Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 211-218    https://doi.org/10.1007/s11783-014-0753-y
RESEARCH ARTICLE
Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation
Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU()
College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
 Download: PDF(750 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Bi2WO6 was synthesized with a hydrothermal method at different pHs and used for the degradation of tetracycline (TC) in water. The mesoporous Bi2WO6 prepared at pH 1 (BWO-1) displayed the highest adsorption and degradation capacity to TC due to its large surface area and more efficient capacity to separate photogenerated electrons and holes. 97% of TC at 20 mg·L−1 was removed by BWO-1 at 0.5 g·L−1 after 120 min irradiation under simulated solar light. Only 31% of the total organic carbon (TOC) was removed after 360 min irradiation although the TC removal reached 100%, suggesting that TC was mainly transformed to intermediate products rather than completely mineralized. The intermediates were identified by high-performance liquid chromatography-time of flight-mass spectrometry (HPLC-TOF-MS) and possible photodegradation pathways were proposed.

Keywords Bi2WO6      hydrothermal synthesis      tetracycline (TC)      photocatalysis     
Corresponding Author(s): Lingyan ZHU   
Online First Date: 17 November 2014    Issue Date: 01 February 2016
 Cite this article:   
Yu FU,Longfei YUE,Lingyan ZHU, et al. Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation[J]. Front. Environ. Sci. Eng., 2016, 10(2): 211-218.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-014-0753-y
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/211
Fig.1  XRD patterns of Bi2WO6 prepared at different hydrothermal pHs
Fig.2  Diffuse reflectance UVvis spectra of Bi2WO6 catalysts prepared at different hydrothermal pHs
Fig.3  Degradation kinetics of TC by Bi2WO6 prepared at different hydrothermal pHs under visible light irradiation. ■: pH= 1; ●: pH= 4; ▲: pH= 7; ▾: pH= 9; ? : TiO2(P25); ? :without catalyst
Fig.4  Electrochemical impedance spectra (EIS) Nyquist plots of BWO-1(light vs. dark) (a) and EIS of different hydrothermal pHs under visible light irradiation (b)
Fig.5  The effects of isopropanol ((a), V/V), KI ((b), mmol·L−1) and (NH4)2C2O4 ((c), mmol·L−1) at different concentrations on the photodegradation of TC by BWO-1 under simulated solar light irradiation
Fig.6  Variation of TOC during photocatalytic degradation process
compounds observed fragment ions at m/z value
MS MS-MS
tetracycline 445 427, 410
intermediate 1 400
intermediate 2 477 442
Tab.1  Main fragment ions of TC and intermediate products
Fig.7  Scheme 1 Possible photocatalytic degradation pathway of TC by Bi2WO6
1 Khetan  S K, Collins  T J, Human pharmaceuticals in the aquatic environment: a challenge to Green Chemistry. Chemical Reviews, 2007, 107(6): 2319–2364
https://doi.org/10.1016/S0045-6535(99)00453-1 pmid: 10705557
2 Stuer-Lauridsen  F, Birkved  M, Hansen  L P, Lützhøft  H C H, Halling-Sørensen  B. Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere, 2000, 41(9): 1509–1509
https://doi.org/10.1016/S0045-6535(99)00453-1 pmid: 10705557
3 Wang  D, Li  Y, Li  G, Wang  C, Zhang  W, Wang  Q. Development and modeling of a flat plate serpentine reactor for photocatalytic degradation of 17-ethinylestradiol. Environmental Science and Pollution Research International, 2013, 20(4): 2321–2329
https://doi.org/10.1007/s11356-012-1107-6 pmid: 22869503
4 Wang  D, Li  Y, Li  G, Wang  C, Zhang  W, Wang  Q. Modeling of quantitative effects of water components on the photocatalytic degradation of 17α-ethynylestradiol in a modified flat plate serpentine reactor. Journal of Hazardous Materials, 2013, 254–255: 64–71
https://doi.org/10.1016/j.jhazmat.2013.03.049 pmid: 23583950
5 Bautitz  I R, Nogueira  R F P. Degradation of tetracycline by photo-Fenton process -Solar irradiation and matrix effects. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187(1,5): 33–39
https://doi.org/10.1016/j.jphotochem.2006.09.009
6 Karthikeyan  K G, Meyer  M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment, 2006, 361(1–3): 196–207
https://doi.org/10.1016/j.scitotenv.2005.06.030 pmid: 16091289
7 Kolpin  D W, Furlong  E T, Meyer  M T, Thurman  E M, Zaugg  S D, Barber  L B, Buxton  H T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 2002, 36(6): 1202–1211
https://doi.org/10.1021/es011055j pmid: 11944670
8 Stumpf  M, Ternes  T A, Wilken  R D, Rodrigues  S V, Baumann  W. Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of the Total Environment, 1999, 225(1–2): 135–141
https://doi.org/10.1016/S0048-9697(98)00339-8 pmid: 10028710
9 Kümmerer  K. Antibiotics in the aquatic environment: a review—Part I. Chemosphere, 2009, 75(4): 417–434
https://doi.org/10.1016/j.chemosphere.2008.11.086 pmid: 19185900
10 Pailler  J Y, Krein  A, Pfister  L, Hoffmann  L, Guignard  C. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg. Science of the Total Environment, 2009, 407(16): 4736–4743
https://doi.org/10.1016/j.scitotenv.2009.04.042 pmid: 19477484
11 Khan  M H, Bae  H, Jung  J Y. Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway. Journal of Hazardous Materials, 2010, 181(1–3): 659–665
https://doi.org/10.1016/j.jhazmat.2010.05.063 pmid: 20557998
12 Liu  S, Zhao  X R, Sun  H Y, Li  R R, Fang  Y F, Huang  Y P. The degradation of tetracycline in a photo-electro-Fenton system. Chemical Engineering Journal, 2013, 231: 441–448
https://doi.org/10.1016/j.cej.2013.07.057
13 Gómez-Pacheco  C V, Sánchez-Polo  M, Rivera-Utrilla  J, López-Peñalver  J J. Tetracycline degradation in aqueous phase by ultraviolet radiation. Chemical Engineering Journal, 2012, 187(1): 89–95
https://doi.org/10.1016/j.cej.2012.01.096
14 Zhu  X D, Wang  Y J, Sun  R J, Zhou  D M. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere, 2013, 92(8): 925–932
https://doi.org/10.1016/j.chemosphere.2013.02.066 pmid: 23541148
15 Wang  P, Yap  P S, Lim  T T. C–N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Applied Catalysis A: General, 2011, 399(1–2): 252–261
https://doi.org/10.1016/j.apcata.2011.04.008
16 Wang  D, Li  Y, Li   G, Wang  C, Wang  P, Zhang  W, Wang  Q. Ag/AgCl@helical chiral TiO2 nanofibers as a visible-light driven plasmon photocatalyst. Chemical Communications, 2013, 49(88): 10367–10369
https://doi.org/10.1039/c3cc45193c pmid: 23999692
17 Li  Y Y, Liu  J P, Huang  X T, Li  G Y. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Crystal Growth & Design, 2007, 7(7): 1350–1355
https://doi.org/10.1021/cg070343+
18 Shang  M, Wang  W Z, Sun  S M, Zhou  L, Zhang  L. Bi2WO6 nanocrystals with high photocatalytic activities under visible light. Journal of Physical Chemistry C, 2008, 112(28): 10407–10411
https://doi.org/10.1021/jp802115w
19 Dai  K, Peng  T Y, Chen  H, Liu  J, Zan  L. Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension. Environmental Science & Technology, 2009, 43(5): 1540–1545
https://doi.org/10.1021/es802724q pmid: 19350932
20 Shang  M, Wang  W Z, Sun  S M, Ren  J, Zhou  L, Zhang  L. Efficient visible light-induced photocatalytic degradation of contaminant by spindle-like PANI/BiVO4. Journal of Physical Chemistry C, 2009, 113(47): 20228–20233
https://doi.org/10.1021/jp9067729
21 Kudo  A, Hijii  S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chemistry Letters, 1999, 28(10): 1103–1104
https://doi.org/10.1246/cl.1999.1103
22 Wang  C, Zhang  H, Li  F, Zhu  L. Degradation and mineralization of bisphenol A by mesoporous Bi2WO6 under simulated solar light irradiation. Environmental Science & Technology, 2010, 44(17): 6843–6848
https://doi.org/10.1021/es101890w pmid: 20704289
23 Chen  P, Zhu  L, Fang  S, Wang  C, Shan  G. Photocatalytic degradation efficiency and mechanism of microcystin-RR by mesoporous Bi2WO6 under near ultraviolet light. Environmental Science & Technology, 2012, 46(4): 2345–2351
https://doi.org/10.1021/es2036338 pmid: 22250846
24 Nyholm  R, Berndtsson  A, Martensson  N. Core level binding energies for the elements Hf to Bi (Z=72−83). Journal of Physics C: Solid State Physics, 1980, 13(36): 1091–1096
https://doi.org/10.1088/0022-3719/13/36/009
25 Yao  S S, Wei  J Y, Huang  B B, Feng  S Y, Zhang  X Y, Qin  X Y, Wang  P, Wang  Z Y, Zhang  Q, Jing  X Y, Zhan  J. Morphology modulated growth of bismuth tungsten oxide nanocrystals. Journal of Solid State Chemistry, 2009, 182(2): 236–239
https://doi.org/10.1016/j.jssc.2008.09.016
26 Pierotti  R, Rouquerol  J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57: 603–619
27 Huang  Y, Ai  Z, Ho  W, Chen  M, Lee  S. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible-light-induced photocatalytic removal of NO. Journal of Physics and Chemistry C, 2010, 114(14): 6342–6349
https://doi.org/10.1021/jp912201h
28 Castillo  C, Criado  S, Díaz  M, García  N A. Riboflavin as a sensitiser in the photodegradation of tetracyclines. Kinetics, mechanism and microbiological implications. Dyes and Pigments, 2007, 72(2): 178–184
https://doi.org/10.1016/j.dyepig.2005.08.025
29 Chang  C, Fu  Y, Hu  M, Wang  C, Shan  G, Zhu  L. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Applied Catalysis B: Environmental, 2013, 142–143: 553–560
https://doi.org/10.1016/j.apcatb.2013.05.044
30 Wang  X, Chen  X, Thomas  A, Fu  X, Antonietti  M. Metal-containing carbon nitride compounds: a new functional organic–metal hybrid material. Advanced Materials, 2009, 21(16): 1609–1612
https://doi.org/10.1002/adma.200802627
31 Xiao  F, Wang  F, Fu  X, Zheng  Y. A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. Journal of Materials Chemistry, 2012, 22(7): 2868–2877
https://doi.org/10.1039/c2jm15122g
32 Zhang  Y, Zhang  N, Tang  Z R, Xu  Y J. Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C-H bonds under ambient conditions. Chemical Science, 2012, 3: 2812–2822
https://doi.org/10.1039/C2SC20603J
33 Wang  C, Zhu  L, Wei  M, Chen  P, Shan  G. Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water. Water Research, 2012, 46(3): 845–853
https://doi.org/10.1016/j.watres.2011.11.057 pmid: 22176744
34 Amano  F, Nogami  K, Ohtani  B. Enhanced photocatalytic activity of bismuth-tungsten mixed oxides for oxidative decomposition of acetaldehyde under visible light irradiation. Catalysis Communications, 2012, 20(5): 12–16
https://doi.org/10.1016/j.catcom.2011.12.038
35 Ng  J, Wang  X, Sun  D D. One-pot hydrothermal synthesis of a hierarchical nanofungus-like anatase TiO2 thin film for photocatalytic oxidation of bisphenol A. Applied Catalysis B: Environmental, 2011, 110(2): 260–272
https://doi.org/10.1016/j.apcatb.2011.09.011
36 Wang  R C, Ren  D J, Xia  S Q, Zhang  Y L, Zhao  J F. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). Journal of Hazardous Materials, 2009, 169(1–3): 926–932
https://doi.org/10.1016/j.jhazmat.2009.04.036 pmid: 19500904
37 Hao  R, Xiao  X, Zuo  X X, Nan  J M, Zhang  W D. Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. Journal of Hazardous Materials, 2012, 209-210(30): 137–145
https://doi.org/10.1016/j.jhazmat.2012.01.006 pmid: 22277340
38 Yuan  F, Hu  C, Hu  X X, Wei  D B, Chen  Y, Qu  J H. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials, 2011, 185(2–3): 1256–1263
https://doi.org/10.1016/j.jhazmat.2010.10.040 pmid: 21074943
39 Dai  K, Peng  T Y, Chen  H, Zhang  R X, Zhang  Y X. Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environmental Science & Technology, 2008, 42(5): 1505–1510
https://doi.org/10.1021/es702268p pmid: 18441795
40 Wang  Y, Zhang  H, Chen  L, Wang  S, Zhang  D. Ozonation combined with ultrasound for the degradation of tetracycline in a rectangular air-lift reactor. Separation and Purification Technology, 2012, 84(9): 138–146
https://doi.org/10.1016/j.seppur.2011.06.035
41 Wang  Y, Zhang  H, Zhang  J, Lu  C, Huang  Q, Wu  J, Liu  F. Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor. Journal of Hazardous Materials, 2011, 192(1): 35–43
pmid: 21616591
[1] Supplementary Material Download
[1] Wei Mao, Lixun Zhang, Tianye Wang, Yichen Bai, Yuntao Guan. Fabrication of highly efficient Bi2WO6/CuS composite for visible-light photocatalytic removal of organic pollutants and Cr(VI) from wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 52-.
[2] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[3] Fenghe Lv, Hua Wang, Zhangliang Li, Qi Zhang, Xuan Liu, Yan Su. Fabrication and photocatalytic ability of an Au/TiO2/reduced graphene oxide nanocomposite[J]. Front. Environ. Sci. Eng., 2018, 12(1): 4-.
[4] Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2-.
[5] Gholamreza GHASEMZADEH,Mahdiye MOMENPOUR,Fakhriye OMIDI,Mohammad R. HOSSEINI,Monireh AHANI,Abolfazl BARZEGARI. Applications of nanomaterials in water treatment and environmental remediation[J]. Front.Environ.Sci.Eng., 2014, 8(4): 471-482.
[6] Lei LI, Jian XU, Changsheng GUO, Yuan ZHANG. Removal of rhodamine B from aqueous solution by BiPO4 hierarchical architecture[J]. Front Envir Sci Eng, 2013, 7(3): 382-387.
[7] Yongming ZHANG, Rong YAN, Zhen ZOU, Jiewei WANG, Bruce E. RITTMANN. Improved nitrogen removal in dual-contaminated surface water by photocatalysis[J]. Front Envir Sci Eng, 2012, 6(3): 428-436.
[8] YiangChen CHOU, Young KU. Selective reduction of NO by photo-SCR with ammonia in an annular fixed-film photoreactor[J]. Front Envir Sci Eng, 2012, 6(2): 149-155.
[9] Guixiang ZHANG, Xitao LIU, Ke SUN, Ye ZHAO, Chunye LIN. Sorption of tetracycline to sediments and soils: assessing the roles of pH, the presence of cadmium and properties of sediments and soils[J]. Front Envir Sci Eng Chin, 2010, 4(4): 421-429.
[10] Chao QIN, Shaogui YANG, Cheng SUN, Jia ZHOU, Manjun ZHAN, Rongjun WANG, Huanxing CAI, . Investigation of the effects of humic acid and H 2 O 2 on the photocatalytic degradation of atrazine assisted by microwave[J]. Front.Environ.Sci.Eng., 2010, 4(3): 321-328.
[11] Huilong WANG, Shuqin LIU, Hui WANG, Wenfeng JIANG, . Solar photocatalytic decomposition of two azo dyes on multi-walled carbon nanotubes (MWCNTs)/TiO 2 composites[J]. Front.Environ.Sci.Eng., 2010, 4(3): 311-320.
[12] Chunzhi LI , Wenwen WANG , Junying ZHANG , Hailing ZHU , Weiwei ZHANG , Tianmin WANG , . Photocatalytic activity of ZnO films with micro-grid structure[J]. Front.Environ.Sci.Eng., 2009, 3(3): 289-293.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed