N Khajeahmadi, S Tajbakhsh, R Saeedi, M Javad Mohammadi, M Keshtkar, M Khorsand, F Faraji Ghasemi (2018). Characterization of plastic debris and association of metals with microplastics in coastline sediment along the Persian Gulf. Waste Management (New York, N.Y.), 78: 649–658
https://doi.org/10.1016/j.wasman.2018.06.037 pmid: 32559956
16 D D Fu, Q J Zhang, Z Q Fan, H Y Qi, Z Z Wang, L C Peng (2019). Adsorption characteristics of copper ions on polystyrene microplastics. Environmental Science, 39(11): 4769–4775 (in Chinese)
17 B Gewert, M M Plassmann, M MacLeod (2015). Pathways for degradation of plastic polymers floating in the marine environment. Environmental Science. Processes & Impacts, 17(9): 1513–1521
https://doi.org/10.1039/C5EM00207A pmid: 26216708
18 R Geyer, J R Jambeck, K L Law (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7): e1700782
https://doi.org/10.1126/sciadv.1700782 pmid: 28776036
19 X Guo, J Wang (2021). Projecting the sorption capacity of heavy metal ions onto microplastics in global aquatic environments using artificial neural networks. Journal of Hazardous Materials, 402(1): 123709
https://doi.org/10.1016/j.jhazmat.2020.123709 pmid: 33254753
20 X Guo, S Zhang, X Q Shan, L E Luo, Z Pei, Y G Zhu, T Liu, Y N Xie, A Gault (2006). Characterization of Pb, Cu, and Cd adsorption on particulate organic matter in soil. Environmental Toxicology and Chemistry, 25(9): 2366–2373
https://doi.org/10.1897/05-636R.1 pmid: 16986791
21 N B Hartmann, T Hüffer, R C Thompson, M Hassellöv, A Verschoor, A E Daugaard, S Rist, T Karlsson, N Brennholt, M Cole, M P Herrling, M C Hess, N P Ivleva, A L Lusher, M Wagner (2019). Are we speaking the same language? recommendations for a definition and categorization framework for plastic debris. Environmental Science & Technology, 53(3): 1039–1047
https://doi.org/10.1021/acs.est.8b05297 pmid: 30608663
22 M E Hodson, C A Duffus-Hodson, A Clark, M T Prendergast-Miller, K L Thorpe (2017). Plastic bag derived-microplastics as a vector for metal exposure in terrestrial invertebrates. Environmental Science & Technology, 51(8): 4714–4721
https://doi.org/10.1021/acs.est.7b00635 pmid: 28355064
23 L A Holmes, A Turner, R C Thompson (2012). Adsorption of trace metals to plastic resin pellets in the marine environment. Environmental Pollution, 160(1): 42–48
https://doi.org/10.1016/j.envpol.2011.08.052 pmid: 22035924
24 L A Holmes, A Turner, R C Thompson (2014). Interactions between trace metals and plastic production pellets under estuarine conditions. Marine Chemistry, 167: 25–32
https://doi.org/10.1016/j.marchem.2014.06.001
25 W Huang, B Song, J Liang, Q Niu, G Zeng, M Shen, J Deng, Y Luo, X Wen, Y Zhang (2021). Microplastics and associated contaminants in the aquatic environment: A review on their ecotoxicological effects, trophic transfer, and potential impacts to human health. Journal of Hazardous Materials, 405: 124187
https://doi.org/10.1016/j.jhazmat.2020.124187 pmid: 33153780
26 E Huerta Lwanga, J Mendoza Vega, V Ku Quej, J L A Chi, L Sanchez Del Cid, C Chi, G Escalona Segura, H Gertsen, T Salánki, M van der Ploeg, A A Koelmans, V Geissen (2017). Field evidence for transfer of plastic debris along a terrestrial food chain. Scientific Reports, 7(1): 14071
https://doi.org/10.1038/s41598-017-14588-2 pmid: 29074893
27 J R Jambeck, R Geyer, C Wilcox, T R Siegler, M Perryman, A Andrady, R Narayan, K L Law (2015). Plastic waste inputs from land into the ocean. Science, 347(6223): 768–771
https://doi.org/10.1126/science.1260352 pmid: 25678662
28 A H M E Kabir, M Sekine, T Imai, K Yamamoto, A Kanno, T Higuchi (2021). Assessing small-scale freshwater microplastics pollution, land-use, source-to-sink conduits, and pollution risks: Perspectives from Japanese rivers polluted with microplastics. Science of the Total Environment, 768(10): 144655
https://doi.org/10.1016/j.scitotenv.2020.144655 pmid: 33450683
29 N Khalid, M Aqeel, A Noman (2020). Microplastics could be a threat to plants in terrestrial systems directly or indirectly. Environmental Pollution, 267: 115653
https://doi.org/10.1016/j.envpol.2020.115653 pmid: 33254725
30 Z R Komy, A M Shaker, S E M Heggy, M E El-Sayed (2014). Kinetic study for copper adsorption onto soil minerals in the absence and presence of humic acid. Chemosphere, 99: 117–124
https://doi.org/10.1016/j.chemosphere.2013.10.048 pmid: 24268171
31 J Labanowski, J Sebastia, E Foy, T Jongmans, I Lamy, F van Oort (2007). Fate of metal-associated POM in a soil under arable land use contaminated by metallurgical fallout in northern France. Environmental Pollution, 149(1): 59–69
https://doi.org/10.1016/j.envpol.2006.12.019 pmid: 17289232
32 G J Lair, M H Gerzabek, G Haberhauer (2007). Retention of copper, cadmium and zinc in soil and its textual fractions influenced by long-term field management. European Journal of Soil Science, 58(5): 1145–1154
https://doi.org/10.1111/j.1365-2389.2007.00905.x
33 G X Li, S K Cao, S J Zheng, W J Wang, Y X Cao, J W Wang (2015). Crystallization, melting behavior, and crystal structure of reactive, intumescent, flame-retardant polypropylene. Journal of Applied Polymer Science, 132(5): 41374
https://doi.org/10.1002/app.41374
34 M Li, Y Liu, G Xu, Y Wang, Y Yu (2021). Impacts of polyethylene microplastics on bioavailability and toxicity of metals in soil. Science of the Total Environment, 760: 144037
https://doi.org/10.1016/j.scitotenv.2020.144037 pmid: 33348149
35 X Li, Q Mei, L Chen, H Zhang, B Dong, X Dai, C He, J Zhou (2019). Enhancement in adsorption potential of microplastics in sewage sludge for metal pollutants after the wastewater treatment process. Water Research, 157: 228–237
https://doi.org/10.1016/j.watres.2019.03.069 pmid: 30954698
36 M Liu, S Lu, Y Song, L Lei, J Hu, W Lv, W Zhou, C Cao, H Shi, X Yang, D He (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242(Pt A): 855–862
https://doi.org/10.1016/j.envpol.2018.07.051 pmid: 30036839
37 Y Luo, Y Wu, J Shu, Z Wu (2019). Effect of particulate organic matter fractions on the distribution of heavy metals with aided phytostabilization at a zinc smelting waste slag site. Environmental Pollution, 253: 330–341
https://doi.org/10.1016/j.envpol.2019.07.015 pmid: 31325877
38 R F Mao, M F Lang, X Q Yu, R R Wu, X M Yang, X T Guo (2020). Aging mechanism of microplastics with UV irradiation and its effects on the adsorption of heavy metals. Journal of Hazardous Materials, 393: 122515
39 O Mbachu, G Jenkins, P Kaparaju, C Pratt (2021). The rise of artificial soil carbon inputs: Reviewing microplastic pollution effects in the soil environment. Science of the Total Environment, 780: 146569
https://doi.org/10.1016/j.scitotenv.2021.146569 pmid: 33770603
40 J H Park, D Lamb, P Paneerselvam, G Choppala, N Bolan, J W Chung (2011). Role of organic amendments on enhanced bioremediation of heavy metal(loid) contaminated soils. Journal of Hazardous Materials, 185(2–3): 549–574
https://doi.org/10.1016/j.jhazmat.2010.09.082 pmid: 20974519
41 Y Qi, A Ossowicki, X Yang, E Huerta Lwanga, F Dini-Andreote, V Geissen, P Garbeva (2020). Effects of plastic mulch film residues on wheat rhizosphere and soil properties. Journal of Hazardous Materials, 387: 121711
https://doi.org/10.1016/j.jhazmat.2019.121711 pmid: 31806445
42 C Qu, W Chen, X Hu, P Cai, C Chen, X Y Yu, Q Huang (2019). Heavy metal behaviour at mineral-organo interfaces: Mechanisms, modelling and influence factors. Environment International, 131(6): 104995
https://doi.org/10.1016/j.envint.2019.104995 pmid: 31326822
43 G Quan, Q Fan, J Sun, L Cui, H Wang, B Gao, J Yan (2020). Characteristics of organo-mineral complexes in contaminated soils with long-term biochar application. Journal of Hazardous Materials, 384: 121265
https://doi.org/10.1016/j.jhazmat.2019.121265 pmid: 31581012
44 M C Rillig (2018). Microplastic disguising as soil carbon storage. Environmental Science & Technology, 52(11): 6079–6080
https://doi.org/10.1021/acs.est.8b02338 pmid: 29757627
45 L M Rios, C Moore, P R Jones (2007). Persistent organic pollutants carried by synthetic polymers in the ocean environment. Marine Pollution Bulletin, 54(8): 1230–1237
https://doi.org/10.1016/j.marpolbul.2007.03.022 pmid: 17532349
46 B Samiey, C H Cheng, J Wu (2014). Organic-inorganic hybrid polymers as adsorbents for removal of heavy metal ions from solutions: A review. Materials (Basel), 7(2): 673–726
https://doi.org/10.3390/ma7020673 pmid: 28788483
47 A Sari, M Tuzen (2014). Cd(II) adsorption from aqueous solution by raw and modified kaolinite. Applied Clay Science, 88–89: 63–72
https://doi.org/10.1016/j.clay.2013.12.021
48 A Scudo, B Liebmann, C Corden, D Tyrer, J Kreissig, O Warwick (2017). Intentionally added microplastics in products- Final report of the study on behalf of the European Commission. Available online at the website of (accessed April 26, 2021)
49 J Sebastia, F van Oort, I Lamy (2008). Buffer capacity and Cu affinity of soil particulate organic matter (POM) size fractions. European Journal of Soil Science, 59(2): 304–314
https://doi.org/10.1111/j.1365-2389.2007.01001.x
50 E P Shang, E Q Xu, H Q Zhang, C H Huang (2018). Spatial-temporal trends and pollution source analysis for heavy metal contamination of cultivated soils in five major grain producing regions of China. Environmental Science, 39(10): 4670–4683 (in Chinese)
pmid: 30229616
51 J Shi, Q Wu, C Zheng, J Yang (2018). The interaction between particulate organic matter and copper, zinc in paddy soil. Environmental Pollution, 243(Pt B): 1394–1402
https://doi.org/10.1016/j.envpol.2018.09.085 pmid: 30273866
52 Q H Sun, J Li, C Wang, A Q Chen, Y L You, S P Yang, H H Liu, G B Jiang, Y N Wu, Y S Li (2022). Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment. Frontiers of Environmental Science & Engineering, 16(1): 1
53 Y Tian, J J Yang, S Hussain (2021). Molecular mechanism of Cu(II) adsorption by organo-mineral complexes of red soil. Acta Pedologica Sinica, 58(3): 722–731 (in Chinese)
54 Y Wan, C Wu, Q Xue, X Hui (2019). Effects of plastic contamination on water evaporation and desiccation cracking in soil. Science of the Total Environment, 654: 576–582
https://doi.org/10.1016/j.scitotenv.2018.11.123 pmid: 30447596
55 F Wang, W Yang, P Cheng, S Zhang, S Zhang, W Jiao, Y Sun (2019). Adsorption characteristics of cadmium onto microplastics from aqueous solutions. Chemosphere, 235: 1073–1080
https://doi.org/10.1016/j.chemosphere.2019.06.196 pmid: 31561297
56 J Wang, J Peng, Z Tan, Y Gao, Z Zhan, Q Chen, L Cai (2017). Microplastics in the surface sediments from the Beijiang River littoral zone: Composition, abundance, surface textures and interaction with heavy metals. Chemosphere, 171: 248–258
https://doi.org/10.1016/j.chemosphere.2016.12.074 pmid: 28024210
57 Y Wen, W Liu, W Deng, X He, G Yu (2019). Impact of agricultural fertilization practices on organo-mineral associations in four long-term field experiments: Implications for soil C sequestration. Science of the Total Environment, 651(Pt 1): 591–600
https://doi.org/10.1016/j.scitotenv.2018.09.233 pmid: 30245415
58 Y H Wu, D M Zhou, J Gao, Y B Si (2015). Adsorption of three phthalic Acid esters on different clay minerals. Journal of Agro-Environment Science, 34(06): 1107–1114 (in Chinese)
59 X Yan, X Yang, Z Tang, J Fu, F Chen, Y Zhao, L Ruan, Y Yang (2020). Downward transport of naturally-aged light microplastics in natural loamy sand and the implication to the dissemination of antibiotic resistance genes. Environmental Pollution, 262: 114270
https://doi.org/10.1016/j.envpol.2020.114270 pmid: 32135432
60 J Yang, J Y Wang, P W Qiao, Y M Zheng, J X Yang, T B Chen, M Lei, X M Wan, X Y Zhou (2020). Identifying factors that influence soil heavy metals by using categorical regression analysis: A case study in Beijing, China. Frontiers of Environmental Science & Engineering, 14(3): 37
61 L Yang, Y Zhang, S Kang, Z Wang, C Wu (2021). Microplastics in soil: A review on methods, occurrence, sources, and potential risk. Science of the Total Environment, 780(1): 146546
https://doi.org/10.1016/j.scitotenv.2021.146546 pmid: 33770602
62 X Yang, C P M Bento, H Chen, H Zhang, S Xue, E H Lwanga, P Zomer, C J Ritsema, V Geissen (2018). Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environmental Pollution, 242(Pt A): 338–347
https://doi.org/10.1016/j.envpol.2018.07.006 pmid: 29990941
63 H Yu, J Hou, Q Dang, D Cui, B Xi, W Tan (2020). Decrease in bioavailability of soil heavy metals caused by the presence of microplastics varies across aggregate levels. Journal of Hazardous Materials, 395(2): 122690
https://doi.org/10.1016/j.jhazmat.2020.122690 pmid: 32315796
64 G S Zhang, Y F Liu (2018). The distribution of microplastics in soil aggregate fractions in southwestern China. Science of the Total Environment, 642(15): 12–20
https://doi.org/10.1016/j.scitotenv.2018.06.004 pmid: 29894871
65 M K Zhang (2006). Distribution of organic carbon, nutrients and heavy metals in different size fractions in sandy soil. Acta Pedologica Sinica, 43(4): 584–591 (in Chinese)
66 M K Zhang, Z X Ke (2004). Copper and zinc enrichment in different size fractions of organic matter from polluted soils. Pedosphere, 14(1): 27–36
67 S Zhang, B Han, Y Sun, F Wang (2020). Microplastics influence the adsorption and desorption characteristics of Cd in an agricultural soil. Journal of Hazardous Materials, 388: 121775
https://doi.org/10.1016/j.jhazmat.2019.121775 pmid: 31813687
68 Z Q Zhang, Y P Zhang, Z H Zhu (2000). Study on the characteristics of kinetic of cadmium retention on soils. Journal of Environmental Sciences, 20(3): 370–375 (in Chinese)
69 J Zhou, Y Wen, M R Marshall, J Zhao, H Gui, Y D Yang, Z H Zeng, D L Jones, H D Zang (2021). Microplastics as an emerging threat to plant and soil health in agroecosystems. Science of the Total Environment, 787: 147444
https://doi.org/10.1016/j.scitotenv.2021.147444
70 T Zhou, L Wu, Y Luo, P Christie (2018). Effects of organic matter fraction and compositional changes on distribution of cadmium and zinc in long-term polluted paddy soils. Environmental Pollution, 232: 514–522
https://doi.org/10.1016/j.envpol.2017.09.081 pmid: 28987570
71 Y Zhou, X Liu, J Wang (2019). Characterization of microplastics and the association of heavy metals with microplastics in suburban soil of central China. Science of the Total Environment, 694(7): 133798
https://doi.org/10.1016/j.scitotenv.2019.133798 pmid: 31756811
72 G T Zhuang (2015). Current situation of national soil pollution and strategies on prevention and control. Bulletin of the Chinese Academy of Sciences, 30(04): 477–483 (in Chinese)
[1] Ning Wang, Jiangtao Feng, Wei Yan, Luohong Zhang, Yonghong Liu, Ruihua Mu. Dual-functional sites for synergistic adsorption of Cr(VI) and Sb(V) by polyaniline-TiO2 hydrate: Adsorption behaviors, sites and mechanisms[J]. Front. Environ. Sci. Eng., 2022, 16(8): 105-.
[2] Jie Wu, Jian Lu, Jun Wu. Effect of gastric fluid on adsorption and desorption of endocrine disrupting chemicals on microplastics[J]. Front. Environ. Sci. Eng., 2022, 16(8): 104-.
[3] Yanlin Li, Bo Wang, Lei Zhu, Yixing Yuan, Lujun Chen, Jun Ma. Selective targeted adsorption and inactivation of antibiotic-resistant bacteria by Cr-loaded mixed metal oxides[J]. Front. Environ. Sci. Eng., 2022, 16(6): 68-.
[4] Feng Chen, Shihao Guo, Yihao Wang, Lulu Ma, Bing Li, Zhimin Song, Lei Huang, Wen Zhang. Concurrent adsorption and reduction of chromium(VI) to chromium(III) using nitrogen-doped porous carbon adsorbent derived from loofah sponge[J]. Front. Environ. Sci. Eng., 2022, 16(5): 57-.
[5] Xuemei Hu, Shijie You, Fang Li, Yanbiao Liu. Recent advances in antimony removal using carbon-based nanomaterials: A review[J]. Front. Environ. Sci. Eng., 2022, 16(4): 48-.
[6] Hui Hu, Lei Jiang, Longli Sun, Yanling Gao, Tian Wang, Chenguang Lv. Effective and selective separation of perrhenate from acidic wastewater by super-stable, superhydrophobic, and recyclable biosorbent[J]. Front. Environ. Sci. Eng., 2022, 16(2): 21-.
[7] Xiao Deng, Yixuan Chen, Yang Yang, Liang Peng, Luo Si, Qingru Zeng. The implications of planting mode on cadmium uptake and remobilization in rice: Field experiments across growth stages[J]. Front. Environ. Sci. Eng., 2021, 15(6): 137-.
[8] Xinyu Wang, Ye Jin, Weirui Chen, Ruini Zou, Jinxin Xie, Yiming Tang, Xukai Li, Laisheng Li. Electro-catalytic activity of CeOx modified graphite felt for carbamazepine degradation via E-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(6): 122-.
[9] Seyyed Salar Meshkat, Ebrahim Ghasemy, Alimorad Rashidi, Omid Tavakoli, Mehdi Esrafili. Experimental and DFT insights into nitrogen and sulfur co-doped carbon nanotubes for effective desulfurization of liquid phases: Equilibrium & kinetic study[J]. Front. Environ. Sci. Eng., 2021, 15(5): 109-.
[10] Guolong Zeng, Yiyang Liu, Xiaoguo Ma, Yinming Fan. Fabrication of magnetic multi-template molecularly imprinted polymer composite for the selective and efficient removal of tetracyclines from water[J]. Front. Environ. Sci. Eng., 2021, 15(5): 107-.
[11] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[12] Ragini Pirarath, Palani Shivashanmugam, Asad Syed, Abdallah M. Elgorban, Sambandam Anandan, Muthupandian Ashokkumar. Mercury removal from aqueous solution using petal-like MoS2 nanosheets[J]. Front. Environ. Sci. Eng., 2021, 15(1): 15-.
[13] Yanqing Duan, Aijuan Zhou, Xiuping Yue, Zhichun Zhang, Yanjuan Gao, Yanhong Luo, Xiao Zhang. Acceleration of the particulate organic matter hydrolysis by start-up stage recovery and its original microbial mechanism[J]. Front. Environ. Sci. Eng., 2021, 15(1): 12-.
[14] Yang Deng. Low-cost adsorbents for urban stormwater pollution control[J]. Front. Environ. Sci. Eng., 2020, 14(5): 83-.
[15] Alisa Salimova, Jian’e Zuo, Fenglin Liu, Yajiao Wang, Sike Wang, Konstantin Verichev. Ammonia and phosphorus removal from agricultural runoff using cash crop waste-derived biochars[J]. Front. Environ. Sci. Eng., 2020, 14(3): 48-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed