Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (4) : 71    https://doi.org/10.1007/s11783-020-1364-4
FEATURE ARTICLE
High-solid anaerobic digestion of sewage sludge: achievements and perspectives
Ying Xu1, Hui Gong1, Xiaohu Dai1,2()
1. State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
 Download: PDF(1591 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• High-solid anaerobic digestion (HS-AD) of sewage sludge (SS) is overviewed.

• Factors affecting process stability and performance in HS-AD of SS are revealed.

• HS effect and knowledge gaps of current research on the HS-AD of SS are identified.

• Future efforts on addressing knowledge gaps and improving HS-AD of SS are proposed.

High-solid anaerobic digestion (HS-AD) has been applied extensively during the last few decades for treating various organic wastes, such as agricultural wastes, organic fractions of municipal solid wastes, and kitchen wastes. However, the application of HS-AD to the processing of sewage sludge (SS) remains limited, which is largely attributable to its poor process stability and performance. Extensive research has been conducted to attempt to surmount these limitations. In this review, the main factors affecting process stability and performance in the HS-AD of SS are comprehensively reviewed, and the improved methods in current use, such as HS sludge pre-treatment and anaerobic co-digestion with other organic wastes, are summarised. Besides, this paper also discusses the characteristics of substance transformation in the HS-AD of SS with and without thermal pre-treatment. Research has shown that the HS effect is due to the presence of high concentrations of substances that may inhibit the function of anaerobic microorganisms, and that it also results in poor mass transfer, a low diffusion coefficient, and high viscosity. Finally, knowledge gaps in the current research on HS-AD of SS are identified. Based on these, it proposes that future efforts should be devoted to standardising the definition of HS sludge, revealing the law of migration and transformation of pollutants, describing the metabolic pathways by which specific substances are degraded, and establishing accurate mathematical models. Moreover, developing green sludge dewatering agents, obtaining high value-added products, and revealing effects of the above two on HS-AD of SS can also be considered in future.

Keywords High-solid effect      Anaerobic fermentation      Methane production      Biodegradability      Sludge treatment     
Corresponding Author(s): Xiaohu Dai   
Issue Date: 13 November 2020
 Cite this article:   
Ying Xu,Hui Gong,Xiaohu Dai. High-solid anaerobic digestion of sewage sludge: achievements and perspectives[J]. Front. Environ. Sci. Eng., 2021, 15(4): 71.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1364-4
https://academic.hep.com.cn/fese/EN/Y2021/V15/I4/71
Fig.1  ScienceDirect bibliometric study with the topics “high-solid anaerobic digestion (HS-AD) of sewage sludge (SS)” and “high-solid anaerobic digestion (HS-AD)” (June 2020).
Factor Stability Description Microbial Activity Biogas/Methane Production VS Reduction References
Solid concentration The stability decreases with an increase of TS content from 6% to 15% Methanogenic activity decreases from 100% to 50% with an increase of TS content from 4% to 10% Decrease with an increase of TS content from 4.47% to 15.67% Degradation of VS is prolonged Lay et al., 1997; Le Hyaric et al., 2011; Liao et al., 2014; Zhang et al., 2015; Zhang et al., 2016
Agitation The stability increases by improving agitation Increase by improving agitation Increase by improving agitation Duan et al., 2012; Liao and Li, 2015
SRT The stability decreases with a decrease of SRT from 15 days to 10 days Increase in biogas-production rate with a decrease of SRT from 35 days to 12 days Increase with an increase of SRT Kapp, 1984; Nges and Liu, 2010; Young et al., 2013; Jahn et al., 2016
Temperature The stability decreases with the temperature shift from mesophilic to thermophilic The mesophilic HS-AD has a richer and more diverse active microbial community than the thermophilic process The thermophilic HS-AD shows better biogas production than mesophilic process Increase with an increase of temperature Hidaka et al., 2013; Wang et al., 2014; Jahn et al., 2016; Wu et al., 2020
pH The process may fail at a pH<6.1 or>8.3 Methanogenic activity decreases at a pH<6.3 or>7.8 Lay et al., 1997; Bitton, 2002; Gerardi, 2003; Xu et al., 2020a
Ammonia/Ammonium stress The process may fail at FAN concentration>600 mg/L and
TAN concentration>4000 mg/L
Methanogenic activity sharply decreases with an increase of TAN concentration from 4090 mg/L to 5550 mg/L Decrease with an increase of TAN concentration Kayhanian, 1994; Lay et al., 1997; Duan et al., 2012; Li et al., 2015b; Li et al., 2017b
VFAs The process may fail at VFA concentration>4500 mg/L Methanogenic activity decreases with the accumulation of VFAs Decrease with the accumulation of VFAs Boe and Angelidaki, 2012; Duan et al., 2012; Zhang et al., 2014; Wang et al., 2018; Yin and Wu, 2019; Zhou et al., 2020
Toxic and harmful substances The stability decreases with the increase of concentration Decrease with an increase in concentration of antibiotic residues and PAM Increase at 100 mg/L of antibiotic residues; Decrease at 500 mg/L of antibiotic residues; Decrease with the presence of PAM Boráň et al., 2010; Luo et al., 2011; Qi et al., 2011; Dai et al., 2014b; Dai et al., 2015; Litti et al., 2019; Zhi and Zhang, 2019
Rheological properties The stability decreases with an increase in the viscosity or an decrease in the diffusion coefficient Decrease with high viscosity or low diffusion coefficient Kirby, 1988; Slatter, 1997; Cheng and Li, 2015; Sajjadi et al., 2016; Zhang et al., 2016; Hu et al., 2018
Tab.1  The main factors affecting the HS-AD performance of SS
Fig.2  Hit numbers of genes involved in the relevant methanogenesis pathways in HS-AD process of SS without and with ammonium stress (Reprinted from Li et al., 2017a, Copyright (2017), with permission from Elsevier).
Fig.3  The diagram of the substance transformation ratios in the mesophilic/thermophilic HS-AD process of SS with and without thermal pre-treatment: (a) the diagram of the transformation ratios of COD, protein and carbohydrate; (b) the diagram of the transformation ratios of nitrogen, phosphorus and sulphur (Reprinted from Han et al., 2017, Copyright (2017), with permission from Elsevier).
Fig.4  Diagram of the conversion pathway of sulphur substances during the HS-AD process of SS with thermal pre-treatment ((Reprinted from Dai et al., 2017, Copyright (2017); Li et al., 2020, Copyright (2020) with permission from Elsevier).
1 A Abbassi-Guendouz, D Brockmann, E Trably, C Dumas, J P Delgenès, J P Steyer, R Escudié (2012). Total solids content drives high solid anaerobic digestion via mass transfer limitation. Bioresource Technology, 111: 55–61
https://doi.org/10.1016/j.biortech.2012.01.174 pmid: 22386469
2 P Aichinger, T Wadhawan, M Kuprian, M Higgins, C Ebner, C Fimml, S Murthy, B Wett (2015). Synergistic co-digestion of solid-organic-waste and municipal-sewage-sludge: 1 plus 1 equals more than 2 in terms of biogas production and solids reduction. Water Research, 87: 416–423
https://doi.org/10.1016/j.watres.2015.07.033 pmid: 26260541
3 L André, A Pauss, T Ribeiro (2018). Solid anaerobic digestion: State-of-art, scientific and technological hurdles. Bioresource Technology, 247: 1027–1037
https://doi.org/10.1016/j.biortech.2017.09.003 pmid: 28912079
4 S Baroutian, N Eshtiaghi, D J Gapes (2013). Rheology of a primary and secondary sewage sludge mixture: dependency on temperature and solid concentration. Bioresource Technology, 140: 227–233
https://doi.org/10.1016/j.biortech.2013.04.114 pmid: 23693149
5 D J Batstone, J Keller, I Angelidaki, S V Kalyuzhnyi, S G Pavlostathis, A Rozzi, W T M Sanders, H Siegrist, V A Vavilin (2002). Anaerobic Digestion Model No.1. Scientific and Technical Report 13. London, UK: IWA Publishing
6 J C Baudez, F Markis, N Eshtiaghi, P Slatter (2011). The rheological behaviour of anaerobic digested sludge. Water Research, 45(17): 5675–5680
https://doi.org/10.1016/j.watres.2011.08.035 pmid: 21917288
7 M P Bernal, J A Alburquerque, R Moral (2009). Composting of animal manures and chemical criteria for compost maturity assessment. A review. Bioresource Technology, 100(22): 5444–5453
https://doi.org/10.1016/j.biortech.2008.11.027 pmid: 19119002
8 G Bitton (2002). Encyclopedia of Environmental Microbiology. New York: John Wiley & Sons, Inc.
9 K Boe, I Angelidaki (2012). Pilot-scale application of an online VFA sensor for monitoring and control of a manure digester. Water Science and Technology, 66(11): 2496–2503
https://doi.org/10.2166/wst.2012.498 pmid: 23032783
10 J Boráň, L Houdková, T Elsäßer. (2010). Processing of sewage sludge: dependence of sludge dewatering efficiency on amount of flocculant. Resources, Conservation and Recycling, 54(5): 278–282
https://doi.org/10.1016/j.resconrec.2009.08.010
11 R Chen, W Wen, H Jiang, Z Lei, M Li, Y Y Li (2019). Energy recovery potential of thermophilic high-solids co-digestion of coffee processing wastewater and waste activated sludge by anaerobic membrane bioreactor. Bioresource Technology, 274: 127–133
https://doi.org/10.1016/j.biortech.2018.11.080 pmid: 30502603
12 S Chen, N Li, B Dong, W Zhao, L Dai, X Dai (2018). New insights into the enhanced performance of high solid anaerobic digestion with dewatered sludge by thermal hydrolysis: Organic matter degradation and methanogenic pathways. Journal of Hazardous Materials, 342: 1–9
https://doi.org/10.1016/j.jhazmat.2017.08.012 pmid: 28822244
13 Y Cheng, H Li (2015). Rheological behavior of sewage sludge with high solid content. Water Science and Technology, 71(11): 1686–1693
https://doi.org/10.2166/wst.2015.152 pmid: 26038934
14 M J Cuetos, E J Martinez, R Moreno, R Gonzalez, M Otero, X Gomez (2017). Enhancing anaerobic digestion of poultry blood using activated carbon. Journal of Advanced Research, 8(3): 297–307
https://doi.org/10.1016/j.jare.2016.12.004 pmid: 28462003
15 L Dai (2016). The characteristics and the sulphur control technology of the high solid anaerobic digestion in WWTP. Dissertation for the Master Degree. Xi’an: Xi’an University of Architecture and Technology
16 X Dai, Y Chen, D Zhang, J Yi (2016). High-solid anaerobic co-digestion of sewage sludge and cattle manure: The effects of volatile solid ratio and pH. Scientific Reports, 6(1): 35194
https://doi.org/10.1038/srep35194 pmid: 27725704
17 X Dai, N Duan, B Dong, L Dai (2013). High-solids anaerobic co-digestion of sewage sludge and food waste in comparison with mono digestions: stability and performance. Waste Management (New York, N.Y.), 33(2): 308–316
https://doi.org/10.1016/j.wasman.2012.10.018 pmid: 23177568
18 X Dai, X Gai, B Dong (2014a). Rheology evolution of sludge through high-solid anaerobic digestion. Bioresource Technology, 174: 6–10
https://doi.org/10.1016/j.biortech.2014.09.122 pmid: 25463776
19 X Dai, C Hu, D Zhang, L Dai, N Duan (2017). Impact of a high ammonia-ammonium-pH system on methane-producing archaea and sulfate-reducing bacteria in mesophilic anaerobic digestion. Bioresource Technology, 245(Pt A): 598–605
https://doi.org/10.1016/j.biortech.2017.08.208 pmid: 28910647
20 X Dai, F Luo, J Yi, Q He, B Dong (2014b). Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system. Bioresource Technology, 153: 55–61
https://doi.org/10.1016/j.biortech.2013.11.007 pmid: 24345566
21 X Dai, F Luo, D Zhang, L Dai, Y Chen, B Dong (2015). Waste-activated sludge fermentation for polyacrylamide biodegradation improved by anaerobic hydrolysis and key microorganisms involved in biological polyacrylamide removal. Scientific Reports, 5(1): 11675
https://doi.org/10.1038/srep11675 pmid: 26144551
22 N Duan, X Dai, B Dong, L Dai (2016). Anaerobic digestion of sludge differing in inorganic solids content: performance comparison and the effect of inorganic suspended solids content on degradation. Water Science and Technology, 74(9): 2152–2161
https://doi.org/10.2166/wst.2016.400 pmid: 27842035
23 N Duan, B Dong, B Wu, X Dai (2012). High-solid anaerobic digestion of sewage sludge under mesophilic conditions: feasibility study. Bioresource Technology, 104: 150–156
https://doi.org/10.1016/j.biortech.2011.10.090 pmid: 22104097
24 DWA (2014). DWA Merkblatt M 368, Biologische Stabilisierung von Klérschlamm (Biological Stabilization of Sewage Sludge). Nennef, Germany: Deutsche Vereinigung fér Wasserwirtschaft, Abwasser und Abfall e.V. (in German)
25 M O Fagbohungbe, I C Dodd, B M J Herbert, H Li, L Ricketts, K T Semple (2015). High solid anaerobic digestion: Operational challenges and possibilities. Environmental Technology & Innovation, 4: 268–284
https://doi.org/10.1016/j.eti.2015.09.003
26 G Feng, L Liu, W Tan (2014). Effect of thermal hydrolysis on rheological behavior of municipal sludge. Industrial & Engineering Chemistry Research, 53(27): 11185–11192
https://doi.org/10.1021/ie501488q
27 H Geng, Y Xu, L Zheng, H Gong, L Dai, X Dai (2020). An overview of removing heavy metals from sewage sludge: Achievements and perspectives. Environmental Pollution, 266(Pt 2): 115375
https://doi.org/10.1016/j.envpol.2020.115375 pmid: 32827986
28 M H Gerardi (2003). The Microbiology of Anaerobic Digesters. New Jersey: John Wiley & Sons, Inc.
29 A Gonzalez, A T W M Hendriks, J B van Lier, M de Kreuk (2018). Pre-treatments to enhance the biodegradability of waste activated sludge: Elucidating the rate limiting step. Biotechnology Advances, 36(5): 1434–1469
https://doi.org/10.1016/j.biotechadv.2018.06.001 pmid: 29885467
30 H G Guo, S T Zhang, L Z Du, J F Liang, S L Zhi, J Y Yu, X B Lu, K Q Zhang (2016). Effects of thermal-alkaline pretreatment on solubilisation and high-solid anaerobic digestion of dewatered activated sludge. BioResources, 11(1): 1280–1295
31 Y Han, Y Zhuo, D Peng, Q Yao, H Li, Q Qu (2017). Influence of thermal hydrolysis pretreatment on organic transformation characteristics of high solid anaerobic digestion. Bioresource Technology, 244(Pt 1): 836–843
https://doi.org/10.1016/j.biortech.2017.07.166 pmid: 28841788
32 T Hidaka, F Wang, T Togari, T Uchida, Y Suzuki (2013). Comparative performance of mesophilic and thermophilic anaerobic digestion for high-solid sewage sludge. Bioresource Technology, 149: 177–183
33 M J Higgins, Y C Chen, D P Yarosz, S N Murthy, N A Maas, D Glindemann, J T Novak (2006). Cycling of volatile organic sulfur compounds in anaerobically digested biosolids and its implications for odors. Water Environment Research, 78(3): 243–252
https://doi.org/10.2175/106143005X90065 pmid: 16629264
34 Y Hu, J Wu, S Poncin, Z Cao, Z Li, H Z Li (2018). Flow field investigation of high solid anaerobic digestion by Particle Image Velocimetry (PIV). Science of the Total Environment, 626: 592–602
https://doi.org/10.1016/j.scitotenv.2018.01.111 pmid: 29898551
35 L Jahn, T Baumgartner, K Svardal, J Krampe (2016). The influence of temperature and SRT on high-solid digestion of municipal sewage sludge. Water Science and Technology, 74(4): 836–843
https://doi.org/10.2166/wst.2016.264 pmid: 27533858
36 D Jolis (2008). High-solids anaerobic digestion of municipal sludge pretreated by thermal hydrolysis.Water Environment Research, 80(7): 654–662
https://doi.org/10.2175/193864708X267414 pmid: 18710149
37 H Kapp (1984). Schlammfaulung mit hohem Feststoffgehalt (Sludge Digestion with High-Solid Content). Band 86, Kommissionsverlag Oldenbourg, Munich, Germany: Stuttgarter Berichte zur Siedlungswasserwirtschaft (in German)
38 M Kayhanian (1994). Performance of a high-solids anaerobic digestion process under various ammonia concentrations. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 59(4): 349–352
https://doi.org/10.1002/jctb.280590406
39 J M Kirby (1988). Rheological characteristics of sewage sludge: A granuloviscous material. Rheologica Acta, 27(3): 326–334
https://doi.org/10.1007/BF01329749
40 K Latha, R Velraj, P Shanmugam, S Sivanesan (2019). Mixing strategies of high solids anaerobic co-digestion using food waste with sewage sludge for enhanced biogas production. Journal of Cleaner Production, 210: 388–400
https://doi.org/10.1016/j.jclepro.2018.10.219
41 J J Lay, Y Y Li, T Noike (1997). Influences of pH and moisture content on the methane production in high-solids sludge digestion. Water Research, 31(6): 1518–1524
https://doi.org/10.1016/S0043-1354(96)00413-7
42 J J Lay, Y Y Li, T Noike (1998). The influence of pH and ammonia concentration on the methane production in high-solids digestion processes. Water Environment Research, 70(5): 1075–1082
https://doi.org/10.2175/106143098X123426
43 R Le Hyaric, C Chardin, H Benbelkacem, J Bollon, R Bayard, R Escudié, P Buffière (2011). Influence of substrate concentration and moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate spiked with propionate. Bioresource Technology, 102(2): 822–827
https://doi.org/10.1016/j.biortech.2010.08.124 pmid: 20863691
44 E Lee, P Bittencourt, L Casimir, E Jimenez, M Wang, Q Zhang, S J Ergas (2019). Biogas production from high solids anaerobic co-digestion of food waste, yard waste and waste activated sludge. Waste Management (New York, N.Y.), 95: 432–439
https://doi.org/10.1016/j.wasman.2019.06.033 pmid: 31351629
45 C Li, H Li, Y Zhang (2015a). Alkaline treatment of high-solids sludge and its application to anaerobic digestion. Water Science and Technology, 71(1): 67–74
https://doi.org/10.2166/wst.2014.469 pmid: 25607671
46 J Li, J Rui, M Yao, S Zhang, X Yan, Y Wang, Z Yan, X Li (2015b). Substrate type and free ammonia determine bacterial community structure in full-scale mesophilic anaerobic digesters treating cattle or swine manure. Frontiers in Microbiology, 6: 1337
https://doi.org/10.3389/fmicb.2015.01337 pmid: 26648921
47 N Li, J He, H Yan, S Chen, X Dai (2017a). Pathways in bacterial and archaeal communities dictated by ammonium stress in a high solid anaerobic digester with dewatered sludge. Bioresource Technology, 241: 95–102
https://doi.org/10.1016/j.biortech.2017.05.094 pmid: 28550779
48 N Li, Y Xue, S Chen, J Takahashi, L Dai, X Dai (2017b). Methanogenic population dynamics regulated by bacterial community responses to protein-rich organic wastes in a high solid anaerobic digester. Chemical Engineering Journal, 317: 444–453
https://doi.org/10.1016/j.cej.2017.02.098
49 X Li, L Chen, Q Mei, B Dong, X Dai, G Ding, E Y Zeng (2018). Microplastics in sewage sludge from the wastewater treatment plants in China. Water Research, 142: 75–85
https://doi.org/10.1016/j.watres.2018.05.034 pmid: 29859394
50 X Li, S Chen, B Dong, X Dai (2020). New insight into the effect of thermal hydrolysis on high solid sludge anaerobic digestion: Conversion pathway of volatile sulphur compounds. Chemosphere, 244: 125466
https://doi.org/10.1016/j.chemosphere.2019.125466 pmid: 32050325
51 X Li, L Li, M Zheng, G Fu, J Lar (2009). Anaerobic co-digestion of cattle manure with corn stover pretreated by sodium hydroxide for efficient biogas production. Energy & Fuels, 23(9): 4635–4639
https://doi.org/10.1021/ef900384p
52 Y B Li, S Y Park, J Y Zhu (2011). Solid-state anaerobic digestion for methane production from organic waste. Renewable & Sustainable Energy Reviews, 15(1): 821–826
https://doi.org/10.1016/j.rser.2010.07.042
53 N H Liao (2016). The mechanism of total solid on concentration of hydrogen sulfide in biogas of sludge anaerobic digestion. Dissertation for Master Degree. Shanghai: Tongji University
54 X Liao, H Li, Y Cheng, N Chen, C Li, Y Yang (2014). Process performance of high-solids batch anaerobic digestion of sewage sludge. Environmental Technology, 35(21): 2652–2659
https://doi.org/10.1080/09593330.2014.916756 pmid: 25176298
55 X C Liao, H Li (2015). Biogas production from low-organic-content sludge using a high-solids anaerobic digester with improved agitation. Applied Energy, 148: 252–259
https://doi.org/10.1016/j.apenergy.2015.03.082
56 X C Liao, H Li, Y Y Zhang, C Liu, Q W Chen (2016). Accelerated high-solids anaerobic digestion of sewage sludge using low-temperature thermal pre-treatment. International Biodeterioration & Biodegradation, 106: 141–149
https://doi.org/10.1016/j.ibiod.2015.10.023
57 Y Litti, A Nikitina, D Kovalev, A Ermoshin, R Mahajan, G Goel, A Nozhevnikova (2019). Influence of cationic polyacrilamide flocculant on high-solids’ anaerobic digestion of sewage sludge under thermophilic conditions. Environmental Technology, 40(9): 1146–1155
https://doi.org/10.1080/09593330.2017.1417492 pmid: 29237330
58 C Liu, H Li, Y Zhang, C Liu (2016a). Improve biogas production from low-organic-content sludge through high-solids anaerobic co-digestion with food waste. Bioresource Technology, 219: 252–260
https://doi.org/10.1016/j.biortech.2016.07.130 pmid: 27497086
59 C Liu, H Li, Y Zhang, D Si, Q Chen (2016b). Evolution of microbial community along with increasing solid concentration during high-solids anaerobic digestion of sewage sludge. Bioresource Technology, 216: 87–94
https://doi.org/10.1016/j.biortech.2016.05.048 pmid: 27235970
60 J Liu, D Yu, J Zhang, M Yang, Y Wang, Y Wei, J Tong (2016c). Rheological properties of sewage sludge during enhanced anaerobic digestion with microwave-H2O2 pretreatment. Water Research, 98: 98–108
https://doi.org/10.1016/j.watres.2016.03.073 pmid: 27085155
61 J Liu, J Zheng, Y Niu, Z Zuo, J Zhang, Y Wei (2020a). Effect of zero-valent iron combined with carbon-based materials on the mitigation of ammonia inhibition during anaerobic digestion. Bioresource Technology, 311: 123503
https://doi.org/10.1016/j.biortech.2020.123503 pmid: 32446234
62 Z Liu, S Zhou, L Dai, X Dai (2020b). The transformation of phosphorus fractions in high-solid sludge by anaerobic digestion combined with the high temperature thermal hydrolysis process. Bioresource Technology, 309: 123314
https://doi.org/10.1016/j.biortech.2020.123314 pmid: 32299047
63 V Lotito, L Spinosa, G Mininni, R Antonacci (1997). The rheology of sewage sludge at different steps of treatment. Water Science and Technology, 36(11): 79–85
https://doi.org/10.2166/wst.1997.0396
64 Y L Luo, Z H Yang, Z Y Xu, L J Zhou, G M Zeng, J Huang, Y Xiao, L K Wang (2011). Effect of trace amounts of polyacrylamide (PAM) on long-term performance of activated sludge. Journal of Hazardous Materials, 189(1–2): 69–75
https://doi.org/10.1016/j.jhazmat.2011.01.115 pmid: 21367524
65 N Lv, L Zhao, R Wang, J Ning, X Pan, C Li, G Cai, G Zhu (2020). Novel strategy for relieving acid accumulation by enriching syntrophic associations of syntrophic fatty acid-oxidation bacteria and H2/formate-scavenging methanogens in anaerobic digestion. Bioresource Technology, 313: 123702
https://doi.org/10.1016/j.biortech.2020.123702 pmid: 32615503
66 P L McCarty (2001). The development of anaerobic treatment and its future. Water Science and Technology, 44(8): 149–156
https://doi.org/10.2166/wst.2001.0487 pmid: 11730130
67 C Mendes, K Esquerre, L Matos Queiroz (2015). Application of Anaerobic Digestion Model No. 1 for simulating anaerobic mesophilic sludge digestion. Waste Management (New York, N.Y.), 35: 89–95
https://doi.org/10.1016/j.wasman.2014.10.013 pmid: 25458762
68 J Moestedt, S Nilsson Påledal, A Schnürer (2013). The effect of substrate and operational parameters on the abundance of sulphate-reducing bacteria in industrial anaerobic biogas digesters. Bioresource Technology, 132: 327–332
https://doi.org/10.1016/j.biortech.2013.01.043 pmid: 23416620
69 J Mumme, F Srocke, K Heeg, M Werner (2014). Use of biochars in anaerobic digestion. Bioresource Technology, 164: 189–197
https://doi.org/10.1016/j.biortech.2014.05.008 pmid: 24859210
70 P Neumann, S Pesante, M Venegas, G Vidal (2016). Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Reviews in Environmental Science and Biotechnology, 15(2): 173–211
https://doi.org/10.1007/s11157-016-9396-8
71 I A Nges, J Liu (2010). Effects of solid retention time on anaerobic digestion of dewatered-sewage sludge in mesophilic and thermophilic conditions. Renewable Energy, 35(10): 2200–2206
https://doi.org/10.1016/j.renene.2010.02.022
72 D Nguyen, Z Wu, S Shrestha, P H Lee, L Raskin, S K Khanal (2019). Intermittent micro-aeration: New strategy to control volatile fatty acid accumulation in high organic loading anaerobic digestion. Water Research, 166: 115080
https://doi.org/10.1016/j.watres.2019.115080 pmid: 31541792
73 S G Pavlostathis, E Giraldo-Gomez (1991). Kinetics of anaerobic treatment: A critical review. Critical Reviews in Environmental Control, 21(5–6): 411–490
https://doi.org/10.1080/10643389109388424
74 S Poirier, C Madigou, T Bouchez, O Chapleur (2017). Improving anaerobic digestion with support media: Mitigation of ammonia inhibition and effect on microbial communities. Bioresource Technology, 235: 229–239
https://doi.org/10.1016/j.biortech.2017.03.099 pmid: 28365351
75 M R Provenzano, O Cavallo, A D Malerba, F Di Maria, M Cucina, L Massaccesi, G Gigliotti (2016). Co-treatment of fruit and vegetable waste in sludge digesters: Chemical and spectroscopic investigation by fluorescence and Fourier transform infrared spectroscopy. Waste Management (New York, N.Y.), 50: 283–289
https://doi.org/10.1016/j.wasman.2016.02.026 pmid: 26946935
76 Public Works Research Institute (PWRI) (1997). Annual report of wastewater management and water quality control, No.3528. International Centre for Water Hazard and Risk Management (ISSN 0386–5878). Tokyo, Japan: Ministry of Construction (in Japanese)
77 Y Qi, K B Thapa, A F A Hoadley (2011). Application for filtration aids for improving sludge dewatering properties: A review. Chemical Engineering Journal, 171(2): 373–384
https://doi.org/10.1016/j.cej.2011.04.060
78 R Rajagopal, D I Massé, G Singh (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143: 632–641
https://doi.org/10.1016/j.biortech.2013.06.030 pmid: 23835276
79 J Rapport, R Zhang, B M Jenkins, R B Williams (2008). Current anaerobic digestion technologies used for treatment of municipal organic solid waste. Sacramento: California Environmental Protection Agency
80 M Ruiz-Hernando, G Martinez-Elorza, J Labanda, J Llorens (2013). Dewaterability of sewage sludge by ultrasonic, thermal and chemical treatments. Chemical Engineering Journal, 230: 102–110
https://doi.org/10.1016/j.cej.2013.06.046
81 B Sajjadi, A A A Raman, R Parthasarathy (2016). Fluid dynamic analysis of non-Newtonian flow behavior of municipal sludge simulant in anaerobic digesters using submerged, recirculating jets. Chemical Engineering Journal, 298: 259–270
https://doi.org/10.1016/j.cej.2016.03.069
82 P Slatter (1997). Rheological characterisation of sludges. Water Science and Technology, 36(11): 9–18
https://doi.org/10.2166/wst.1997.0388
83 L E Sommers, M A Tabatabai, D W Nelson (1977). Forms of sulfur in sewage sludge. Journal of Environmental Quality, 6(1): 42–46
https://doi.org/10.2134/jeq1977.00472425000600010011x
84 T S Souza , D Lacerda , L L Aguiar , M N C Martins , J A O David (2020). Toxic potential of sewage sludge: Histopathological effects on soil and aquatic bioindicators. Ecological Indicators, 111: 105980
85 J Száková, J Pulkrabová, J Černý, F Mercl, A Švarcová, T Gramblička, J Najmanová, P Tlustoš, J Balík (2019). Selected persistent organic pollutants (POPs) in the rhizosphere of sewage sludge-treated soil: implications for the biodegradability of POPs. Archives of Agronomy and Soil Science, 65(7): 994–1009
https://doi.org/10.1080/03650340.2018.1543945
86 Y Tang, X Dai, B Dong, Y Guo, L Dai (2020). Humification in extracellular polymeric substances (EPS) dominates methane release and EPS reconstruction during the sludge stabilization of high-solid anaerobic digestion. Water Research, 175: 115686
https://doi.org/10.1016/j.watres.2020.115686 pmid: 32199187
87 Y Tang, X Li, B Dong, J Huang, Y Wei, X Dai, L Dai (2018). Effect of aromatic repolymerization of humic acid-like fraction on digestate phytotoxicity reduction during high-solid anaerobic digestion for stabilization treatment of sewage sludge. Water Research, 143: 436–444
https://doi.org/10.1016/j.watres.2018.07.003 pmid: 29986252
88 J L Urrea, S Collado, A Laca, M Díaz (2015). Rheological behaviour of activated sludge treated by thermal hydrolysis. Journal of Water Process Engineering, 5: 153–159
https://doi.org/10.1016/j.jwpe.2014.06.009
89 C Veluchamy, A S Kalamdhad (2017). A mass diffusion model on the effect of moisture content for solid state anaerobic digestion. Journal of Cleaner Production, 162: 371–379
https://doi.org/10.1016/j.jclepro.2017.06.099
90 F Wang, T Hidaka, T Uchida, J Tsumori (2014). Thermophilic anaerobic digestion of sewage sludge with high solids content. Water Science and Technology, 69(9): 1949–1955
https://doi.org/10.2166/wst.2014.111 pmid: 24804672
91 T Wang, D Zhang, L Dai, B Dong, X Dai (2018). Magnetite triggering enhanced direct interspecies electron transfer: A scavenger for the blockage of electron transfer in anaerobic digestion of high-solids sewage sludge. Environmental Science & Technology, 52(12): 7160–7169
https://doi.org/10.1021/acs.est.8b00891 pmid: 29782790
92 Z W Wang, F Xu, K R Manchala, Y Sun, Y Li (2016). Fractal-like kinetics of the solid-state anaerobic digestion. Waste Management (New York, N.Y.), 53: 55–61
https://doi.org/10.1016/j.wasman.2016.04.019 pmid: 27132655
93 Z L Wu, Z Lin, Z Y Sun, M Gou, Z Y Xia, Y Q Tang (2020). A comparative study of mesophilic and thermophilic anaerobic digestion of municipal sludge with high-solids content: Reactor performance and microbial community. Bioresource Technology, 302: 122851
https://doi.org/10.1016/j.biortech.2020.122851 pmid: 32007850
94 F Q Xu, Y B Li, Z W Wang (2015). Mathematical modeling of solid-state anaerobic digestion. Progress in Energy and Combustion Science, 51: 49–66
https://doi.org/10.1016/j.pecs.2015.09.001
95 Y Xu, X Dai (2020). Integrating multi-state and multi-phase treatment for anaerobic sludge digestion to enhance recovery of bio-energy. Science of the Total Environment, 698: 134196
https://doi.org/10.1016/j.scitotenv.2019.134196 pmid: 31494424
96 Y Xu, Y Lu, L Zheng, Z Wang, X Dai (2020a). Perspective on enhancing the anaerobic digestion of waste activated sludge. Journal of Hazardous Materials, 389: 121847
https://doi.org/10.1016/j.jhazmat.2019.121847 pmid: 31843416
97 Y Xu, Y Lu, L Zheng, Z Wang, X Dai (2020b). Effects of humic matter on the anaerobic digestion of sewage sludge: New insights from sludge structure. Chemosphere, 243: 125421
https://doi.org/10.1016/j.chemosphere.2019.125421 pmid: 31995876
98 Y G Xue, H J Liu, S S Chen, N Dichtl, X H Dai, N Li (2015). Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge. Chemical Engineering Journal, 264: 174–180
https://doi.org/10.1016/j.cej.2014.11.005
99 O Yenigün, B Demirel (2013). Ammonia inhibition in anaerobic digestion: A review. Process Biochemistry, 48(5–6): 901–911
https://doi.org/10.1016/j.procbio.2013.04.012
100 Q Yin, G Wu (2019). Advances in direct interspecies electron transfer and conductive materials: Electron flux, organic degradation and microbial interaction. Biotechnology Advances, 37(8): 107443
https://doi.org/10.1016/j.biotechadv.2019.107443 pmid: 31476420
101 M N Young, R Krajmalnik-Brown, W Liu, M L Doyle, B E Rittmann (2013). The role of anaerobic sludge recycle in improving anaerobic digester performance. Bioresource Technology, 128: 731–737
https://doi.org/10.1016/j.biortech.2012.11.079 pmid: 23265819
102 J Zhang, Y Xue, N Eshtiaghi, X Dai, W Tao, Z Li (2017). Evaluation of thermal hydrolysis efficiency of mechanically dewatered sewage sludge via rheological measurement. Water Research, 116: 34–43
https://doi.org/10.1016/j.watres.2017.03.020 pmid: 28292678
103 Y Zhang, Y Feng, Q Yu, Z Xu, X Quan (2014). Enhanced high-solids anaerobic digestion of waste activated sludge by the addition of scrap iron. Bioresource Technology, 159: 297–304
https://doi.org/10.1016/j.biortech.2014.02.114 pmid: 24657762
104 Y Zhang, H Li, C Liu, Y Cheng (2015). Influencing mechanism of high solids concentration on anaerobic mono-digestion of sewage sludge without agitation. Frontiers of Environmental Science & Engineering, 9(6): 1108–1116
https://doi.org/10.1007/s11783-015-0806-x
105 Y Y Zhang, H Li, Y C Cheng, C Liu (2016). Influence of solids concentration on diffusion behavior in sewage sludge and its digestate. Chemical Engineering Science, 152: 674–677
https://doi.org/10.1016/j.ces.2016.06.058
106 S L Zhi, K Q Zhang (2019). Antibiotic residues may stimulate or suppress methane yield and microbial activity during high-solid anaerobic digestion. Chemical Engineering Journal, 359: 1303–1315
https://doi.org/10.1016/j.cej.2018.11.050
107 J Zhou, X You, B Niu, X Yang, L Gong, Y Zhou, J Wang, H Zhang (2020). Enhancement of methanogenic activity in anaerobic digestion of high solids sludge by nano zero-valent iron. Science of the Total Environment, 703: 135532
https://doi.org/10.1016/j.scitotenv.2019.135532 pmid: 31759718
[1] Tingting Zhu, Zhongxian Su, Wenxia Lai, Jiazeng Ding, Yufen Wang, Yingxin Zhao, Yiwen Liu. Evaluating the impact of sulfamethoxazole on hydrogen production during dark anaerobic sludge fermentation[J]. Front. Environ. Sci. Eng., 2023, 17(1): 7-.
[2] Qiong Guo, Zhichao Yang, Bingliang Zhang, Ming Hua, Changhong Liu, Bingcai Pan. Enhanced methane production during long-term UASB operation at high organic loads as enabled by the immobilized Fungi[J]. Front. Environ. Sci. Eng., 2022, 16(6): 71-.
[3] Mengtian Li, Ge Song, Ruiping Liu, Xia Huang, Huijuan Liu. Inactivation and risk control of pathogenic microorganisms in municipal sludge treatment: A review[J]. Front. Environ. Sci. Eng., 2022, 16(6): 70-.
[4] Senem Yazici Guvenc, Gamze Varank. Degradation of refractory organics in concentrated leachate by the Fenton process: Central composite design for process optimization[J]. Front. Environ. Sci. Eng., 2021, 15(1): 2-.
[5] Mona Akbar, Muhammad Farooq Saleem Khan, Ling Qian, Hui Wang. Degradation of polyacrylamide (PAM) and methane production by mesophilic and thermophilic anaerobic digestion: Effect of temperature and concentration[J]. Front. Environ. Sci. Eng., 2020, 14(6): 98-.
[6] Yi Chen, Shilong He, Mengmeng Zhou, Tingting Pan, Yujia Xu, Yingxin Gao, Hengkang Wang. Feasibility assessment of up-flow anaerobic sludge blanket treatment of sulfamethoxazole pharmaceutical wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(5): 13-.
[7] Zechong Guo, Lei Gao, Ling Wang, Wenzong Liu, Aijie Wang. Enhanced methane recovery and exoelectrogen-methanogen evolution from low-strength wastewater in an up-flow biofilm reactor with conductive granular graphite fillers[J]. Front. Environ. Sci. Eng., 2018, 12(4): 13-.
[8] Yulun Nie, Xike Tian, Zhaoxin Zhou, Yu-You Li. Impact of food to microorganism ratio and alcohol ethoxylate dosage on methane production in treatment of low-strength wastewater by a submerged anaerobic membrane bioreactor[J]. Front. Environ. Sci. Eng., 2017, 11(6): 6-.
[9] Bai-Hang Zhao, Jie Chen, Han-Qing Yu, Zhen-Hu Hu, Zheng-Bo Yue, Jun Li. Optimization of microwave pretreatment of lignocellulosic waste for enhancing methane production: Hyacinth as an example[J]. Front. Environ. Sci. Eng., 2017, 11(6): 17-.
[10] Chong Liu, Jianzheng Li, Shuo Wang, Loring Nies. A syntrophic propionate-oxidizing microflora and its bioaugmentation on anaerobic wastewater treatment for enhancing methane production and COD removal[J]. Front. Environ. Sci. Eng., 2016, 10(4): 13-.
[11] Liang SUN, Can WANG, Min JI, Fen WANG. Achieving biodegradability enhancement and acute biotoxicity removal through the treatment of pharmaceutical wastewater using a combined internal electrolysis and ultrasonic irradiation technology[J]. Front Envir Sci Eng Chin, 2011, 5(3): 481-487.
[12] Guangxue WU , Zhenhu HU , Mark G. HEALY , Xinmin ZHAN , . Thermochemical pretreatment of meat and bone meal and its effect on methane production[J]. Front.Environ.Sci.Eng., 2009, 3(3): 300-306.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed