Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (3) : 29    https://doi.org/10.1007/s11783-023-1629-9
REVIEW ARTICLE
Bacteria inactivation by sulfate radical: progress and non-negligible disinfection by-products
Xin Zhou1,2, Xiaoya Ren1,2, Yu Chen1,2, Haopeng Feng1,2, Jiangfang Yu1,2, Kang Peng1,2, Yuying Zhang1,2, Wenhao Chen1,2, Jing Tang1,2, Jiajia Wang1,2, Lin Tang1,2()
1. College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
2. Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
 Download: PDF(3287 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Status of inactivation of pathogenic microorganisms by SO4•− is reviewed.

● Mechanism of SO4•− disinfection is outlined.

● Possible generation of DBPs during disinfection using SO4•− is discussed.

● Possible problems and challenges of using SO4•− for disinfection are presented.

Sulfate radicals have been increasingly used for the pathogen inactivation due to their strong redox ability and high selectivity for electron-rich species in the last decade. The application of sulfate radicals in water disinfection has become a very promising technology. However, there is currently a lack of reviews of sulfate radicals inactivated pathogenic microorganisms. At the same time, less attention has been paid to disinfection by-products produced by the use of sulfate radicals to inactivate microorganisms. This paper begins with a brief overview of sulfate radicals’ properties. Then, the progress in water disinfection by sulfate radicals is summarized. The mechanism and inactivation kinetics of inactivating microorganisms are briefly described. After that, the disinfection by-products produced by reactions of sulfate radicals with chlorine, bromine, iodide ions and organic halogens in water are also discussed. In response to these possible challenges, this article concludes with some specific solutions and future research directions.

Keywords Sulfate radicals      Disinfection by-products      Inactivation mechanisms      Bacterial inactivation      Water disinfection     
Corresponding Author(s): Jiajia Wang,Lin Tang   
About author: Tongcan Cui and Yizhe Hou contributed equally to this work.
Issue Date: 08 October 2022
 Cite this article:   
Xin Zhou,Xiaoya Ren,Yu Chen, et al. Bacteria inactivation by sulfate radical: progress and non-negligible disinfection by-products[J]. Front. Environ. Sci. Eng., 2023, 17(3): 29.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1629-9
https://academic.hep.com.cn/fese/EN/Y2023/V17/I3/29
Oxidant Oxidation potential (V) Ref.
Fluorine 3.0 Guerra-Rodríguez et al., 2018
Hydroxyl radical 2.8 Wang and Wang, 2018
Sulfate radical 2.5–3.1 Ferreira et al., 2020
Ozone 2.1 Ao et al., 2021
Persulfate 2.0 Wacławek et al., 2017
Peracetic acid (PAA) 1.96 Ao et al., 2021
Peroxymonosulfate 1.8 Ao et al., 2021
H2O2 1.8 Ao et al., 2021
Potassium permanganate 1.7 Ao et al., 2021
Chlorine dioxide 1.5 Ao et al., 2021
Chlorine 1.4 Ao et al., 2021
Tab.1  Oxidation potentials of oxidants commonly used in water
Fig.1  (a) SEM images of fungal spores before and after treatment (control (left), UV (middle) and UV/PMS (right)). Experimental conditions: UV=40 mJ/cm2, PMS=0.1 mmol/L, spore concentration=107 CFU/mL (Wen et al., 2017) (Copyright 2017 Elsevier, Reprinted with permission from Elsevier); (b) mechanism of inactivation of bacteria by sulfate radicals (Xiao et al., 2019) (Copyright 2019 Elsevier, Reprinted with permission from Elsevier).
Microorganisms Initial conc. (CFU/mL) System Max. Log removal value Dosage Exposure time (min) Ref.
E. coli 105 g-C3N4/VL/PMS 5 g-C3N4 0.1 g/LPMS 0.5 mmol/L 120 Zhang et al., 2021
E. coli 108 VL/PS/MHC 8 MHC 200 mg/LPS 2 mmol/L 40 Wang et al., 2020a
E. coli 107 UVA-LED/PMS 5.9 PMS 1 mg/L 60 Qi et al., 2020
E. coli 106 Fe3+/PS 6 PS 200 mg/LFe3+ 30 mg/L 15 Venieri et al., 2020
E. coli 106 50 °C/PS 6 PS 100 mg/L 60 Venieri et al., 2020
E. coli 106 UVA/PS 6 PS 300 mg/L 180 Venieri et al., 2020
E. coli 106 US/PS 6 PS 100 mg/L 120 Venieri et al., 2020
E. coli 106 PS/solar 6 PS 0.5 mmol/L 20 Ferreira et al., 2020
E. coli 106 US/Ag-BTO/PS 6.2 Ag-BTO2 mg/mLPS 1 mmol/L 520(VBNC) Xia et al., 2020
E. coli 107 CINMs/PMS 7 PMS 0.1 mmol/L 1 Shan et al., 2020
E. coli 107 to 108 S-mZVI/PS completely eliminated S-mZVI 40 mg/LPS 1 mmol/L 30 Zhang et al., 2020
E. coli 106 CoFe2O4/PMS/UVA 6 CoFe2O4 0.05 g/LPMS 0.2 mmol/L 30 Rodríguez-Chueca et al., 2020
E. coli 107 VL/PS 7 PS 2 mmol/L 120 Wang et al., 2019
E. coli 107 to 108 3D-GFP 4.6 Na2SO4 50 mmol/LPS 2 mmol/L 10 Ma et al., 2019
E. coli 106 sunlight/Fe2+/40 °C/PMS 6 1 mg/L Fe2+1.8×10−5 mol/L PMS 30 Rodríguez-Chueca et al., 2019a
E. coli 105 PMS/UVA 5 1 mmol/L PMS 30 Rodríguez-Chueca et al., 2019b
E. coli 105 PS/ Fe2+/UVA 5 0.5 mmol/L PS1 mg/L Fe2+ 2 Rodríguez-Chueca et al., 2019b
E. coli 107 PS/hv/tris(2,2’-bipyridyl)ruthenium(II) 7 PS 2 mmol/Ltris(2,2’-bipyridyl)ruthenium(II) 1 μmol/L 90 Subramanian et al., 2013
E. coli 9.2×105 PS/UV 3 PS 10 mg/L 5 Michael-Kordatou et al., 2015
E. coli 105 solar/PS/Fe2+ 3 PS 150 mg/LFe2+ 5 mg/L 60 Garkusheva et al., 2017
E. coli 103 to 104 UVA/PMS/Fe2+ 4.2 0.1 mmol/L PMS0.1 mmol/L Fe2+ 120 Rodríguez-Chueca et al., 2017a
E. coli 103 to 104 UVA/PMS/Co2+ 3.2 0.1 mmol/L PMS0.1 mmol/L Co2+ 120 Rodríguez-Chueca et al., 2017a
E. coli 103 to 104 UVA/PMS/Fe2+ 6.5 0.1 mmol/L PMS0.1 mmol/L Fe2+ 30 Rodríguez-Chueca et al., 2017b
E. coli 103 to 104 UVA/PMS/Co2+ 6.5 0.1 mmol/L PMS0.1 mmol/L Co2+ 60 Rodríguez-Chueca et al., 2017b
E. coli 107 NP/PS 7 PS 1 mmol/LNP 1.25 g/L 20 Xia et al., 2017
E. coli 105 Ilmenite/PS/VL 7 Ilmenite 1g/LPS 0.5 mmol/L 20 Xia et al., 2018
E. coli 107 Single-atom Ru/PMS Single-atom Ru 40 mg/LPMS 5 mg/L 1.5 Zhou et al., 2022
ARB E. coli 107 PS(PMS)/O3 2 PS(PMS) 1 mg/LO3 3 mg/L 10 Xiao et al., 2020
Tab.2  Summary of E.coli inactivation by SR-AOPs
Microorganisms Initial conc. (CFU/mL) System Max. Log removalvalue Dosage Exposure time (min) Ref.
E. faecalis 106 Fe3+/PS 6 PS 200 mg/LFe3+ 30 mg/L 15 Venieri et al., 2020
E. faecalis 106 50 °C/PS 2.5 PS 100 mg/L 180 Venieri et al., 2020
E. faecalis 106 UVA/PS 6 PS 300 mg/L 180 Venieri et al., 2020
E. faecalis 106 US/PS 6 PS 200 mg/L 120 Venieri et al., 2020
E. faecalis 107 ZVI/PS 6 PS 1 mmol/LZVI 0.2 g/L 12 Liu et al., 2020
E. faecalis 106 PS/solar 6 PS 0.7 mmol/L 20 Ferreira et al., 2020
E. faecalis 106 solar/PS/Fe(III)EDDS 5.6 PS 0.5 mmol/LFe(III)EDDS0.1 mmol/L 210 Bianco et al., 2017
B. subtilis 107 tris(2,2’-bipyridyl)ruthenium(II)/PS/hv 7 PS 2 mmol/Ltris(2,2’-bipyridyl)ruthenium(II) 1 μmol/L 90 Subramanian et al., 2013
B. subtilis 106 to 108 PS/UV 4.1 PS 30 mmol/L 60 Sabeti et al., 2017
B. mycoides 103 to 104 UVA/PMS 2.82 0.1 mmol/L PMS 120 Rodríguez-Chueca et al., 2017a
B. mycoides 103 to 104 UVA/PMS/Fe2+ 2.51 0.1 mmol/L PMS0.1 mmol/L Fe2+ 90 Rodríguez-Chueca et al., 2017a
B. mycoides 103 to 104 UVA/PMS/Co2+ 1.71 0.1 mmol/L PMS0.1 mmol/L Co2+ 90 Rodríguez-Chueca et al., 2017a
B. mycoides 103 to 104 UVA/PMS/Co2+ 3.4 0.1 mmol/L PMS0.1 mmol/L Co2+ 120 Rodríguez-Chueca et al., 2017b
B. mycoides 103 to 104 UVA/PMS/Fe2+ 3.2 0.1 mmol/L PMS0.1 mmol/L Fe2+ 30 Rodríguez-Chueca et al., 2017b
S. aureus 108 VL/PS/MHC 8 MHC 200 mg/LPS 2 mmol/L 120 Wang et al., 2020a
S. aureus 107 CINMs/PMS 7 PMS 0.2 mmol/L 3 Shan et al., 2020
S. aureus 107 VL/PS 7 PS 2 mmol/L 200 Wang et al., 2019
S. aureus 107 tris(2,2’-bipyridyl)ruthenium(II)/PS/hv 7 PS 2 mmol/Ltris(2,2’-bipyridyl)ruthenium(II) 1 μmol/L 60 Subramanian et al., 2013
S. aureus 103 to 104 UVA/PMS 4.02 0.1 mmol/L PMS 120 Rodríguez-Chueca et al., 2017a
S. aureus 103 to 104 UVA/PMS/Co2+ 3.14 0.1 mmol/L PMS0.1 mmol/L Co2+ 120 Rodríguez-Chueca et al., 2017a
S. aureus 103 to 104 UVA/PMS/Fe2+ 2.84 0.1 mmol/L PMS0.1 mmol/L Fe2+ 120 Rodríguez-Chueca et al., 2017a
S. aureus 103 to 104 UVA/PMS/Co2+ 6.1 0.1 mmol/L PMS0.1 mmol/L Co2+ 120 Rodríguez-Chueca et al., 2017b
S. aureus 103 to 104 UVA/PMS/Fe2+ 3.2 0.1 mmol/L PMS0.1 mmol/L Fe2+ 120 Rodríguez-Chueca et al., 2017b
S. aureus 107 NP/PS 7 PS 1 mmol/LNP 1.25 g/L 20 Xia et al., 2017
P. aeruginosa 108 VL/PS/MHC 8 MHC 200 mg/LPS 2 mmol/L 60 Wang et al., 2020a
P. aeruginosa 107 Cu(II)/PMS 3.4 Cu(II) 5 μmol/LPMS 0.2 mmol/L 20 Lee et al., 2020
P. aeruginosa 107 Cu(II)/PMS/Cl- 3.1 Cu(II) 5 μmol/LPMS 0.2 mmol/LNaCl 10 mmol/L 10 Lee et al., 2020
P. aeruginosa 107 VL/PS 7 PS 2 mmol/L 140 Wang et al., 2019
P. aeruginosa 107 tris(2,2’-bipyridyl)ruthenium(II)/PS/hv 7 PS 2 mmol/Ltris(2,2’-bipyridyl)ruthenium(II) 1 μmol/L 120 Subramanian et al., 2013
ARB pseudomonassp. 108 UVC/PMS 5.3 PMS 1 mg/L 10 Hu et al., 2019b
Enterococcussp. 106 CoFe2O4/PMS/UVA 6 CoFe2O4 0.05 g/LPMS 0.2 mmol/L 45 Rodríguez-Chueca et al., 2020
Enterococcussp. 106 PMS/UVA 6 PMS 1 mmol/L 90 Rodríguez-Chueca et al., 2019b
Tab.3  Summary of inactivation of other bacteria by SR-AOPs
Microorganisms Initial conc. (CFU/mL) System Max. Log removalvalue Dosage Exposure time (min) Ref.
C. albicans 103 to 104 UVA/PMS 4.67 10 mmol/L PMS 15 Rodríguez-Chueca et al., 2017a
C. albicans 103 to 104 UVA/PMS/Fe2+ 1.41 10 mmol/L PMS5 mmol/L Fe2+ 15 Rodríguez-Chueca et al., 2017a
C. albicans 103 to 104 UVA/PMS/Co2+ 3.64 10 mmol/L PMS5 mmol/L Co2+ 15 Rodríguez-Chueca et al., 2017a
C. albicans 103 to 104 UVA/PMS/Co2+ 5.3 5 mmol/L PMS2.5 mmol/L Co2+ 30 Rodríguez-Chueca et al., 2017b
C. albicans 103 to 104 UVA/PMS/Fe2+ 5 5 mmol/L PMS2.5 mmol/L Fe2+ 60 Rodríguez-Chueca et al., 2017b
Acremonium sp. (2–7)×105 PMS/UV 5 PMS 0.1 mmol/L 6 Wen et al., 2017
Acremonium sp. (2–7)×105 PS/UV 3.7 PS 0.1 mmol/L 6 Wen et al., 2017
Cladosporium sp. (2–7)×105 PMS/UV 4.9 PMS 0.1 mmol/L 15 Wen et al., 2017
Cladosporium sp. (2–7)×105 PS/UV 3.9 PS 0.1 mmol/L 15 Wen et al., 2017
Penicillium sp. (2–7)×105 PMS/UV 6.2 PMS 0.1 mmol/L 9 Wen et al., 2017
Penicillium sp. (2–7)×105 PS/UV 5.9 PS 0.1 mmol/L 9 Wen et al., 2017
Trichoderma sp. (2–7)×105 PMS/UV 5.2 PMS 0.1 mmol/L 6 Wen et al., 2017
Trichoderma sp. (2–7)×105 PS/UV 5 PS 0.1 mmol/L 6 Wen et al., 2017
Tab.4  Summary of fungus inactivation by SR-AOPs
Fig.2  Pathway of sulfate radical oxidation of Br to BrO3 (Guan et al., 2020) (Copyright 2020 Elsevier, Reprinted with permission from Elsevier).
1 G P Anipsitakis, D D Dionysiou, M A Gonzalez. (2006). Cobalt-mediated activation of peroxymonosulfate and sulfate radical attack on phenolic compounds: implications of chloride ions. Environmental Science & Technology, 40( 3): 1000– 1007
https://doi.org/10.1021/es050634b pmid: 16509349
2 G P Anipsitakis, T P Tufano, D D Dionysiou. (2008). Chemical and microbial decontamination of pool water using activated potassium peroxymonosulfate. Water Research, 42( 12): 2899– 2910
https://doi.org/10.1016/j.watres.2008.03.002 pmid: 18384835
3 X W Ao, J Eloranta, C H Huang, D Santoro, W J Sun, Z D Lu, C Li. (2021). Peracetic acid-based advanced oxidation processes for decontamination and disinfection of water: a review. Water Research, 188 : 116479
https://doi.org/10.1016/j.watres.2020.116479 pmid: 33069949
4 L Bai, Y Jiang, D Xia, Z Wei, R Spinney, D D Dionysiou, D Minakata, R Xiao, H B Xie, L Chai. (2022). Mechanistic understanding of superoxide radical-mediated degradation of perfluorocarboxylic acids. Environmental Science & Technology, 56( 1): 624– 633
https://doi.org/10.1021/acs.est.1c06356 pmid: 34919383
5 A Bianco, López M I Polo, Ibáñez P Fernández, M Brigante, G Mailhot. (2017). Disinfection of water inoculated with Enterococcus faecalis using solar/Fe(III)EDDS-H2O2 or S2O82− process. Water Research, 118 : 249– 260
https://doi.org/10.1016/j.watres.2017.03.061 pmid: 28433695
6 S Bougie, J Dubé. (2007). Oxydation des isomères de dichlorobenzène à l'aide du persulfate de sodium soumis à une activation thermique. Journal of Environmental Engineering & Science, 6( 4): 397– 407(311)
7 T T Chen, Z Y Yu, T Xu, R Xiao, W H Chu, D Q Yin. (2021). Formation and degradation mechanisms of CX3R-type oxidation by-products during cobalt catalyzed peroxymonosulfate oxidation: The roles of Co3+ and SO4 center dot. Journal of Hazardous Materials, 405 : 124243
https://doi.org/10.1016/j.jhazmat.2020.124243
8 M Cho, H Chung, W Choi, J Yoon. (2004). Linear correlation between inactivation of E. coli and OH radical concentration in TiO2 photocatalytic disinfection. Water Research, 38( 4): 1069– 1077
https://doi.org/10.1016/j.watres.2003.10.029 pmid: 14769428
9 M J Davies, B C Gilbert, R Norman ( 1984). Electron spin resonance. Part 67 : Oxidation of aliphatic sulphides and sulphoxides by the sulphate radical anion (SO 4 –˙ ) and of aliphatic radicals by the peroxydisulphate anion (S 2 O 8 2– ). Journal of the Chemical Society, Perkin Transactions 2: Physical Organic Chemistry, ( 3): 503– 509
https://doi.org/10.1039/P29840000503
10 D Delker, G Hatch, J Allen, B Crissman, M George, D Geter, S Kilburn, T Moore, G Nelson, B Roop, R Slade, A Swank, W Ward, A DeAngelo ( 2006). Molecular biomarkers of oxidative stress associated with bromate carcinogenicity. Toxicology, 221( 2 – 3): 158– 165
https://doi.org/10.1016/j.tox.2005.12.011 pmid: 16442688
11 T P A Devasagayam, J C Tilak, K K Boloor, K S Sane, S S Ghaskadbi, R D Lele. (2004). Free radicals and antioxidants in human health: current status and future prospects. Journal of the Association of Physicians of India, 52 : 794– 804
pmid: 15909857
12 D A Fancy, T Kodadek. (1999). Chemistry for the analysis of protein-protein interactions: rapid and efficient cross-linking triggered by long wavelength light. Proceedings of the National Academy of Sciences of the United States of America, 96( 11): 6020– 6024
https://doi.org/10.1073/pnas.96.11.6020 pmid: 10339534
13 J Y Fang, C Shang. (2012). Bromate formation from bromide oxidation by the UV/persulfate process. Environmental Science & Technology, 46( 16): 8976– 8983
https://doi.org/10.1021/es300658u pmid: 22831804
14 L C Ferreira, M Castro-Alferez, S Nahim-Granados, M I Polo-Lopez, M S Lucas, G Li Puma, P Fernandez-Ibanez. (2020). Inactivation of water pathogens with solar photo-activated persulfate oxidation. Chemical Engineering Journal, 381 : 122275
https://doi.org/10.1016/j.cej.2019.122275
15 N Garkusheva, G Matafonova, I Tsenter, S Beck, V Batoev, K Linden. (2017). Simultaneous atrazine degradation and E-coli inactivation by simulated solar photo-Fenton-like process using persulfate. Journal of Environmental Science and Health Part A: Toxic/Hazardous Substances & Environmental Engineering, 52( 9): 849– 855
16 B C Gau, H Chen, Y Zhang, M L Gross. (2010). Sulfate radical anion as a new reagent for fast photochemical oxidation of proteins. Analytical Chemistry, 82( 18): 7821– 7827
https://doi.org/10.1021/ac101760y pmid: 20738105
17 F Ghanbari, M Moradi. (2017). Application of peroxymonosulfate and its activation methods for degradation of environmental organic pollutants. Chemical Engineering Journal, 310 : 41– 62
https://doi.org/10.1016/j.cej.2016.10.064
18 C Guan, J Jiang, S Pang, Y Zhou, Y Gao, J Li, Z Wang. (2020). Formation and control of bromate in sulfate radical-based oxidation processes for the treatment of waters containing bromide: a critical review. Water Research, 176 : 115725
https://doi.org/10.1016/j.watres.2020.115725 pmid: 32222545
19 S Guerra-Rodríguez, E Rodríguez, D N Singh, J Rodríguez-Chueca. (2018). Assessment of sulfate radical-based advanced oxidation processes for water and wastewater treatment: a review. Water, 10( 12): 1828
https://doi.org/10.3390/w10121828
20 S D Hou, L Ling, D D Dionysiou, Y R Wan, J J Huang, K H Guo, X C Li, J Y Fang. (2018). Chlorate formation mechanism in the presence of sulfate radical, chloride, bromide and natural organic matter. Environmental Science & Technology, 52( 11): 6317– 6325
21 C Y Hu, Y Z Hou, Y L Lin, Y G Deng, S J Hua, Y F Du, C W Chen, C H Wu. (2019a). Kinetics and model development of iohexol degradation during UV/H2O2 and UV/S2O82− oxidation. Chemosphere, 229 : 602– 610
https://doi.org/10.1016/j.chemosphere.2019.05.012 pmid: 31100631
22 J Hu, H Dong, J Qu, Z Qiang. (2017). Enhanced degradation of iopamidol by peroxymonosulfate catalyzed by two pipe corrosion products (CuO and δ-MnO2). Water Research, 112 : 1– 8
https://doi.org/10.1016/j.watres.2017.01.025
23 L Hu, P Wang, T Shen, Q Wang, X Wang, P Xu, Q Zheng, G Zhang. (2020). The application of microwaves in sulfate radical-based advanced oxidation processes for environmental remediation: a review. Science of the Total Environment, 722 : 137831
https://doi.org/10.1016/j.scitotenv.2020.137831 pmid: 32199371
24 P D Hu, M C Long. (2016). Cobalt-catalyzed sulfate radical-based advanced oxidation: A review on heterogeneous catalysts and applications. Applied Catalysis B: Environmental, 181 : 103– 117
https://doi.org/10.1016/j.apcatb.2015.07.024
25 Y R Hu, T Y Zhang, L Jiang, S J Yao, H Ye, K F Lin, C Z Cui. (2019b). Removal of sulfonamide antibiotic resistant bacterial and intracellular antibiotic resistance genes by UVC-activated peroxymonosulfate. Chemical Engineering Journal, 368 : 888– 895
https://doi.org/10.1016/j.cej.2019.02.207
26 Z Hua, X Kong, S Hou, S Zou, X Xu, H Huang, J Fang. (2019). DBP alteration from NOM and model compounds after UV/persulfate treatment with post chlorination. Water Research, 158 : 237– 245
https://doi.org/10.1016/j.watres.2019.04.030 pmid: 31039453
27 X Huang, X Zhou, J Zhou, Z Huang, S Liu, G Qian, N Gao. (2017). Bromate inhibition by reduced graphene oxide in thermal/PMS process. Water Research, 122 : 701– 707
https://doi.org/10.1016/j.watres.2017.06.041 pmid: 28679477
28 R E Huie, C L Clifton ( 1993). Kinetics of the self-reaction of hydroxymethylperoxyl radicals. Chemical Physics Letters, 205( 2 – 3): 163– 167
https://doi.org/10.1016/0009-2614(93)89222-4
29 I A Ike, T Karanfil, J Cho, J Hur. (2019). Oxidation byproducts from the degradation of dissolved organic matter by advanced oxidation processes - A critical review. Water Research, 164 : 114929
https://doi.org/10.1016/j.watres.2019.114929 pmid: 31387056
30 Y Ji, D Kong, J Lu, H Jin, F Kang, X Yin, Q Zhou. (2016). Cobalt catalyzed peroxymonosulfate oxidation of tetrabromobisphenol A: kinetics, reaction pathways, and formation of brominated by-products. Journal of Hazardous Materials, 313 : 229– 237
https://doi.org/10.1016/j.jhazmat.2016.04.033 pmid: 27107323
31 H J Lee, H E Kim, M S Kim, C F De Lannoy, C Lee. (2020). Inactivation of bacterial planktonic cells and biofilms by Cu(II)-activated peroxymonosulfate in the presence of chloride ion. Chemical Engineering Journal, 380 : 122468
https://doi.org/10.1016/j.cej.2019.122468
32 X Lei, Y Lei, X Zhang, X Yang. (2021). Treating disinfection byproducts with UV or solar irradiation and in UV advanced oxidation processes: a review. Journal of Hazardous Materials, 408 : 124435
https://doi.org/10.1016/j.jhazmat.2020.124435 pmid: 33189471
33 Y Lei, C S Chen, Y J Tu, Y H Huang, H Zhang. (2015). Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, and effects of pH and bicarbonate ions. Environmental Science & Technology, 49( 11): 6838– 6845
https://doi.org/10.1021/acs.est.5b00623 pmid: 25955238
34 Z Li, Z Chen, Y Xiang, L Ling, J Fang, C Shang, D D Dionysiou. (2015). Bromate formation in bromide-containing water through the cobalt-mediated activation of peroxymonosulfate. Water Research, 83 : 132– 140
https://doi.org/10.1016/j.watres.2015.06.019 pmid: 26143270
35 L Lian, B Yao, S Hou, J Fang, S Yan, W Song. (2017). Kinetic study of hydroxyl and sulfate radical-mediated oxidation of pharmaceuticals in wastewater effluents. Environmental Science & Technology, 51( 5): 2954– 2962
https://doi.org/10.1021/acs.est.6b05536 pmid: 28151652
36 J H Liang, P Gao, B H Li, L F Kang, L Feng, Q Han, Y Z Liu, L Q Zhang. (2022). Characteristics of typical dissolved black carbons and their influence on the formation of disinfection by-products in chlor(am)ination. Frontiers of Environmental Science & Engineering, 16( 12): 150
37 K Liu, L Bai, Y Shi, Z S Wei, R Spinney, R K Goktas, D D Dionysiou, R Y Xiao. (2020). Simultaneous disinfection of E. faecalis and degradation of carbamazepine by sulfate radicals: an experimental and modelling study. Environmental Pollution, 263 : 114558
https://doi.org/10.1016/j.envpol.2020.114558
38 K Liu, J Lu, Y Ji. (2015). Formation of brominated disinfection by-products and bromate in cobalt catalyzed peroxymonosulfate oxidation of phenol. Water Research, 84 : 1– 7
https://doi.org/10.1016/j.watres.2015.07.015
39 Y Z Liu, Y Yang, S Y Pang, L Q Zhang, J Ma, C W Luo, C T Guan, J Jiang. (2018). Mechanistic insight into suppression of bromate formation by dissolved organic matters in sulfate radical-based advanced oxidation processes. Chemical Engineering Journal, 333 : 200– 205
https://doi.org/10.1016/j.cej.2017.09.159
40 J Lu, J Wu, Y Ji, D Kong. (2015). Transformation of bromide in thermo activated persulfate oxidation processes. Water Research, 78 : 1– 8
https://doi.org/10.1016/j.watres.2015.03.028 pmid: 25898247
41 H V Lutze, R Bakkour, N Kerlin, C von Sonntag, T C Schmidt. (2014). Formation of bromate in sulfate radical based oxidation: mechanistic aspects and suppression by dissolved organic matter. Water Research, 53 : 370– 377
https://doi.org/10.1016/j.watres.2014.01.001 pmid: 24565691
42 H V Lutze, N Kerlin, T C Schmidt. (2015). Sulfate radical-based water treatment in presence of chloride: formation of chlorate, inter-conversion of sulfate radicals into hydroxyl radicals and influence of bicarbonate. Water Research, 72 : 349– 360
https://doi.org/10.1016/j.watres.2014.10.006 pmid: 25455043
43 H K Ma, L L Zhang, X M Huang, W Ding, H Jin, Z F Li, S K Cheng, L Zheng. (2019). A novel three-dimensional galvanic cell enhanced Fe2+/persulfate system: High efficiency, mechanism and damaging effect of antibiotic resistant E-coli and genes. Chemical Engineering Journal, 362 : 667– 678
https://doi.org/10.1016/j.cej.2019.01.042
44 M Marjanovic, S Giannakis, D Grandjean, L F de Alencastro, C Pulgarin. (2018). Effect of μM Fe addition, mild heat and solar UV on sulfate radical-mediated inactivation of bacteria, viruses, and micropollutant degradation in water. Water Research, 140 : 220– 231
https://doi.org/10.1016/j.watres.2018.04.054 pmid: 29715646
45 R Mertens, C von Sonntag ( 1995). Photolysis ( λ = 354 nm) of tetrachloroethene in aqueous solutions. Journal of Photochemistry and Photobiology A: Chemistry , 85( 1–2): 1– 9
46 I Michael-Kordatou, M Iacovou, Z Frontistis, E Hapeshi, D D Dionysiou, D Fatta-Kassinos. (2015). Erythromycin oxidation and ERY-resistant Escherichia coli inactivation in urban wastewater by sulfate radical-based oxidation process under UV-C irradiation. Water Research, 85 : 346– 358
https://doi.org/10.1016/j.watres.2015.08.050 pmid: 26360228
47 J Moreno-Andrés, G Farinango, L Romero-Martínez, A Acevedo-Merino, E Nebot. (2019). Application of persulfate salts for enhancing UV disinfection in marine waters. Water Research, 163 : 114866
https://doi.org/10.1016/j.watres.2019.114866 pmid: 31344506
48 P Neta, R E Huie, A B Ross. (1988). Rate constants for reactions of inorganic radicals in aqueous solution. Journal of Physical and Chemical Reference Data, 17( 3): 1027– 1284
https://doi.org/10.1063/1.555808
49 W D Oh, Z L Dong, T T Lim. (2016). Generation of sulfate radical through heterogeneous catalysis for organic contaminants removal: current development, challenges and prospects. Applied Catalysis B: Environmental, 194 : 169– 201
https://doi.org/10.1016/j.apcatb.2016.04.003
50 J J Pignatello, E Oliveros, A Mackay. (2006). Advanced oxidation processes for organic contaminant destruction based on the Fenton reaction and related chemistry. Critical Reviews in Environmental Science and Technology, 36( 1): 1– 84
https://doi.org/10.1080/10643380500326564
51 W H Qi, S M Zhu, A Shitu, Z Y Ye, D Z Liu. (2020). Low concentration peroxymonosulfate and UVA-LED combination for E. coli inactivation and wastewater disinfection from recirculating aquaculture systems. Journal of Water Process Engineering, 36 : 101362
https://doi.org/10.1016/j.jwpe.2020.101362
52 S D Richardson, S Y Kimura. (2019). Water analysis: emerging contaminants and current issues. Analytical Chemistry, 92( 1): 473– 505
53 J Rodríguez-Chueca, E Barahona-Garcia, V Blanco-Gutierrez, L Isidoro-Garcia, Santos-Garcia A J Dos. (2020). Magnetic CoFe2O4 ferrite for peroxymonosulfate activation for disinfection of wastewater. Chemical Engineering Journal, 398 : 125606
https://doi.org/10.1016/j.cej.2020.125606
54 J Rodríguez-Chueca, S Giannakis, M Marjanovic, M Kohantorabi, M R Gholami, D Grandjean, Alencastro L F De, C Pulgarin. (2019a). Solar-assisted bacterial disinfection and removal of contaminants of emerging concern by Fe2+-activated HSO5− vs. S2O82− in drinking water. Applied Catalysis B: Environmental , 248 : 62– 72
https://doi.org/10.1016/j.apcatb.2019.02.018
55 J Rodríguez-Chueca, S Guerra-Rodriguez, J M Raez, M J Lopez-Munoz, E Rodriguez. (2019b). Assessment of different iron species as activators of S2O82− and HSO5− for inactivation of wild bacteria strains. Applied Catalysis B: Environmental, 248 : 54– 61
https://doi.org/10.1016/j.apcatb.2019.02.003
56 J Rodríguez-Chueca, S I Moreira, M S Lucas, J R Fernandes, P B Tavares, A Sampaio, J A Peres. (2017a). Disinfection of simulated and real winery wastewater using sulphate radicals: peroxymonosulphate/transition metal/UV-A LED oxidation. Journal of Cleaner Production, 149 : 805– 817
https://doi.org/10.1016/j.jclepro.2017.02.135
57 J Rodríguez-Chueca, T Silva, J R Fernandes, M S Lucas, G L Puma, J A Peres, A Sampaio. (2017b). Inactivation of pathogenic microorganisms in freshwater using HSO5−/UV-A LED and HSO5−/Mn+/UV-A LED oxidation processes. Water Research, 123 : 113– 123
https://doi.org/10.1016/j.watres.2017.06.021 pmid: 28651081
58 M Roginskaya, R Mohseni, D Ampadu-Boateng, Y Razskazovskiy. (2016). DNA damage by the sulfate radical anion: hydrogen abstraction from the sugar moiety versus one-electron oxidation of guanine. Free Radical Research, 50( 7): 756– 766
https://doi.org/10.3109/10715762.2016.1166488 pmid: 27043476
59 Z Sabeti, M Alimohammadi, S Yousefzadeh, H Aslani, M Ghani, R Nabizadeh. (2017). Application of response surface methodology for modeling and optimization of Bacillus subtilis spores inactivation by the UV/persulfate process. Water Science and Technology: Water Supply, 17( 2): 342– 351
https://doi.org/10.2166/ws.2016.139
60 H R Shan, Y Si, J Y Yu, B Ding. (2020). Flexible, mesoporous, and monodispersed metallic cobalt-embedded inorganic nanofibrous membranes enable ultra-fast and high-efficiency killing of bacteria. Chemical Engineering Journal, 382 : 122909
https://doi.org/10.1016/j.cej.2019.122909
61 C Sonntag ( 2006). Free-Radical-Induced DNA Damage and Its Repair: A Chemical Perspective. Berlin: Springer Science & Business Media
62 G Subramanian, P Parakh, H Prakash. (2013). Photodegradation of methyl orange and photoinactivation of bacteria by visible light activation of persulphate using a tris(2,2′-bipyridyl)ruthenium(II) complex. Photochemical & Photobiological Sciences, 12( 3): 456– 466
https://doi.org/10.1039/C2PP25316J pmid: 23183999
63 P Sun, C Tyree, C H Huang. (2016). Inactivation of Escherichia coli, bacteriophage MS2, and Bacillus spores under UV/H2O2 and UV/peroxydisulfate advanced disinfection conditions. Environmental Science & Technology, 50( 8): 4448– 4458
https://doi.org/10.1021/acs.est.5b06097 pmid: 27014964
64 S Tait, W P Clarke, J Keller, D J Batstone. (2009). Removal of sulfate from high-strength wastewater by crystallisation. Water Research, 43( 3): 762– 772
https://doi.org/10.1016/j.watres.2008.11.008 pmid: 19059623
65 J L Tang, J J Wang, L Tang, C Y Feng, X Zhu, Y Y Yi, H P Feng, J F Yu, X Y Ren. (2022). Preparation of floating porous g-C3N4 photocatalyst via a facile one-pot method for efficient photocatalytic elimination of tetracycline under visible light irradiation. Chemical Engineering Journal, 430 : 132669
https://doi.org/10.1016/j.cej.2021.132669
66 D Venieri, A Karapa, M Panagiotopoulou, I Gounaki. (2020). Application of activated persulfate for the inactivation of fecal bacterial indicators in water. Journal of Environmental Management, 261 : 110223
https://doi.org/10.1016/j.jenvman.2020.110223
67 S Wacławek, H V Lutze, K Grubel, V V T Padil, M Cernik, D D Dionysiou. (2017). Chemistry of persulfates in water and wastewater treatment: a review. Chemical Engineering Journal, 330 : 44– 62
https://doi.org/10.1016/j.cej.2017.07.132
68 R H Waldemer, P G Tratnyek, R L Johnson, J T Nurmi. (2007). Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environmental Science & Technology, 41( 3): 1010– 1015
https://doi.org/10.1021/es062237m pmid: 17328217
69 H Wang, D F Ma, W Y Shi, Z Y Yang, Y Cai, B Y Gao. (2021). Formation of disinfection by-products during sodium hypochlorite cleaning of fouled membranes from membrane bioreactors. Frontiers of Environmental Science & Engineering, 15( 5): 102
70 J Wang, H Chen, L Tang, G Zeng, Y Liu, M Yan, Y Deng, H Feng, J Yu, L Wang. (2018). Antibiotic removal from water: A highly efficient silver phosphate-based Z-scheme photocatalytic system under natural solar light. Science of the Total Environment, 639 : 1462– 1470
https://doi.org/10.1016/j.scitotenv.2018.05.258 pmid: 29929309
71 J J Wang, L Tang, G M Zeng, Y C Deng, Y N Liu, L G Wang, Y Y Zhou, Z Guo, J J Wang, C Zhang. (2017a). Atomic scale g-C3N4/Bi2WO6 2D/2D heterojunction with enhanced photocatalytic degradation of ibuprofen under visible light irradiation. Applied Catalysis B: Environmental, 209 : 285– 294
https://doi.org/10.1016/j.apcatb.2017.03.019
72 J L Wang, S Z Wang. (2018). Activation of persulfate (PS) and peroxymonosulfate (PMS) and application for the degradation of emerging contaminants. Chemical Engineering Journal, 334 : 1502– 1517
https://doi.org/10.1016/j.cej.2017.11.059
73 L Wang, D Kong, Y Ji, J Lu, X Yin, Q Zhou. (2017b). Transformation of iodide and formation of iodinated by-products in heat activated persulfate oxidation process. Chemosphere, 181 : 400– 408
https://doi.org/10.1016/j.chemosphere.2017.04.076 pmid: 28458215
74 W Wang, H Wang, G Li, T An, H Zhao, P K Wong. (2019). Catalyst-free activation of persulfate by visible light for water disinfection: Efficiency and mechanisms. Water Research, 157 : 106– 118
https://doi.org/10.1016/j.watres.2019.03.071 pmid: 30953846
75 W Wang, H Wang, G Li, P K Wong, T An. (2020a). Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: efficiency, recyclability and mechanisms. Water Research, 176 : 115746
https://doi.org/10.1016/j.watres.2020.115746 pmid: 32224329
76 Y Wang, Roux J Le, T Zhang, J P Croué. (2014). Formation of brominated disinfection byproducts from natural organic matter isolates and model compounds in a sulfate radical-based oxidation process. Environmental Science & Technology, 48( 24): 14534– 14542
https://doi.org/10.1021/es503255j pmid: 25423600
77 Z Y Wang, Y S Shao, N Y Gao, B Xu, N An, X Lu. (2020b). Comprehensive study on the formation of brominated byproducts during heat-activated persulfate degradation. Chemical Engineering Journal, 381 : 122660
https://doi.org/10.1016/j.cej.2019.122660
78 G Wen, C Qiang, Y B Feng, T L Huang, J Ma. (2018). Bromate formation during the oxidation of bromide-containing water by ozone/peroxymonosulfate process: Influencing factors and mechanisms. Chemical Engineering Journal, 352 : 316– 324
https://doi.org/10.1016/j.cej.2018.06.186
79 G Wen, X Q Xu, H Zhu, T L Huang, J Ma. (2017). Inactivation of four genera of dominant fungal spores in groundwater using UV and UV/PMS: efficiency and mechanisms. Chemical Engineering Journal, 328 : 619– 628
https://doi.org/10.1016/j.cej.2017.07.055
80 X Wu, G Xu, J J Zhu. (2019). Sonochemical synthesis of Fe3O4/carbon nanotubes using low frequency ultrasonic devices and their performance for heterogeneous sono-persulfate process on inactivation of Microcystis aeruginosa. Ultrasonics Sonochemistry, 58 : 104634
https://doi.org/10.1016/j.ultsonch.2019.104634 pmid: 31450346
81 D Xia, Y Li, G Huang, R Yin, T An, G Li, H Zhao, A Lu, P K Wong. (2017). Activation of persulfates by natural magnetic pyrrhotite for water disinfection: efficiency, mechanisms, and stability. Water Research, 112 : 236– 247
https://doi.org/10.1016/j.watres.2017.01.052 pmid: 28167409
82 D H Xia, H J W He, H D Liu, Y C Wang, Q Zhang, Y Li, A H Lu, C He, P K Wong. (2018). Persulfate-mediated catalytic and photocatalytic bacterial inactivation by magnetic natural ilmenite. Applied Catalysis B: Environmental, 238 : 70– 81
https://doi.org/10.1016/j.apcatb.2018.07.003
83 D H Xia, Z Y Tang, Y C Wang, R Yin, H J W He, X Xie, J L Sun, C He, P K Wong, G Zhang. (2020). Piezo-catalytic persulfate activation system for water advanced disinfection: process efficiency and inactivation mechanisms. Chemical Engineering Journal, 400 : 125894
https://doi.org/10.1016/j.cej.2020.125894
84 R Xiao, L Bai, K Liu, Y Shi, D Minakata, C H Huang, R Spinney, R Seth, D D Dionysiou, Z Wei, P Sun. (2020). Elucidating sulfate radical-mediated disinfection profiles and mechanisms of Escherichia coli and Enterococcus faecalis in municipal wastewater. Water Research, 173 : 115552
https://doi.org/10.1016/j.watres.2020.115552 pmid: 32062220
85 R Y Xiao, K Liu, L Bai, D Minakata, Y Seo, R K Göktaş, D D Dionysiou, C J Tang, Z S Wei, R Spinney. (2019). Inactivation of pathogenic microorganisms by sulfate radical: present and future. Chemical Engineering Journal, 371 : 222– 232
https://doi.org/10.1016/j.cej.2019.03.296
86 R Y Xiao, Z H Luo, Z S Wei, S Luo, R Spinney, W C Yang, D D Dionysiou. (2018). Activation of peroxymonosulfate/persulfate by nanomaterials for sulfate radical-based advanced oxidation technologies. Current Opinion in Chemical Engineering, 19 : 51– 58
https://doi.org/10.1016/j.coche.2017.12.005
87 W Xie, W Dong, D Kong, Y Ji, J Lu, X Yin. (2016). Formation of halogenated disinfection by-products in cobalt-catalyzed peroxymonosulfate oxidation processes in the presence of halides. Chemosphere, 154 : 613– 619
https://doi.org/10.1016/j.chemosphere.2016.04.025 pmid: 27093695
88 L Xu, R X Yuan, Y G Guo, D X Xiao, Y Cao, Z H Wang, J S Liu. (2013). Sulfate radical-induced degradation of 2,4,6-trichlorophenol: a de novo formation of chlorinated compounds. Chemical Engineering Journal, 217 : 169– 173
https://doi.org/10.1016/j.cej.2012.11.112
89 J Yang, Z Dong, C Jiang, C Wang, H Liu. (2019). An overview of bromate formation in chemical oxidation processes: occurrence, mechanism, influencing factors, risk assessment, and control strategies. Chemosphere, 237 : 124521
https://doi.org/10.1016/j.chemosphere.2019.124521 pmid: 31408797
90 S Yang, P Wang, X Yang, L Shan, W Zhang, X Shao, R Niu ( 2010). Degradation efficiencies of azo dye Acid Orange 7 by the interaction of heat, UV and anions with common oxidants: persulfate, peroxymonosulfate and hydrogen peroxide. Journal of Hazardous Materials, 179( 1 – 3): 552– 558
https://doi.org/10.1016/j.jhazmat.2010.03.039 pmid: 20371151
91 J F Yu, H P Feng, L Tang, Y Pang, G M Zeng, Y Lu, H R Dong, J J Wang, Y N Liu, C Y Feng, J J Wang, B Peng, S J Ye. (2020). Metal-free carbon materials for persulfate-based advanced oxidation process: microstructure, property and tailoring. Progress in Materials Science, 111 : 100654
https://doi.org/10.1016/j.pmatsci.2020.100654
92 A Zhang, F Wang, W Chu, X Yang, Y Pan, H Zhu. (2019). Integrated control of CX3R-type DBP formation by coupling thermally activated persulfate pre-oxidation and chloramination. Water Research, 160 : 304– 312
https://doi.org/10.1016/j.watres.2019.05.047 pmid: 31154128
93 C Zhang, Y Li, C Wang, X Zheng ( 2021). Different inactivation behaviors and mechanisms of representative pathogens ( Escherichia coli bacteria, human adenoviruses and Bacillus subtilis spores) in g-C 3 N 4 -based metal-free visible-light-enabled photocatalytic disinfection. Science of the Total Environment, 755( Pt 1): 142588
https://doi.org/10.1016/j.scitotenv.2020.142588 pmid: 33039886
94 L L Zhang, H Jin, H K Ma, K Gregory, Z W Qi, C X Wang, W T Wu, D Q Cang, Z F Li. (2020). Oxidative damage of antibiotic resistant E. coli and gene in a novel sulfidated micron zero-valent activated persulfate system. Chemical Engineering Journal, 381 : 122787
https://doi.org/10.1016/j.cej.2019.122787
95 L S Zhang, K H Wong, H Y Yip, C Hu, J C Yu, C Y Chan, P K Wong. (2010). Effective photocatalytic disinfection of E. coli K-12 using AgBr-Ag-Bi2WO6 nanojunction system irradiated by visible light: the role of diffusing hydroxyl radicals. Environmental Science & Technology, 44( 4): 1392– 1398
https://doi.org/10.1021/es903087w pmid: 20085257
96 Y Zhang, L Zhou, Y Zhang, C Tan. (2014). Inactivation of Bacillus subtilis spores using various combinations of ultraviolet treatment with addition of hydrogen peroxide. Photochemistry and Photobiology, 90( 3): 609– 614
https://doi.org/10.1111/php.12210 pmid: 24447294
97 H Zhao, C H Huang, C Zhong, P H Du, P Z Sun. (2022). Enhanced formation of trihalomethane disinfection byproducts from halobenzoquinones under combined UV/chlorine conditions. Frontiers of Environmental Science & Engineering, 16( 6): 76
98 H X Zhao, Y F Ji, D Y Kong, J H Lu, X M Yin, Q S Zhou. (2019a). Degradation of iohexol by Co2+ activated peroxymonosulfate oxidation: kinetics, reaction pathways, and formation of iodinated byproducts. Chemical Engineering Journal, 373 : 1348– 1356
https://doi.org/10.1016/j.cej.2019.05.140
99 X Zhao, J Jiang, S Pang, C Guan, J Li, Z Wang, J Ma, C Luo. (2019b). Degradation of iopamidol by three UV-based oxidation processes: kinetics, pathways, and formation of iodinated disinfection byproducts. Chemosphere, 221 : 270– 277
https://doi.org/10.1016/j.chemosphere.2018.12.162 pmid: 30640010
100 S Zhou, L Bu, Z Shi, L Deng, S Zhu, N Gao. (2018). Electrochemical inactivation of Microcystis aeruginosa using BDD electrodes: kinetic modeling of microcystins release and degradation. Journal of Hazardous Materials, 346 : 73– 81
https://doi.org/10.1016/j.jhazmat.2017.12.023 pmid: 29247956
101 X Zhou, Z Z Yang, Y Chen, H P Feng, J F Yu, J L Tang, X Y Ren, J Tang, J J Wang, L Tang. (2022). Single-atom Ru loaded on layered double hydroxide catalyzes peroxymonosulfate for effective E. coli inactivation via a non-radical pathway: efficiency and mechanism. Journal of Hazardous Materials, 440 : 129720
https://doi.org/10.1016/j.jhazmat.2022.129720
[1] Mengtian Li, Ge Song, Ruiping Liu, Xia Huang, Huijuan Liu. Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: A review[J]. Front. Environ. Sci. Eng., 2022, 16(6): 70-.
[2] Jinhui Liang, Peng Gao, Benhang Li, Longfei Kang, Li Feng, Qi Han, Yongze Liu, Liqiu Zhang. Characteristics of typical dissolved black carbons and their influence on the formation of disinfection by-products in chlor(am)ination[J]. Front. Environ. Sci. Eng., 2022, 16(12): 150-.
[3] Virender K. Sharma, Xin Yu, Thomas J. McDonald, Chetan Jinadatha, Dionysios D. Dionysiou, Mingbao Feng. Elimination of antibiotic resistance genes and control of horizontal transfer risk by UV-based treatment of drinking water: A mini review[J]. Front. Environ. Sci. Eng., 2019, 13(3): 37-.
[4] Xiaolu ZHANG, Hongwei YANG, Xiaofeng WANG, Yu ZHAO, Xiaomao WANG, Yuefeng XIE. Concentration levels of disinfection by-products in 14 swimming pools of China[J]. Front. Environ. Sci. Eng., 2015, 9(6): 995-1003.
[5] Xiaojiang FAN,Yi TAO,Dequan WEI,Xihui ZHANG,Ying LEI,Hiroshi NOGUCHI. Removal of organic matter and disinfection by-products precursors in a hybrid process combining ozonation with ceramic membrane ultrafiltration[J]. Front. Environ. Sci. Eng., 2015, 9(1): 112-120.
[6] Jingyun FANG,Huiling LIU,Chii SHANG,Minzhen ZENG,Mengling NI,Wei LIU. E. coli and bacteriophage MS2 disinfection by UV, ozone and the combined UV and ozone processes[J]. Front.Environ.Sci.Eng., 2014, 8(4): 547-552.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed