Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (6) : 70    https://doi.org/10.1007/s11783-021-1504-5
REVIEW ARTICLE
Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: A review
Mengtian Li1,2, Ge Song1,2, Ruiping Liu3(), Xia Huang4, Huijuan Liu3
1. State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
4. School of Environment, Tsinghua University, Beijing 100084, China
 Download: PDF(2456 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Diversity and detection methods of pathogenic microorganisms in sludge.

• Control performance of sludge treatment processes on pathogenic microorganisms.

• Risk of pathogen exposure in sludge treatment and land application.

The rapid global spread of coronavirus disease 2019 (COVID-19) has promoted concern over human pathogens and their significant threats to public health security. The monitoring and control of human pathogens in public sanitation and health facilities are of great importance. Excessive sludge is an inevitable byproduct of sewage that contains human and animal feces in wastewater treatment plants (WWTPs). It is an important sink of different pollutants and pathogens, and the proper treatment and disposal of sludge are important to minimize potential risks to the environment and public health. However, there is a lack of comprehensive analysis of the diversity, exposure risks, assessment methods and inactivation techniques of pathogenic microorganisms in sludge. Based on this consideration, this review summarizes the control performance of pathogenic microorganisms such as enterovirus, Salmonella spp., and Escherichia coli by different sludge treatment technologies, including composting, anaerobic digestion, aerobic digestion, and microwave irradiation, and the mechanisms of pathogenic microorganism inactivation in sludge treatment processes are discussed. Additionally, this study reviews the diversity, detection methods, and exposure risks of pathogenic microorganisms in sludge. This review advances the quantitative assessment of pathogenic microorganism risks involved in sludge reuse and is practically valuable to optimize the treatment and disposal of sludge for pathogenic microorganism control.

Keywords Sludge treatment      Pathogenic microorganisms      Inactivation mechanisms      Exposure risks      Land application     
Corresponding Author(s): Ruiping Liu   
Issue Date: 29 September 2021
 Cite this article:   
Mengtian Li,Ge Song,Ruiping Liu, et al. Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: A review[J]. Front. Environ. Sci. Eng., 2022, 16(6): 70.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1504-5
https://academic.hep.com.cn/fese/EN/Y2022/V16/I6/70
Countries and regions Type of sludge Indicator pathogens Standards or documents
Fecal coliforms Clostridium perfringens Helminth ova Salmonella Enteric viruses
China Agricultural sludge Colititer is not less than 0.01 Mortality of Ascaris eggs is not less than 95% Control standards of pollutants in sludge for agricultural use (2018)
United States Class A Less than 1000 MPN per gram of total solids (dry weight basis) The alternative: Less than 1 viable helminth ova/4 grams of total solids (dry weight basis) Less than 3 MPN per 4 grams of total solids (dry weight basis) The alternative: Less than 1 PFU per 4 grams of total solids (dry weight basis) USEPA, Environmental Regulations and Technology: Control of Pathogens and Vector Attraction in Sewage Sludge (2003). (Lloret et al., 2012)
European Union Sludge applied to land (Escherichia coli) 99.99% (4 log) reduction to less than 1 × 103 colony forming units per gram (dry weight) No more than 3 × 103 spores per gram (dry weight) No detectable Salmonella spp. in 50 g (wet weight) European Commission, Proposal for a Directive of the European parliament and of the Council on the spreading of sludge on land (2003). (Lloret et al., 2012)
Tab.1  Pathogen requirements for sludge applied to land in China, the United States and the European Union
Fig.1  Transfer and exposure pathways of pathogens involved in sludge treatment and disposal.
Fig.2  Unigenes of human pathogenic bacteria at the phylum level (a) and their relative abundances (log10-transformed) at the genus level (b) in different samples obtained from initial sludge (IS), control (C), and sludge vermicompost (S). Reprinted with permission from Elsevier (Huang et al., 2020).
Fig.3  Species and relative abundance of human bacterial pathogens (HBPs) found in sludge treated by anaerobic digestion (AnDresidue) and thermophilic aerobic digestion (TADresidue). Reprinted with permission from Elsevier (Min Jang et al., 2019).
Fig.4  (a) Images of microorganisms in sludge before and after electrochemical treatment at 8 V and 15 V and (b) distribution of the live and dead bacterial consortia observed with a confocal laser scanning microscope (CLSM). Reprinted with permission from Elsevier (Zeng et al., 2019).
Treatment Duration of the process; maximum temperature Pathogenic microorganism or microbial indicator Change in the pathogenic load Reference
Composting NA a; NA Enteric viruses ND b Watanabe et al., 2002
4 weeks of the active phase, matured for 2 months and stored for 2?3 months; 60°C?70 °C E. coli ND Wéry et al., 2008
C. perfringens ND Wéry et al., 2008
Salmonella?spp. ND Watanabe et al., 2002; Wéry et al., 2008
Enterococcus?spp. ↓(2.9 log10 gene copies/g) c Wéry et al., 2008
Vermicomposting 4 weeks; NA Fecal coliforms ↓(2.98 log10 MPN/g) Hait and Tare, 2011
Enterococcus ↓(2.21 log10 MPN/g) Hait and Tare, 2011
Salmonella ↓(1.82 log10 MPN/g) Hait and Tare, 2011
Helminths ova ND Hait and Tare, 2011
40 days; NA Ochrobactrum anthropi ND Lv et al., 2018
Brevundimonas diminuta ND Lv et al., 2018
Eubacterium tenue ND Lv et al., 2018
Bacillus thuringiensis ND Lv et al., 2018
Mesophilic anaerobic digestion NA; 34.5 °C Bacteriophage f2 ↓(0.04 log10 PFU/Lper h) Traub et al., 1986
14 days; 36 °C Enterovirus ↓(1 log10 gene copies/g) Monpoeho et al., 2004
20 days; 37 °C Somatic coliphages ↓(1 log10) Astals et al., 2012
F-specific RNA-bacteriophages ↓(2.7 log10) Astals et al., 2012
E. coli ↓(2.2 log10) Astals et al., 2012
Thermophilic anaerobic digestion 15 days; 55 °C Somatic coliphages ↓(4.2 log10) Astals et al., 2012
E. coli ↓(2.3 log10) Astals et al., 2012
F-specific RNA-bacteriophages ↓(3.4 log10) Astals et al., 2012
Aerobic digestion 30 days; Winter: 25 °C; Other season: 48 °C E. coli ↓(3.5±0.9 log10 MPN/g) Gantzer et al., 2001
Enterococci ↓(2.1±0.5 log10 MPN/g) Gantzer et al., 2001
Spores of sulfite-reducing anaerobic bacteria ↓(1.3±0.5 log10 MPN/g) Gantzer et al., 2001
14.6 days; 62 °C Total coliforms ND Lloret et al., 2012
Salmonella spp. ND Liu et al., 2011; Lloret et al., 2012
C. perfringens spores ↓(1.97 log10 spores/mL) Lloret et al., 2012
Lime stabilization 24 hours; NA Bacteriophage MS2 ND Hansen et al., 2007
Adenovirus type 5 ND Bean et al., 2007; Hansen et al., 2007
Rotavirus ND Bean et al., 2007; Hansen et al., 2007
NA; NA Enteroviruses ND Monpoeho et al., 2004
24 hours; NA E. coli ↓(>6 log10 MPN/mL) Bean et al., 2007; Santos et al., 2020
Salmonella ND Bean et al., 2007
Ascaris lumbricoides ova No significant difference Bean et al., 2007
Heat drying Indirect drying; 10 hours; 108 °C E. coli ↓(3.7±0.3 log10 MPN/g) Gantzer et al., 2001
Enterococci ↓(3.9±0.6 log10 MPN/g) Gantzer et al., 2001
Spores of sulfite-reducing anaerobic bacteria ↓(3.2±0.1 log10 MPN/g) Gantzer et al., 2001
Microwave technology MW energy: 3.4?kWh E. coli ND Mawioo et al., 2017
Coliforms ND Mawioo et al., 2017
S. aureus ND Mawioo et al., 2017
E. faecalis ND Mawioo et al., 2017
Electrochemical pretreatment Applied voltage: 15 V; Time: 1 hour E.?coli
(3.12?±?0.2 log10 CFU/g TS)
Zeng et al., 2019
Salmonella?spp. ↓(>4 log10 CFU/g TS) Zeng et al., 2019
S. faecalis ↓(>4 log10 CFU/g TS) Zeng et al., 2019
Gamma radiation Dose of gamma irradiation: 2 kGy Fecal coliforms ND AL-Ghonaiem et al., 2010
Salmonella?spp. ND AL-Ghonaiem et al., 2010
Peracetic acid (PAA) oxidation 480?mg of 100% PAA per L of sludge E. coli ND Luukkonen et al., 2020
Salmonella?spp. ND Luukkonen et al., 2020
Tab.2  Pathogenic load control by different sludge treatment processes
Treatment Mechanisms Reference
Composting High temperature in the thermophilic phase Mehta et al., 2014; Liao et al., 2018
Interspecific competition of microorganisms Pietronave et al., 2004
Dehydration Ward and Ashley, 1978
Vermicomposting Enzyme activity and endosymbiotic microorganisms of earthworms Monroy et al., 2009; Swati and Hait, 2018
Humate in sludge and gut transport of worms Soobhany et al., 2017
Anaerobic digestion and aerobic digestion High temperature López et al., 2020
Elevated pH Kabrick and Jewell, 1982; Lloret et al., 2012
Interspecific competition between pathogens and anaerobic bacteria Orzi et al., 2015
Produced VFAs and free ammonia Sahlström, 2003; Lloret et al., 2013; Fidjeland et al., 2015; Magri et al., 2015
Lime stabilization Extremely high pH Pecson et al., 2007; Valderrama et al., 2013
High temperature Pecson et al., 2007; Valderrama et al., 2013
Dehydration Capizzi-Banas et al., 2004
Ammonia toxicity Capizzi-Banas et al., 2004
Heat drying High temperature Naidoo et al., 2019; Gomes et al., 2020
Dehydration Mondal et al., 2015; Kong et al., 2018
Microwave technology Thermal effect Mawioo et al., 2017
Cell membrane destruction and the exclusion of intracellular species Cosgun and Semerci, 2019
DNA damage Hong et al., 2004
High-energy electron beam radiation Direct irradiation (inactivation of biomacromolecules and the ionization and destruction of the intercellular substance) Wang and Wang, 2007; Chmielewski and Han, 2016
Indirect effects (sensitizer reaction and the generation of free radical) Wang and Wang, 2007; Chmielewski and Han, 2016
Electrochemical pretreatment Generation of ohmic heat in electrochemical reactions Navab Daneshmand et al., 2012; Yin et al., 2018; Zeng et al., 2019
Formation of different oxidants such as free chlorine and reactive oxygen species Navab Daneshmand et al., 2012; Yin et al., 2018; Zeng et al., 2019
Extremely high or low pH at the interfaces of electrode plates Navab Daneshmand et al., 2012; Yin et al., 2018; Zeng et al., 2019
Chemical oxidation Destruction of the microorganism structure and degradation of biomacromolecules Hu et al., 2020; Luukkonen et al., 2020
Tab.3  Mechanisms of pathogen inactivation by different sludge treatment processes
1 O O D Afolabi, M Sohail (2017). Microwaving human faecal sludge as a viable sanitation technology option for treatment and value recovery: A critical review. Journal of Environmental Management, 187: 401–415
https://doi.org/10.1016/j.jenvman.2016.10.067 pmid: 27836558
2 M I AL-Ghonaiem, A S S Ibrahim, A A Al-Salamah (2010). Application of gamma irradiation in treatment of waste activated sludge to obtain class a biosolids. American Journal of Environmental Sciences, 6(6): 500–504
https://doi.org/10.3844/ajessp.2010.500.504
3 I D Amoah, P Reddy, R Seidu, T A Stenström (2018). Concentration of soil-transmitted helminth eggs in sludge from South Africa and Senegal: A probabilistic estimation of infection risks associated with agricultural application. Journal of Environmental Management, 206: 1020–1027
https://doi.org/10.1016/j.jenvman.2017.12.003 pmid: 30029336
4 I Amorós, Y Moreno, M Reyes, L Moreno-Mesonero, J L Alonso (2016). Prevalence of Cryptosporidium oocysts and Giardia cysts in raw and treated sewage sludges. Environmental Technology, 37(22): 2898–2904
https://doi.org/10.1080/09593330.2016.1168486 pmid: 27080207
5 T W Armstrong, C N Haas (2007). A quantitative microbial risk assessment model for Legionnaires’ disease: Animal model selection and dose-response modeling. Risk Analysis: An Official Publication of the Society for Risk Analysis, 27(6): 1581–1596
https://doi.org/10.1111/j.1539-6924.2007.00990.x pmid: 18093054
6 S Astals, C Venegas, M Peces, J Jofre, F Lucena, J Mata-Alvarez (2012). Balancing hygienization and anaerobic digestion of raw sewage sludge. Water Research, 46(19): 6218–6227
https://doi.org/10.1016/j.watres.2012.07.035 pmid: 23063441
7 B Bakheet, V Prodanovic, A Deletic, D McCarthy (2020). Effective treatment of greywater via green wall biofiltration and electrochemical disinfection. Water Research, 185: 116228
https://doi.org/10.1016/j.watres.2020.116228 pmid: 32736285
8 S Balboa, M Mauricio-Iglesias, S Rodriguez, L Martínez-Lamas, F J Vasallo, B Regueiro, J M Lema (2021). The fate of SARS-COV-2 in WWTPS points out the sludge line as a suitable spot for detection of COVID-19. Science of the Total Environment, 772: 145268
https://doi.org/10.1016/j.scitotenv.2021.145268 pmid: 33556806
9 M J Bardi, M A Oliaee (2021). Impacts of different operational temperatures and organic loads in anaerobic co-digestion of food waste and sewage sludge on the fate of SARS-CoV-2. Process Safety and Environmental Protection, 146: 464–472
https://doi.org/10.1016/j.psep.2020.11.035 pmid: 33262558
10 C L Bean, J J Hansen, A B Margolin, H Balkin, G Batzer, G Widmer (2007). Class B alkaline stabilization to achieve pathogen inactivation. International Journal of Environmental Research and Public Health, 4(1): 53–60
https://doi.org/10.3390/ijerph2007010009 pmid: 17431316
11 M Benito, C Menacho, P Chueca, M P Ormad, P Goñi (2020). Seeking the reuse of effluents and sludge from conventional wastewater treatment plants: Analysis of the presence of intestinal protozoa and nematode eggs. Journal of Environmental Management, 261: 110268
https://doi.org/10.1016/j.jenvman.2020.110268 pmid: 32148324
12 K Bibby, J Peccia (2013). Identification of viral pathogen diversity in sewage sludge by metagenome analysis. Environmental Science & Technology, 47(4): 1945–1951
https://doi.org/10.1021/es305181x pmid: 23346855
13 A B Boehm, K E Graham, W C Jennings (2018). Can we swim yet? Systematic review, meta-analysis, and risk assessment of aging sewage in surface waters. Environmental Science & Technology, 52(17): 9634–9645
https://doi.org/10.1021/acs.est.8b01948 pmid: 30080397
14 S I Borrely, A C Cruz, N L Del Mastro, M H O Sampa, E S Somessari (1998). Radiation processing of sewage and sludge: A review. Progress in Nuclear Energy, 33(1-2): 3–21
https://doi.org/10.1016/S0149-1970(97)87287-3
15 J P Brooks, M R McLaughlin, C P Gerba, I L Pepper (2012). Land application of manure and Class B biosolids: An occupational and public quantitative microbial risk assessment. Journal of Environmental Quality, 41(6): 2009–2023
https://doi.org/10.2134/jeq2011.0430 pmid: 23128758
16 J P Brooks, B D Tanner, C P Gerba, C N Haas, I L Pepper (2005). Estimation of bioaerosol risk of infection to residents adjacent to a land applied biosolids site using an empirically derived transport model. Journal of Applied Microbiology, 98(2): 397–405
https://doi.org/10.1111/j.1365-2672.2004.02484.x pmid: 15659194
17 A P Buzzini, L J Patrizzi, A J Motheo, E C Pires (2007). Preliminary evaluation of the electrochemical and chemical coagulation processes in the post-treatment of effluent from an upflow anaerobic sludge blanket (UASB) reactor. Journal of Environmental Management, 85(4): 847–857
https://doi.org/10.1016/j.jenvman.2005.10.017 pmid: 17134820
18 L Cai, T Zhang (2013). Detecting human bacterial pathogens in wastewater treatment plants by a high-throughput shotgun sequencing technique. Environmental Science & Technology, 47(10): 5433–5441
https://doi.org/10.1021/es400275r pmid: 23594284
19 W Calero-Cáceres, A Melgarejo, M Colomer-Lluch, C Stoll, F Lucena, J Jofre, M Muniesa (2014). Sludge as a potential important source of antibiotic resistance genes in both the bacterial and bacteriophage fractions. Environmental Science & Technology, 48(13): 7602–7611
https://doi.org/10.1021/es501851s pmid: 24873655
20 S Capizzi-Banas, M Deloge, M Remy, J Schwartzbrod (2004). Liming as an advanced treatment for sludge sanitisation: Helminth eggs elimination: Ascaris eggs as model. Water Research, 38(14–15): 3251–3258
https://doi.org/10.1016/j.watres.2004.04.015 pmid: 15276741
21 F Carraturo, C Del Giudice, M Morelli, V Cerullo, G Libralato, E Galdiero, M Guida (2020). Persistence of SARS-CoV-2 in the environment and COVID-19 transmission risk from environmental matrices and surfaces. Environmental Pollution, 265(Pt B): 115010
22 J L Chen, R Ortiz, T W J Steele, D C Stuckey (2014). Toxicants inhibiting anaerobic digestion: A review. Biotechnology Advances, 32(8): 1523–1534
https://doi.org/10.1016/j.biotechadv.2014.10.005 pmid: 25457225
23 Y H Chen, C Yan, Y F Yang, J X Ma (2021). Quantitative microbial risk assessment and sensitivity analysis for workers exposed to pathogenic bacterial bioaerosols under various aeration modes in two wastewater treatment plants. Science of the Total Environment, 755(Pt 2): 142615
https://doi.org/10.1016/j.scitotenv.2020.142615 pmid: 33038813
24 A S Chetochine, M L Brusseau, C P Gerba, I L Pepper (2006). Leaching of phage from Class B biosolids and potential transport through soil. Applied and Environmental Microbiology, 72(1): 665–671
https://doi.org/10.1128/AEM.72.1.665-671.2006 pmid: 16391105
25 T Cheunbarn, K R Pagilla (2000). Anaerobic thermophilic/mesophilic dual-stage sludge treatment. Journal of Environmental Engineering, 126(9): 796–801
https://doi.org/10.1061/(ASCE)0733-9372(2000)126:9(796)
26 A G Chmielewski, B Han (2016). Electron Beam Technology for Environmental Pollution Control. Topics in Current Chemistry (Cham), 374(5): 68
https://doi.org/10.1007/s41061-016-0069-4 pmid: 27620188
27 M J Claesson, Q Wang, O O’Sullivan, R Greene-Diniz, J R Cole, R P Ross, P W O’Toole (2010). Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Research, 38(22): e200
https://doi.org/10.1093/nar/gkq873 pmid: 20880993
28 N M G Coelho, R L Droste, K J Kennedy (2011). Evaluation of continuous mesophilic, thermophilic and temperature phased anaerobic digestion of microwaved activated sludge. Water Research, 45(9): 2822–2834
https://doi.org/10.1016/j.watres.2011.02.032 pmid: 21470653
29 S Cosgun, N Semerci (2019). Combined and individual applications of ozonation and microwave treatment for waste activated sludge solubilization and nutrient release. Journal of Environmental Management, 241: 76–83
https://doi.org/10.1016/j.jenvman.2019.04.001 pmid: 30986664
30 X Cui, A N Quicksall, A B Blake, J W Talley (2013). Electrochemical disinfection of Escherichia coli in the presence and absence of primary sludge particulates. Water Research, 47(13): 4383–4390
https://doi.org/10.1016/j.watres.2013.04.039 pmid: 23764589
31 X Dai, X Li, W Yang, L Dai, B Dong (2020). Virus in sewage sludge from wastewater treatment plant: Occurrence and potential risk during sludge treatment and disposal. Water & Wastewater Engineering, 46(3): 60–73 (in Chinese)
32 R Dauknys, A Mažeikienė, D Paliulis (2020). Effect of ultrasound and high voltage disintegration on sludge digestion process. Journal of Environmental Management, 270: 110833
https://doi.org/10.1016/j.jenvman.2020.110833 pmid: 32507741
33 W Deng, Y Su, W Yu (2013). Theoretical calculation of heat transfer coefficient when sludge drying in a nara-type paddle dryer using different heat carriers. Procedia Environmental Sciences, 18: 709–715
https://doi.org/10.1016/j.proenv.2013.04.096
34 D L Diehl, T M LaPara (2010). Effect of temperature on the fate of genes encoding tetracycline resistance and the integrase of class 1 integrons within anaerobic and aerobic digesters treating municipal wastewater solids. Environmental Science & Technology, 44(23): 9128–9133
https://doi.org/10.1021/es102765a pmid: 21058743
35 P Drogui, M A Bureau, G Mercier, J F Blais (2013). Effectiveness of electrooxidation process for stabilizing and conditioning of urban and industrial wastewater sludge. Water Environment Research: A Research Publication of the Water Environment Federation, 85(1): 35–43
https://doi.org/10.2175/106143012X13415215907257 pmid: 23409452
36 G J Eamens, A M Waldron, P J Nicholls (2006). Survival of pathogenic and indicator bacteria in biosolids applied to agricultural land. Australian Journal of Soil Research, 44(7): 647–659
https://doi.org/10.1071/SR06015
37 J N S Eisenberg, K Moore, J A Soller, D Eisenberg, J M Colford Jr (2008). Microbial risk assessment framework for exposure to amended sludge projects. Environmental Health Perspectives, 116(6): 727–733
https://doi.org/10.1289/ehp.10994 pmid: 18560527
38 J G Elliott, L Taylor-Edmonds, R C Andrews (2019). Quantitative microbial risk assessments for drinking water facilities: Evaluation of a range of treatment strategies. Environmental Science. Water Research & Technology, 5(11): 1943–1955
https://doi.org/10.1039/C9EW00348G
39 J Elmerdahl Olsen, H Errebo Larsen (1987). Bacterial decimation times in anaerobic digestions of animal slurries. Biological Wastes, 21(3): 153–168
https://doi.org/10.1016/0269-7483(87)90121-2
40 J Elving, J R Ottoson, B Vinnerås, A Albihn (2010). Growth potential of faecal bacteria in simulated psychrophilic/mesophilic zones during composting of organic waste. Journal of Applied Microbiology, 108(6): 1974–1981
https://doi.org/10.1111/j.1365-2672.2009.04593.x pmid: 19891711
41 M F Espinosa, A N Sancho, L M Mendoza, C R Mota, M E Verbyla (2020). Systematic review and meta-analysis of time-temperature pathogen inactivation. International Journal of Hygiene and Environmental Health, 230: 113595
https://doi.org/10.1016/j.ijheh.2020.113595 pmid: 32814236
42 L C Ferreira, M Castro-Alférez, S Nahim-Granados, M I Polo-López, M S Lucas, G Li Puma, P Fernández-Ibáñez (2020). Inactivation of water pathogens with solar photo-activated persulfate oxidation. Chemical Engineering Journal, 381: 122275
https://doi.org/10.1016/j.cej.2019.122275
43 J Fidjeland, A Nordin, B M Pecson, K L Nelson, B Vinnerås (2015). Modeling the inactivation of ascaris eggs as a function of ammonia concentration and temperature. Water Research, 83: 153–160
https://doi.org/10.1016/j.watres.2015.06.030 pmid: 26143272
44 P Foladori, F Cutrupi, N Segata, S Manara, F Pinto, F Malpei, L Bruni, G La Rosa (2020). SARS-CoV-2 from faeces to wastewater treatment: What do we know? A review. Science of the Total Environment, 743: 140444
https://doi.org/10.1016/j.scitotenv.2020.140444 pmid: 32649988
45 R Font, M F Gomez-Rico, A Fullana (2011). Skin effect in the heat and mass transfer model for sewage sludge drying. Separation and Purification Technology, 77(1): 146–161
https://doi.org/10.1016/j.seppur.2010.12.001
46 A A Forbis-Stokes, P F O’Meara, W Mugo, G M Simiyu, M A Deshusses (2016). On-Site Fecal Sludge Treatment with the Anaerobic Digestion Pasteurization Latrine. Environmental Engineering Science, 33(11): 898–906
https://doi.org/10.1089/ees.2016.0148 pmid: 27924135
47 T Forster-Carneiro, V Riau, M Pérez (2010). Mesophilic anaerobic digestion of sewage sludge to obtain class B biosolids: Microbiological methods development. Biomass and Bioenergy, 34(12): 1805–1812
https://doi.org/10.1016/j.biombioe.2010.07.010
48 P Gale (2003). Using event trees to quantify pathogen levels on root crops from land application of treated sewage sludge. Journal of Applied Microbiology, 94(1): 35–47
https://doi.org/10.1046/j.1365-2672.2003.01794.x pmid: 12492921
49 P Gale (2005). Land application of treated sewage sludge: Quantifying pathogen risks from consumption of crops. Journal of Applied Microbiology, 98(2): 380–396
https://doi.org/10.1111/j.1365-2672.2004.02482.x pmid: 15659193
50 C Gantzer, P Gaspard, L Galvez, A Huyard, N Dumouthier, J Schwartzbrod (2001). Monitoring of bacterial and parasitological contamination during various treatment of sludge. Water Research, 35(16): 3763–3770
https://doi.org/10.1016/S0043-1354(01)00105-1 pmid: 12230157
51 A Gaviria-Figueroa, E C Preisner, S Hoque, C E Feigley, R S Norman (2019). Emission and dispersal of antibiotic resistance genes through bioaerosols generated during the treatment of municipal sewage. Science of the Total Environment, 686: 402–412
https://doi.org/10.1016/j.scitotenv.2019.05.454 pmid: 31181526
52 D Ge, Y Dong, W Zhang, H Yuan, N Zhu (2020). A novel Fe2+/persulfate/tannic acid process with strengthened efficacy on enhancing waste activated sludge dewaterability and mechanism insight. Science of the Total Environment, 733: 139146
https://doi.org/10.1016/j.scitotenv.2020.139146 pmid: 32446059
53 A Gil, J A Siles, M A Martín, A F Chica, F S Estévez-Pastor, E Toro-Baptista (2018). Effect of microwave pretreatment on semi-continuous anaerobic digestion of sewage sludge. Renewable Energy, 115: 917–925
https://doi.org/10.1016/j.renene.2017.07.112
54 M Goberna, P Simón, M T Hernández, C García (2018). Prokaryotic communities and potential pathogens in sewage sludge: Response to wastewaster origin, loading rate and treatment technology. Science of the Total Environment, 615: 360–368
https://doi.org/10.1016/j.scitotenv.2017.09.240 pmid: 28988070
55 L A Gomes, A F Santos, C T Pinheiro, J C Góis, M J Quina (2020). Screening of waste materials as adjuvants for drying sewage sludge based on environmental, technical and economic criteria. Journal of Cleaner Production, 259: 120927
https://doi.org/10.1016/j.jclepro.2020.120927
56 J Graff, J Ticehurst, B Flehmig (1993). Detection of hepatitis A virus in sewage sludge by antigen capture polymerase chain reaction. Applied and Environmental Microbiology, 59(10): 3165–3170
https://doi.org/10.1128/aem.59.10.3165-3170.1993 pmid: 8250546
57 K Grübel, J Suschka (2015). Hybrid alkali-hydrodynamic disintegration of waste-activated sludge before two-stage anaerobic digestion process. Environmental Science and Pollution Research International, 22(10): 7258–7270
https://doi.org/10.1007/s11356-014-3705-y pmid: 25318422
58 S Guajardo-Leiva, J Chnaiderman, A Gaggero, B Díez (2020). Metagenomic Insights into the sewage RNA virosphere of a large city. Viruses, 12(9): 1050
https://doi.org/10.3390/v12091050 pmid: 32967111
59 S Hait, V Tare (2011). Optimizing vermistabilization of waste activated sludge using vermicompost as bulking material. Waste Management (New York, N.Y.), 31(3): 502–511
https://doi.org/10.1016/j.wasman.2010.11.004 pmid: 21145224
60 K A Hamilton, C N Haas (2016). Critical review of mathematical approaches for quantitative microbial risk assessment (QMRA) of Legionella in engineered water systems: research gaps and a new framework. Environmental Science. Water Research & Technology, 2(4): 599–613
https://doi.org/10.1039/C6EW00023A
61 K A Hamilton, M T Hamilton, W Johnson, P Jjemba, Z Bukhari, M LeChevallier, C N Haas, P L Gurian (2019). Risk-based critical concentrations of Legionella pneumophila for indoor residential water uses. Environmental Science & Technology, 53(8): 4528–4541
https://doi.org/10.1021/acs.est.8b03000 pmid: 30629886
62 Y P Han, L Li, Y Wang, J W Ma, P Y Li, C Han, J X Liu (2021). Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review. Frontiers of Environmental Science & Engineering, 15(3): 16
63 J J Hansen, P S Warden, A B Margolin (2007). Inactivation of adenovirus type 5, rotavirus Wa and male specific coliphage (MS2) in biosolids by lime stabilization. International Journal of Environmental Research and Public Health, 4(1): 61–67
https://doi.org/10.3390/ijerph2007010010 pmid: 17431317
64 S M Hong, J K Park, Y O Lee (2004). Mechanisms of microwave irradiation involved in the destruction of fecal coliforms from biosolids. Water Research, 38(6): 1615–1625
https://doi.org/10.1016/j.watres.2003.12.011 pmid: 15016539
65 S M Hong, J K Park, N Teeradej, Y O Lee, Y K Cho, C H Park (2006). Pretreatment of sludge with microwaves for pathogen destruction and improved anaerobic digestion performance. Water Environment Research: A Research Publication of the Water Environment Federation, 78(1): 76–83
https://doi.org/10.2175/106143005X84549 pmid: 16553169
66 S Hu, W Zhao, J Hu, B Liu, D Wang, Q Zhu, J Yang, H Hou (2021). Integration of electrochemical and calcium hypochlorite oxidation for simultaneous sludge deep dewatering, stabilization and phosphorus fixation. Science of the Total Environment, 750: 141408
https://doi.org/10.1016/j.scitotenv.2020.141408 pmid: 32858289
67 Y Hu, F Wang, G Lv, Y Chi (2019). Enhancing the biogas production of sludge anaerobic digestion by a combination of zero-valent iron foil and persulfate. Energy & Fuels, 33(8): 7436–7442
https://doi.org/10.1021/acs.energyfuels.9b01475
68 J Huang, M Elektorowicz, J A Oleszkiewicz (2008). Dewatering and disinfection of aerobic and anaerobic sludge using an electrokinetic (EK) system. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 57(2): 231–236
https://doi.org/10.2166/wst.2008.009 pmid: 18235176
69 K Huang, Y Mao, F Zhao, X X Zhang, F Ju, L Ye, Y Wang, B Li, H Ren, T Zhang (2018). Free-living bacteria and potential bacterial pathogens in sewage treatment plants. Applied Microbiology and Biotechnology, 102(5): 2455–2464
https://doi.org/10.1007/s00253-018-8796-9 pmid: 29396586
70 K Huang, H Xia, Y Zhang, J Li, G Cui, F Li, W Bai, Y Jiang, N Wu (2020). Elimination of antibiotic resistance genes and human pathogenic bacteria by earthworms during vermicomposting of dewatered sludge by metagenomic analysis. Bioresource Technology, 297: 122451
https://doi.org/10.1016/j.biortech.2019.122451 pmid: 31787516
71 G D Inglis, T A McAllister, F J Larney, E Topp (2010). Prolonged survival of Campylobacter species in bovine manure compost. Applied and Environmental Microbiology, 76(4): 1110–1119
https://doi.org/10.1128/AEM.01902-09 pmid: 20023098
72 R Iranpour, H H J Cox (2006). Recurrence of fecal coliforms and Salmonella species in biosolids following thermophilic anaerobic digestion. Water Environment Research: A Research Publication of the Water Environment Federation, 78(9): 1005–1012
https://doi.org/10.2175/106143006X143911 pmid: 17120460
73 R Iranpour, H H J Cox (2007). Evaluation of thermophilic anaerobic digestion processes for full-scale Class A biosolids disinfection at Hyperion Treatment Plant. Biotechnology and Bioengineering, 97(1): 19–39
https://doi.org/10.1002/bit.21176 pmid: 17054113
74 M Jafari, G G Botte (2021). Electrochemical treatment of sewage sludge and pathogen inactivation. Journal of Applied Electrochemistry, 51(1): 119–130
https://doi.org/10.1007/s10800-020-01481-6
75 M A Jahne, N E Brinkman, S P Keely, B D Zimmerman, E A Wheaton, J L Garland (2020). Droplet digital PCR quantification of norovirus and adenovirus in decentralized wastewater and graywater collections: Implications for onsite reuse. Water Research, 169: 115213
https://doi.org/10.1016/j.watres.2019.115213 pmid: 31671297
76 S Jebri, F Hmaied, F Lucena, M E Saavedra, M Yahya, M Hamdi (2014). A comparison of two extraction methods for the detection of Enteroviruses in raw sludge. Journal of Virological Methods, 200: 1–5
https://doi.org/10.1016/j.jviromet.2014.01.018 pmid: 24503039
77 B Jin, J Niu, J Zhang, J Niu, P Zhou, J Dai, N Li, H Tao, Z Ma, Z Zhang (2020). Response of extracellular polymeric substances and enzymatic activity to salinity for the waste activated sludge anaerobic fermentation process. Bioprocess and Biosystems Engineering, 43(4): 737–745
https://doi.org/10.1007/s00449-019-02253-z pmid: 31781869
78 F Ju, F Lau, T Zhang (2017). Linking Microbial Community, Environmental Variables, and Methanogenesis in Anaerobic Biogas Digesters of Chemically Enhanced Primary Treatment Sludge. Environmental Science & Technology, 51(7): 3982–3992
https://doi.org/10.1021/acs.est.6b06344 pmid: 28240534
79 F Ju, B Li, L Ma, Y Wang, D Huang, T Zhang (2016). Antibiotic resistance genes and human bacterial pathogens: Co-occurrence, removal, and enrichment in municipal sewage sludge digesters. Water Research, 91: 1–10
https://doi.org/10.1016/j.watres.2015.11.071 pmid: 26773390
80 A Jyoti, P Vajpayee, G Singh, C B Patel, K C Gupta, R Shanker (2011). Identification of environmental reservoirs of nontyphoidal salmonellosis: Aptamer-assisted bioconcentration and subsequent detection of salmonella typhimurium by quantitative polymerase chain reaction. Environmental Science & Technology, 45(20): 8996–9002
https://doi.org/10.1021/es2018994 pmid: 21875107
81 R M Kabrick, W J Jewell (1982). Fate of pathogens in thermophilic aerobic sludge digestion. Water Research, 16(6): 1051–1060
https://doi.org/10.1016/0043-1354(82)90041-0
82 T E Kearney, M J Larkin, P N Levett (1993). The effect of slurry storage and anaerobic digestion on survival of pathogenic bacteria. Journal of Applied Bacteriology, 74(1): 86–93
https://doi.org/10.1111/j.1365-2672.1993.tb03000.x pmid: 8420921
83 A Kelessidis, A S Stasinakis (2012). Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Management (New York, N.Y.), 32(6): 1186–1195
https://doi.org/10.1016/j.wasman.2012.01.012 pmid: 22336390
84 N A Kennedy, A W Walker, S H Berry, S H Duncan, F M Farquarson, P Louis, J M Thomson, J Satsangi, H J Flint, J Parkhill, C W Lees, G L Hold, and the UK IBD Genetics Consortium (2014). The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS One, 9(2): e88982
https://doi.org/10.1371/journal.pone.0088982 pmid: 24586470
85 M Khwairakpam, R Bhargava (2009). Vermitechnology for sewage sludge recycling. Journal of Hazardous Materials, 161(2-3): 948–954
https://doi.org/10.1016/j.jhazmat.2008.04.088 pmid: 18515003
86 T H Kim, M Lee, C Park (2011). Gamma ray irradiation for sludge solubilization and biological nitrogen removal. Radiation Physics and Chemistry, 80(12): 1386–1390
https://doi.org/10.1016/j.radphyschem.2011.06.011
87 F E Kong, M A Deighton, N A Thurbon, S R Smith, D A Rouch (2018). Cryptosporidium parvum decay during air drying and stockpiling of mesophilic anaerobically digested sewage sludge in a simulation experiment and oocyst counts in sludge collected from operational treatment lagoons in Victoria, Australia. Journal of Water and Health, 16(3): 435–448
https://doi.org/10.2166/wh.2018.018 pmid: 29952332
88 J C Lagier, F Armougom, M Million, P Hugon, I Pagnier, C Robert, F Bittar, G Fournous, G Gimenez, M Maraninchi, J F Trape, E V Koonin, B La Scola, D Raoult (2012). Microbial culturomics: paradigm shift in the human gut microbiome study. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 18(12): 1185–1193
https://doi.org/10.1111/1469-0691.12023 pmid: 23033984
89 A M Lammerding (2006). Modeling and risk assessment for Salmonella in meat and poultry. Journal of AOAC International, 89(2): 543–552
https://doi.org/10.1093/jaoac/89.2.543 pmid: 16640305
90 C H F Lau, B Li, T Zhang, Y C Tien, A Scott, R Murray, L Sabourin, D R Lapen, P Duenk, E Topp (2017). Impact of pre-application treatment on municipal sludge composition, soil dynamics of antibiotic resistance genes, and abundance of antibiotic-resistance genes on vegetables at harvest. Science of the Total Environment, 587-588: 214–222
https://doi.org/10.1016/j.scitotenv.2017.02.123 pmid: 28242221
91 Q Lei, J Zheng, J Ma, X Wang, Z Wu, Z Wang (2020). Simultaneous solid-liquid separation and wastewater disinfection using an electrochemical dynamic membrane filtration system. Environmental Research, 180: 108861
https://doi.org/10.1016/j.envres.2019.108861 pmid: 31703975
92 C Levantesi, C Beimfohr, A R Blanch, A Carducci, A Gianico, F Lucena, M C Tomei, G Mininni (2015). Hygienization performances of innovative sludge treatment solutions to assure safe land spreading. Environmental Science and Pollution Research International, 22(10): 7237–7247
https://doi.org/10.1007/s11356-014-3572-6 pmid: 25233915
93 D L Lewis, D K Gattie (2002). Pathogen risks from applying sewage sludge to land. Environmental Science & Technology, 36(13): 286A–293A
https://doi.org/10.1021/es0223426 pmid: 12144261
94 B Li, F Ju, L Cai, T Zhang (2015). Profile and fate of bacterial pathogens in sewage treatment plants revealed by high-throughput metagenomic approach. Environmental Science & Technology, 49(17): 10492–10502
https://doi.org/10.1021/acs.est.5b02345 pmid: 26252189
95 D C Li, J F Gao, S J Zhang, Y Q Gao, L X Sun (2020a). Emergence and spread patterns of antibiotic resistance genes during two different aerobic granular sludge cultivation processes. Environment International, 137: 105540
https://doi.org/10.1016/j.envint.2020.105540 pmid: 32032776
96 J Li, L T Zhou, X Y Zhang, C J Xu, L M Dong, M S Yao (2016a). Bioaerosol emissions and detection of airborne antibiotic resistance genes from a wastewater treatment plant. Atmospheric Environment, 124: 404–412
https://doi.org/10.1016/j.atmosenv.2015.06.030
97 M Li, Y Yang, Y Lu, D Zhang, Y Liu, X Cui, L Yang, R Liu, J Liu, G Li, J Qu (2020b). Natural host-environmental media-human: A new potential pathway of COVID-19 outbreak. Engineering (Beijing, China), 6(10): 1085–1098
https://doi.org/10.1016/j.eng.2020.08.010 pmid: 33520330
98 X Li, Y Li, L Hong (2016b). A novel self-assembling DNA nano chip for rapid detection of human Papillomavirus genes. PLoS One, 11(10): e0162975
https://doi.org/10.1371/journal.pone.0162975 pmid: 27706184
99 H Liao, X Lu, C Rensing, V P Friman, S Geisen, Z Chen, Z Yu, Z Wei, S Zhou, Y Zhu (2018). Hyperthermophilic composting accelerates the removal of antibiotic resistance genes and mobile genetic elements in sewage sludge. Environmental Science & Technology, 52(1): 266–276
https://doi.org/10.1021/acs.est.7b04483 pmid: 29199822
100 S Liu, N Zhu, L Y Li (2011). The one-stage autothermal thermophilic aerobic digestion for sewage sludge treatment. Chemical Engineering Journal, 174(2-3): 564–570
https://doi.org/10.1016/j.cej.2011.09.043 pmid: 22153290
101 A Lizasoain, L F L Tort, M García, L Gillman, A Alberti, J P G Leite, M P Miagostovich, S A Pou, A Cagiao, A Razsap, J Huertas, M Berois, M Victoria, R Colina (2018). Human enteric viruses in a wastewater treatment plant: Evaluation of activated sludge combined with UV disinfection process reveals different removal performances for viruses with different features. Letters in Applied Microbiology, 66(3): 215–221
https://doi.org/10.1111/lam.12839 pmid: 29274087
102 E Lloret, L Pastor, A Martínez-Medina, J Blaya, J A Pascual (2012). Evaluation of the removal of pathogens included in the Proposal for a European Directive on spreading of sludge on land during autothermal thermophilic aerobic digestion (ATAD). Chemical Engineering Journal, 198–199: 171–179
https://doi.org/10.1016/j.cej.2012.05.068
103 E Lloret, L Pastor, P Pradas, J A Pascual (2013). Semi full-scale thermophilic anaerobic digestion (TAnD) for advanced treatment of sewage sludge: Stabilization process and pathogen reduction. Chemical Engineering Journal, 232: 42–50
https://doi.org/10.1016/j.cej.2013.07.062
104 A López, J Rodríguez-Chueca, R Mosteo, J Gómez, M P Ormad (2020). Microbiological quality of sewage sludge after digestion treatment: A pilot scale case of study. Journal of Cleaner Production, 254: 120101
https://doi.org/10.1016/j.jclepro.2020.120101
105 F Lu, T Y Hu, S Y Wei, L M Shao, P J He(2021). Bioaerosolization behavior along sewage sludge biostabilization. Frontiers of Environmental Science & Engineering, 15(3): 45
106 X Lu, X X Zhang, Z Wang, K Huang, Y Wang, W Liang, Y Tan, B Liu, J Tang (2015). Bacterial pathogens and community composition in advanced sewage treatment systems revealed by metagenomics analysis based on high-throughput sequencing. PLoS One, 10(5): e0125549
https://doi.org/10.1371/journal.pone.0125549 pmid: 25938416
107 A J Lung, C M Lin, J M Kim, M R Marshall, R Nordstedt, N P Thompson, C I Wei (2001). Destruction of Escherichia coli O157:H7 and Salmonella enteritidis in cow manure composting. Journal of Food Protection, 64(9): 1309–1314
https://doi.org/10.4315/0362-028X-64.9.1309 pmid: 11563505
108 T Luukkonen, H Prokkola, S O Pehkonen (2020). Peracetic acid for conditioning of municipal wastewater sludge: Hygienization, odor control, and fertilizing properties. Waste Management (New York, N.Y.), 102: 371–379
https://doi.org/10.1016/j.wasman.2019.11.004 pmid: 31731256
109 B Lv, M Xing, J Yang (2018). Exploring the effects of earthworms on bacterial profiles during vermicomposting process of sewage sludge and cattle dung with high-throughput sequencing. Environmental Science and Pollution Research International, 25(13): 12528–12537
https://doi.org/10.1007/s11356-018-1520-6 pmid: 29464602
110 M E Magri, J Fidjeland, H Jönsson, A Albihn, B Vinnerås (2015). Inactivation of adenovirus, reovirus and bacteriophages in fecal sludge by pH and ammonia. Science of the Total Environment, 520: 213–221
https://doi.org/10.1016/j.scitotenv.2015.03.035 pmid: 25817758
111 N Major, J Schierstaedt, S Jechalke, J Nesme, S G Ban, M Černe, S J Sørensen, D Ban, A Schikora (2020). Composted Sewage Sludge Influences the Microbiome and Persistence of Human Pathogens in Soil. Microorganisms, 8(7): 1020
https://doi.org/10.3390/microorganisms8071020 pmid: 32660164
112 G Mandilara, A Mavridou, M Lambiri, A Vatopoulos, F Rigas (2006). The use of bacteriophages for monitoring the microbiological quality of sewage sludge. Environmental Technology, 27(4): 367–375
https://doi.org/10.1080/09593332708618657 pmid: 16583821
113 T Maqbool, J Cho, J Hur (2019). Improved dewaterability of anaerobically digested sludge and compositional changes in extracellular polymeric substances by indigenous persulfate activation. Science of the Total Environment, 674: 96–104
https://doi.org/10.1016/j.scitotenv.2019.04.115 pmid: 31004908
114 J Martín-Díaz, F Lucena, A R Blanch, J Jofre (2020). Review: Indicator bacteriophages in sludge, biosolids, sediments and soils. Environmental Research, 182: 109133
https://doi.org/10.1016/j.envres.2020.109133 pmid: 32069755
115 P M Mawioo, H A Garcia, C M Hooijmans, K Velkushanova, M Simonič, I Mijatović, D Brdjanovic (2017). A pilot-scale microwave technology for sludge sanitization and drying. Science of the Total Environment, 601-602: 1437–1448
https://doi.org/10.1016/j.scitotenv.2017.06.004 pmid: 28605862
116 C M Mehta, U Palni, I H Franke-Whittle, A K Sharma (2014). Compost: its role, mechanism and impact on reducing soil-borne plant diseases. Waste Management (New York, N.Y.), 34(3): 607–622
https://doi.org/10.1016/j.wasman.2013.11.012 pmid: 24373678
117 B Mignotte-Cadiergues, C Gantzer, L Schwartzbrod (2002). Evaluation of bacteriophages during the treatment of sludge. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 46(10): 189–194
https://doi.org/10.2166/wst.2002.0327 pmid: 12479470
118 P D Millner, K E Powers, N K Enkiri, W D Burge (1987). Microbially mediated growth suppression and death of salmonella in composted sewage sludge. Microbial Ecology, 14(3): 255–265
https://doi.org/10.1007/BF02012945 pmid: 24202719
119 H Min Jang, S Choi, J Shin, E Kan, Y Mo Kim (2019). Additional reduction of antibiotic resistance genes and human bacterial pathogens via thermophilic aerobic digestion of anaerobically digested sludge. Bioresource Technology, 273: 259–268
https://doi.org/10.1016/j.biortech.2018.11.027 pmid: 30448677
120 L Mocé-Llivina, M Muniesa, H Pimenta-Vale, F Lucena, J Jofre (2003). Survival of bacterial indicator species and bacteriophages after thermal treatment of sludge and sewage. Applied and Environmental Microbiology, 69(3): 1452–1456
https://doi.org/10.1128/AEM.69.3.1452-1456.2003 pmid: 12620828
121 M Moletta-Denat, V Bru-Adan, J P Delgenes, J Hamelin, N Wéry, J J Godon (2010). Selective microbial aerosolization in biogas demonstrated by quantitative PCR. Bioresource Technology, 101(19): 7252–7257
https://doi.org/10.1016/j.biortech.2010.04.035 pmid: 20494574
122 T Mondal, D A Rouch, N Thurbon, S R Smith, M A Deighton (2015). Factors affecting decay of Salmonella Birkenhead and coliphage MS2 during mesophilic anaerobic digestion and air drying of sewage sludge. Journal of Water and Health, 13(2): 459–472
https://doi.org/10.2166/wh.2014.313 pmid: 26042978
123 S Monpoeho, A Maul, C Bonnin, L Patria, S Ranarijaona, S Billaudel, V Ferré (2004). Clearance of human-pathogenic viruses from sludge: study of four stabilization processes by real-time reverse transcription-PCR and cell culture. Applied and Environmental Microbiology, 70(9): 5434–5440
https://doi.org/10.1128/AEM.70.9.5434-5440.2004 pmid: 15345430
124 F Monroy, M Aira, J Domínguez (2009). Reduction of total coliform numbers during vermicomposting is caused by short-term direct effects of earthworms on microorganisms and depends on the dose of application of pig slurry. Science of the Total Environment, 407(20): 5411–5416
https://doi.org/10.1016/j.scitotenv.2009.06.048 pmid: 19640567
125 M R Mosquera-Losada, A Rigueiro-Rodríguez, N Ferreiro-Domínguez (2012). Residual effects of lime and sewage sludge inputs on soil fertility and tree and pasture production in a Pinus radiata D. Don silvopastoral system established in a very acidic soil. Agriculture, Ecosystems & Environment, 161: 165–173
https://doi.org/10.1016/j.agee.2012.08.001
126 D Naidoo, C C Appleton, C E Archer, G L Foutch (2019). The inactivation of Ascaris suum eggs by short exposure to high temperatures. Journal of Water, Sanitation, and Hygiene for Development : a Journal of the International Water Association, 9(1): 19–27
https://doi.org/10.2166/washdev.2018.051 pmid: 33384869
127 T Navab Daneshmand, R Beton, R J Hill, R Gehr, D Frigon (2012). Inactivation mechanisms of bacterial pathogen indicators during electro-dewatering of activated sludge biosolids. Water Research, 46(13): 3999–4008
https://doi.org/10.1016/j.watres.2012.05.009 pmid: 22677501
128 I Navarro, B Jiménez, S Lucario, E Cifuentes (2009). Application of Helminth ova infection dose curve to estimate the risks associated with biosolid application on soil. Journal of Water and Health, 7(1): 31–44
https://doi.org/10.2166/wh.2009.113 pmid: 18957773
129 V Orzi, B Scaglia, S Lonati, C Riva, G Boccasile, G L Alborali, F Adani (2015). The role of biological processes in reducing both odor impact and pathogen content during mesophilic anaerobic digestion. Science of the Total Environment, 526: 116–126
https://doi.org/10.1016/j.scitotenv.2015.04.038 pmid: 25925189
130 T Paez-Rubio, A Ramarui, J Sommer, H Xin, J Anderson, J Peccia (2007). Emission rates and characterization of aerosols produced during the spreading of dewatered class B biosolids. Environmental Science & Technology, 41(10): 3537–3544
https://doi.org/10.1021/es061786p pmid: 17547175
131 P K Pandey, M L Soupir (2011). Escherichia coli inactivation kinetics in anaerobic digestion of dairy manure under moderate, mesophilic and thermophilic temperatures. AMB Express, 1(1): 18
https://doi.org/10.1186/2191-0855-1-18 pmid: 21906374
132 B M Pecson, J A Barrios, B E Jiménez, K L Nelson (2007). The effects of temperature, pH, and ammonia concentration on the inactivation of Ascaris eggs in sewage sludge. Water Research, 41(13): 2893–2902
https://doi.org/10.1016/j.watres.2007.03.040 pmid: 17524448
133 S Pietronave, L Fracchia, M Rinaldi, M G Martinotti (2004). Influence of biotic and abiotic factors on human pathogens in a finished compost. Water Research, 38(8): 1963–1970
https://doi.org/10.1016/j.watres.2004.01.027 pmid: 15087177
134 I Plachá, J Venglovský, Z Maková, J Martinéz (2008). The elimination of Salmonella typhimurium in sewage sludge by aerobic mesophilic stabilization and lime hydrated stabilization. Bioresource Technology, 99(10): 4269–4274
https://doi.org/10.1016/j.biortech.2007.08.056 pmid: 17931859
135 T Prado, A M C Gaspar, M P Miagostovich (2014). Detection of enteric viruses in activated sludge by feasible concentration methods. Brazilian Journal of Microbiology, 45(1): 343–349
https://doi.org/10.1590/S1517-83822014000100049 pmid: 24948954
136 D L Pritchard, N Penney, M J McLaughlin, H Rigby, K Schwarz (2010). Land application of sewage sludge (biosolids) in Australia: Risks to the environment and food crops. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 62(1): 48–57
https://doi.org/10.2166/wst.2010.274 pmid: 20595753
137 C Quince, A W Walker, J T Simpson, N J Loman, N Segata (2017). Shotgun metagenomics, from sampling to analysis. Nature Biotechnology, 35(9): 833–844
https://doi.org/10.1038/nbt.3935 pmid: 28898207
138 T O Rahube, R Marti, A Scott, Y C Tien, R Murray, L Sabourin, Y Zhang, P Duenk, D R Lapen, E Topp (2014). Impact of fertilizing with raw or anaerobically digested sewage sludge on the abundance of antibiotic-resistant coliforms, antibiotic resistance genes, and pathogenic bacteria in soil and on vegetables at harvest. Applied and Environmental Microbiology, 80(22): 6898–6907
https://doi.org/10.1128/AEM.02389-14 pmid: 25172864
139 R Rajagopal, D I Massé, G Singh (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143: 632–641
https://doi.org/10.1016/j.biortech.2013.06.030 pmid: 23835276
140 B Ranković, A Sagatova, I Vujcic, S Masic, D Veljovic, V Pavicevic, Z Kamberovic (2020). Utilization of gamma and e-beam irradiation in the treatment of waste sludge from a drinking water treatment plant. Radiation Physics and Chemistry, 177: 109177
https://doi.org/10.1016/j.radphyschem.2020.109174
141 L Rizzo, C Manaia, C Merlin, T Schwartz, C Dagot, M C Ploy, I Michael, D Fatta-Kassinos (2013). Urban wastewater treatment plants as hotspots for antibiotic resistant bacteria and genes spread into the environment: A review. Science of the Total Environment, 447: 345–360
https://doi.org/10.1016/j.scitotenv.2013.01.032 pmid: 23396083
142 Robledo-Mahón, C Gómez-Silván, G L Andersen, C Calvo, E Aranda (2020). Assessment of bacterial and fungal communities in a full-scale thermophilic sewage sludge composting pile under a semipermeable cover. Bioresource Technology, 298: 122550
https://doi.org/10.1016/j.biortech.2019.122550 pmid: 31837577
143 T Robledo-Mahón, G A Silva-Castro, U Kuhar, U Jamnikar-Ciglenečki, D Barlič-Maganja, E Aranda, C Calvo (2019). Effect of composting under semipermeable film on the sewage sludge virome. Microbial Ecology, 78(4): 895–903
https://doi.org/10.1007/s00248-019-01365-z pmid: 31037376
144 M H Romdhana, D Lecomte, B Ladevie, C Sablayrolles (2009). Monitoring of pathogenic microorganisms contamination during heat drying process of sewage sludge. Process Safety and Environmental Protection, 87(6): 377–386
https://doi.org/10.1016/j.psep.2009.08.003
145 J Rumky, S Visigalli, A Turolla, E Gelmi, C Necibi, P Gronchi, M Sillanpää, R Canziani (2020). Electro-dewatering treatment of sludge: Assessment of the influence on relevant indicators for disposal in agriculture. Journal of Environmental Management, 268: 110689
https://doi.org/10.1016/j.jenvman.2020.110689 pmid: 32383657
146 K Sado, D Ayusawa, A Enomoto, T Suganuma, M Oshimura, K Sato, H Koyama (2001). Identification of a mutated DNA ligase IV gene in the X-ray-hypersensitive mutant SX10 of mouse FM3A cells. Journal of Biological Chemistry, 276(13): 9742–9748
https://doi.org/10.1074/jbc.M010530200 pmid: 11133995
147 L Sahlström (2003). A review of survival of pathogenic bacteria in organic waste used in biogas plants. Bioresource Technology, 87(2): 161–166
https://doi.org/10.1016/S0960-8524(02)00168-2 pmid: 12765355
148 D Sano, K Fukushi, Y Yoshida, T Omura (2003). Detection of enteric viruses in municipal sewage sludge by a combination of the enzymatic virus elution method and RT-PCR. Water Research, 37(14): 3490–3498
https://doi.org/10.1016/S0043-1354(03)00208-2 pmid: 12834742
149 A F Santos, C P Santos, A M Matos, O Cardoso, M J Quina (2020). Effect of thermal drying and chemical treatments with wastes on microbiological contamination indicators in sewage sludge. Microorganisms, 8(3): 376
https://doi.org/10.3390/microorganisms8030376
150 O Schlosser, A Huyard, K Cartnick, A Yañez, V Catalán, Z Do Quang (2009). Bioaerosol in composting facilities: Occupational health risk assessment. Water Environment Research: A Research Publication of the Water Environment Federation, 81(9): 866–877
https://doi.org/10.2175/106143009X407258 pmid: 19860143
151 O Schlosser, S Robert, C Debeaupuis, A Huyard (2018). Inhalable dust as a marker of exposure to airborne biological agents in composting facilities. Waste Management (New York, N.Y.), 81: 78–87
https://doi.org/10.1016/j.wasman.2018.09.051 pmid: 30527046
152 M Schöniger-Hekele, D Petermann, B Weber, C Müller (2007). Tropheryma whipplei in the environment: survey of sewage plant influxes and sewage plant workers. Applied and Environmental Microbiology, 73(6): 2033–2035
https://doi.org/10.1128/AEM.02335-06 pmid: 17277223
153 B Sen, T S Chandra (2009). Do earthworms affect dynamics of functional response and genetic structure of microbial community in a lab-scale composting system? Bioresource Technology, 100(2): 804–811
https://doi.org/10.1016/j.biortech.2008.07.047 pmid: 18805002
154 K E Shannon, D Y Lee, J T Trevors, L A Beaudette (2007). Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment. Science of the Total Environment, 382(1): 121–129
https://doi.org/10.1016/j.scitotenv.2007.02.039 pmid: 17462712
155 J Sidhu, R A Gibbs, G E Ho, I Unkovich (2001). The role of indigenous microorganisms in suppression of Salmonella regrowth in composted biosolids. Water Research, 35(4): 913–920
https://doi.org/10.1016/S0043-1354(00)00352-3 pmid: 11235886
156 F J Simmons, I Xagoraraki (2011). Release of infectious human enteric viruses by full-scale wastewater utilities. Water Research, 45(12): 3590–3598
https://doi.org/10.1016/j.watres.2011.04.001 pmid: 21570703
157 N Soobhany, R Mohee, V K Garg (2017). Inactivation of bacterial pathogenic load in compost against vermicompost of organic solid waste aiming to achieve sanitation goals: A review. Waste Management (New York, N.Y.), 64: 51–62
https://doi.org/10.1016/j.wasman.2017.03.003 pmid: 28302524
158 H Soueidan, L A Schmitt, T Candresse, M Nikolski (2015). Finding and identifying the viral needle in the metagenomic haystack: trends and challenges. Frontiers in Microbiology, 5: 739
https://doi.org/10.3389/fmicb.2014.00739 pmid: 25610431
159 J Q Su, B Wei, W Y Ou-Yang, F Y Huang, Y Zhao, H J Xu, Y G Zhu (2015). Antibiotic resistome and its association with bacterial communities during sewage sludge composting. Environmental Science & Technology, 49(12): 7356–7363
https://doi.org/10.1021/acs.est.5b01012 pmid: 26018772
160 K P Sutherland, J W Porter, J W Turner, B J Thomas, E E Looney, T P Luna, M K Meyers, J C Futch, E K Lipp (2010). Human sewage identified as likely source of white pox disease of the threatened Caribbean elkhorn coral, Acropora palmata. Environmental Microbiology, 12(5): 1122–1131
https://doi.org/10.1111/j.1462-2920.2010.02152.x pmid: 20132278
161 A Swati, S Hait (2018). A Comprehensive Review of the Fate of Pathogens during Vermicomposting of Organic Wastes. Journal of Environmental Quality, 47(1): 16–29
https://doi.org/10.2134/jeq2017.07.0265 pmid: 29415111
162 B D Tanner, J P Brooks, C P Gerba, C N Haas, K L Josephson, I L Pepper (2008). Estimated occupational risk from bioaerosols generated during land application of class B biosolids. Journal of Environmental Quality, 37(6): 2311–2321
https://doi.org/10.2134/jeq2007.0193 pmid: 18948485
163 J Tong, P Fang, J Zhang, Y Wei, Y Su, Y Zhang (2019). Microbial community evolution and fate of antibiotic resistance genes during sludge treatment in two full-scale anaerobic digestion plants with thermal hydrolysis pretreatment. Bioresource Technology, 288: 121575
https://doi.org/10.1016/j.biortech.2019.121575 pmid: 31158777
164 M Tong, F Liu, Q Dong, Z Ma, W Liu (2020). Magnetic Fe3O4-deposited flower-like MoS2 nanocomposites for the Fenton-like Escherichia coli disinfection and diclofenac degradation. Journal of Hazardous Materials, 385: 121604
https://doi.org/10.1016/j.jhazmat.2019.121604 pmid: 31744722
165 F Traub, S K Spillmann, R Wyler (1986). Method for determining virus inactivation during sludge treatment processes. Applied and Environmental Microbiology, 52(3): 498–503
https://doi.org/10.1128/aem.52.3.498-503.1986 pmid: 3532955
166 S Tsitsifli, D S Tsoukalas (2021). Water Safety Plans and HACCP implementation in water utilities around the world: benefits, drawbacks and critical success factors. Environmental Science and Pollution Research International, 28(15): 18837–18849
https://doi.org/10.1007/s11356-019-07312-2 pmid: 31863372
167 R Uma Rani, S Adish Kumar, S Kaliappan, I Yeom, J Rajesh Banu (2013). Impacts of microwave pretreatments on the semi-continuous anaerobic digestion of dairy waste activated sludge. Waste Management (New York, N.Y.), 33(5): 1119–1127
https://doi.org/10.1016/j.wasman.2013.01.016 pmid: 23465308
168 USEPA (1994). Land application of sewage sludge: A guide for land appliers on the requirements of the federal standard for the use or disposal of sewage sludge, 40 CFR Part 503. USEPA, Washington, DC. EPA/831-B-93-002b.
169 C Valderrama, R Granados, J L Cortina (2013). Stabilisation of dewatered domestic sewage sludge by lime addition as raw material for the cement industry: Understanding process and reactor performance. Chemical Engineering Journal, 232: 458–467
https://doi.org/10.1016/j.cej.2013.07.104
170 N Van Abel, M E Schoen, J C Kissel, J S Meschke (2017). Comparison of risk predicted by multiple norovirus dose-response models and implications for quantitative microbial risk Assessment. Risk Analysis: An Official Publication of the Society for Risk Analysis, 37(2): 245–264
https://doi.org/10.1111/risa.12616 pmid: 27285380
171 D Venieri, A Karapa, M Panagiotopoulou, I Gounaki (2020). Application of activated persulfate for the inactivation of fecal bacterial indicators in water. Journal of Environmental Management, 261: 110223
https://doi.org/10.1016/j.jenvman.2020.110223 pmid: 32148293
172 E Viau, K Bibby, T Paez-Rubio, J Peccia (2011). Toward a consensus view on the infectious risks associated with land application of sewage sludge. Environmental Science & Technology, 45(13): 5459–5469
https://doi.org/10.1021/es200566f pmid: 21644497
173 E Viau, J Peccia (2009). Survey of wastewater indicators and human pathogen genomes in biosolids produced by Class A and Class B stabilization treatments. Applied and Environmental Microbiology, 75(1): 164–174
https://doi.org/10.1128/AEM.01331-08 pmid: 18997022
174 A W Walker, J C Martin, P Scott, J Parkhill, H J Flint, K P Scott (2015). 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and PCR primer choice. Microbiome, 3(1): 26
https://doi.org/10.1186/s40168-015-0087-4 pmid: 26120470
175 J Wang, J Wang (2007). Application of radiation technology to sewage sludge processing: A review. Journal of Hazardous Materials, 143(1–2): 2–7
https://doi.org/10.1016/j.jhazmat.2007.01.027 pmid: 17293039
176 M Wang, H Chen, S Liu, L Xiao (2021). Removal of pathogen and antibiotic resistance genes from waste activated sludge by different pre-treatment approaches. Science of the Total Environment, 763: 143014
https://doi.org/10.1016/j.scitotenv.2020.143014 pmid: 33190880
177 M L Wang, R Y Li, Q Zhao (2019). Distribution and removal of antibiotic resistance genes during anaerobic sludge digestion with alkaline, thermal hydrolysis and ultrasonic pretreatments. Frontiers of Environmental Science & Engineering, 13(3): 43
https://doi.org/10.1007/s11783-019-1127-2
178 W Wang, H Wang, G Li, P K Wong, T An (2020). Visible light activation of persulfate by magnetic hydrochar for bacterial inactivation: Efficiency, recyclability and mechanisms. Water Research, 176: 115746
https://doi.org/10.1016/j.watres.2020.115746 pmid: 32224329
179 R L Ward, C S Ashley (1978). Heat inactivation of enteric viruses in dewatered wastewater sludge. Applied and Environmental Microbiology, 36(6): 898–905
https://doi.org/10.1128/aem.36.6.898-905.1978 pmid: 216309
180 T Watanabe, D Sano, T Omura (2002). Risk evaluation for pathogenic bacteria and viruses in sewage sludge compost. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 46(11–12): 325–330
https://doi.org/10.2166/wst.2002.0757 pmid: 12523773
181 M Watcharasukarn, P Kaparaju, J P Steyer, K A Krogfelt, I Angelidaki (2009). Screening Escherichia coli, Enterococcus faecalis, and Clostridium perfringens as indicator organisms in evaluating pathogen-reducing capacity in biogas plants. Microbial Ecology, 58(2): 221–230
https://doi.org/10.1007/s00248-009-9497-9 pmid: 19259627
182 N Wéry, C Lhoutellier, F Ducray, J P Delgenès, J J Godon (2008). Behaviour of pathogenic and indicator bacteria during urban wastewater treatment and sludge composting, as revealed by quantitative PCR. Water Research, 42(1-2): 53–62
https://doi.org/10.1016/j.watres.2007.06.048 pmid: 17659319
183 K M Wichuk, D Mccartney (2007). A review of the effectiveness of current time-temperature regulations on pathogen inactivation during composting. Journal of Environmental Engineering and Science, 6(5): 573–586
https://doi.org/10.1139/S07-011
184 J W C Wong, A Selvam (2009). Reduction of indicator and pathogenic microorganisms in pig manure through fly ash and lime addition during alkaline stabilization. Journal of Hazardous Materials, 169(1-3): 882–889
https://doi.org/10.1016/j.jhazmat.2009.04.033 pmid: 19442442
185 K Wong, B M Onan, I Xagoraraki (2010). Quantification of enteric viruses, pathogen indicators, and Salmonella bacteria in Class B anaerobically digested biosolids by culture and molecular methods. Applied and Environmental Microbiology, 76(19): 6441–6448
https://doi.org/10.1128/AEM.02685-09 pmid: 20693452
186 Y Wu, Y Jiang, G Ke, Y Liu (2017). Effect of gamma-ray irradiation on the dewaterability of waste activated sludge. Radiation Physics and Chemistry, 130: 164–170
https://doi.org/10.1016/j.radphyschem.2016.08.011
187 P Xu, C Zhang, X Mou, X C Wang (2020). Bioaerosol in a typical municipal wastewater treatment plant: concentration, size distribution, and health risk assessment. Water Science and Technology: A Journal of the International Association on Water Pollution Research, 82(8): 1547–1559
https://doi.org/10.2166/wst.2020.416 pmid: 33107849
188 C Yan, R N Wang, X Y Zhao (2021). Emission characteristics of bioaerosol and quantitative microbiological risk assessment for equipping individuals with various personal protective equipment in a WWTP. Chemosphere, 265: 129117
https://doi.org/10.1016/j.chemosphere.2020.129117 pmid: 33272663
189 G Yang, G Zhang, H Wang (2015). Current state of sludge production, management, treatment and disposal in China. Water Research, 78: 60–73
https://doi.org/10.1016/j.watres.2015.04.002 pmid: 25912250
190 K Yang, L Li, Y Wang, S Xue, Y Han, J Liu (2019). Airborne bacteria in a wastewater treatment plant: Emission characterization, source analysis and health risk assessment. Water Research, 149: 596–606
https://doi.org/10.1016/j.watres.2018.11.027 pmid: 30522052
191 W Yang, C Cai, X Dai (2020). The potential exposure and transmission risk of SARS-CoV-2 through sludge treatment and disposal. Resources, Conservation and Recycling, 162: 105043
https://doi.org/10.1016/j.resconrec.2020.105043 pmid: 32834483
192 L Ye, T Zhang (2011). Pathogenic bacteria in sewage treatment plants as revealed by 454 pyrosequencing. Environmental Science & Technology, 45(17): 7173–7179
https://doi.org/10.1021/es201045e pmid: 21780772
193 O Yenigün, B Demirel (2013). Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry, 48(5–6): 901–911
https://doi.org/10.1016/j.procbio.2013.04.012
194 F B Yin, Z F Li, M Saino, H M Dong (2017). Performance of alkaline pretreatment on pathogens inactivation and sludge solubilization. International Journal of Agricultural and Biological Engineering, 10(2): 216–223
195 Z Yin, M Hoffmann, S Jiang (2018). Sludge disinfection using electrical thermal treatment: The role of ohmic heating. Science of the Total Environment, 615: 262–271
https://doi.org/10.1016/j.scitotenv.2017.09.175 pmid: 28972902
196 B Yu, G D Zheng, X D Wang, M Wang, T B Chen (2019a). Biodegradation of triclosan and triclocarban in sewage sludge during composting under three ventilation strategies. Frontiers of Environmental Science & Engineering, 13(3): 41
https://doi.org/10.1007/s11783-019-1125-4
197 D T Yu, J Z He, L M Zhang, L L Han (2019b). Viral metagenomics analysis and eight novel viral genomes identified from the Dushanzi mud Volcanic soil in Xinjiang, China. Journal of Soils and Sediments, 19(1): 81–90
https://doi.org/10.1007/s11368-018-2045-9
198 J Yu, K Xiao, J Yang, W Yu, K Pei, Y Zhu, J Wang, S Liang, J Hu, H Hou, B Liu (2019c). Enhanced sludge dewaterability and pathogen inactivation by synergistic effects of zero-valent iron and ozonation. ACS Sustainable Chemistry & Engineering, 7(1): 324–331
https://doi.org/10.1021/acssuschemeng.8b03605
199 R Yu, S W Zhang, Z K Chen, C Y Li (2017). Isolation and application of predatory Bdellovibrio-and-like organisms for municipal waste sludge biolysis and dewaterability enhancement. Frontiers of Environmental Science & Engineering, 11(1): 10
https://doi.org/10.1007/s11783-017-0900-3
200 W Yu, Q Wen, J Yang, K Xiao, Y Zhu, S Tao, Y Lv, S Liang, W Fan, S Zhu, B Liu, H Hou, J Hu (2019d). Unraveling oxidation behaviors for intracellular and extracellular from different oxidants (HOCl vs. H2O2) catalyzed by ferrous iron in waste activated sludge dewatering. Water Research, 148: 60–69
https://doi.org/10.1016/j.watres.2018.10.033 pmid: 30347276
201 Y Yu, W I Chan, P H Liao, K V Lo (2010). Disinfection and solubilization of sewage sludge using the microwave enhanced advanced oxidation process. Journal of Hazardous Materials, 181(1-3): 1143–1147
https://doi.org/10.1016/j.jhazmat.2010.05.134 pmid: 20591564
202 K J Zaleski, K L Josephson, C P Gerba, I L Pepper (2005). Potential regrowth and recolonization of salmonellae and indicators in biosolids and biosolid-amended soil. Applied and Environmental Microbiology, 71(7): 3701–3708
https://doi.org/10.1128/AEM.71.7.3701-3708.2005 pmid: 16000779
203 R N Zaneti, V Girardi, F R Spilki, K Mena, A P C Westphalen, E R da Costa Colares, A G Pozzebon, R G Etchepare (2021). Quantitative microbial risk assessment of SARS-CoV-2 for workers in wastewater treatment plants. Science of the Total Environment, 754: 142163
https://doi.org/10.1016/j.scitotenv.2020.142163 pmid: 32911141
204 Q Zeng, F Zan, T Hao, B K Biswal, S Lin, M C M van Loosdrecht, G Chen (2019). Electrochemical pretreatment for stabilization of waste activated sludge: Simultaneously enhancing dewaterability, inactivating pathogens and mitigating hydrogen sulfide. Water Research, 166: 115035
https://doi.org/10.1016/j.watres.2019.115035 pmid: 31494488
205 H Zhang, L Xu, Y F Zhang, M C Jiang (2016). The transformation of PAHs in the sewage sludge incineration treatment. Frontiers of Environmental Science & Engineering, 10(2): 336–340
https://doi.org/10.1007/s11783-014-0766-6
206 H Zhang, Z Zhang, J Song, L Cai, Y Yu, H Fang (2021). Foam shares antibiotic resistomes and bacterial pathogens with activated sludge in wastewater treatment plants. Journal of Hazardous Materials, 408: 124855
https://doi.org/10.1016/j.jhazmat.2020.124855 pmid: 33373956
207 L Zhang, Y Chen, C Ma, L Liu, J Pan, B Li, X Wu, Q Wang (2020). Improving heavy metals removal, dewaterability and pathogen removal of waste activated sludge using enhanced chemical leaching. Journal of Cleaner Production, 271: 122512
208 T Zhang, M Zhang, X Zhang, H H Fang (2009). Tetracycline resistance genes and tetracycline resistant lactose-fermenting Enterobacteriaceae in activated sludge of sewage treatment plants. Environmental Science & Technology, 43(10): 3455–3460
https://doi.org/10.1021/es803309m pmid: 19544839
209 Q Zhao, Y Liu (2019). Is anaerobic digestion a reliable barrier for deactivation of pathogens in biosludge? Science of the Total Environment, 668: 893–902
https://doi.org/10.1016/j.scitotenv.2019.03.063 pmid: 30870755
210 Z Zimek (2020). Economical evaluation of radiation processing with high-intensity X-rays. Nukleonika, 65(3): 167–172
https://doi.org/10.2478/nuka-2020-0027
211 X Zou, G Tang, X Zhao, Y Huang, T Chen, M Lei, W Chen, L Yang, W Zhu, L Zhuang, J Yang, Z Feng, D Wang, D Wang, Y Shu (2017). Simultaneous virus identification and characterization of severe unexplained pneumonia cases using a metagenomics sequencing technique. Science China. Life Sciences, 60(3): 279–286
https://doi.org/10.1007/s11427-016-0244-8 pmid: 27921234
[1] Rong Cheng, Yingying Zhang, Tao Zhang, Feng Hou, Xiaoxin Cao, Lei Shi, Peiwen Jiang, Xiang Zheng, Jianlong Wang. The inactivation of bacteriophages MS2 and PhiX174 by nanoscale zero-valent iron: Resistance difference and mechanisms[J]. Front. Environ. Sci. Eng., 2022, 16(8): 108-.
[2] Ying Xu, Hui Gong, Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71-.
[3] Devin L. Maurer, Jacek A. Koziel, Kelsey Bruning. Field scale measurement of greenhouse gas emissions from land applied swine manure[J]. Front. Environ. Sci. Eng., 2017, 11(3): 1-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed