|
|
Effective degradation of tetracycline by mesoporous Bi2WO6 under visible light irradiation |
Xiaolong CHU,Guoqiang SHAN,Chun CHANG,Yu FU,Longfei YUE,Lingyan ZHU( ) |
College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China |
|
|
Abstract Bi2WO6 was synthesized with a hydrothermal method at different pHs and used for the degradation of tetracycline (TC) in water. The mesoporous Bi2WO6 prepared at pH 1 (BWO-1) displayed the highest adsorption and degradation capacity to TC due to its large surface area and more efficient capacity to separate photogenerated electrons and holes. 97% of TC at 20 mg·L−1 was removed by BWO-1 at 0.5 g·L−1 after 120 min irradiation under simulated solar light. Only 31% of the total organic carbon (TOC) was removed after 360 min irradiation although the TC removal reached 100%, suggesting that TC was mainly transformed to intermediate products rather than completely mineralized. The intermediates were identified by high-performance liquid chromatography-time of flight-mass spectrometry (HPLC-TOF-MS) and possible photodegradation pathways were proposed.
|
Keywords
Bi2WO6
hydrothermal synthesis
tetracycline (TC)
photocatalysis
|
Corresponding Author(s):
Lingyan ZHU
|
Online First Date: 17 November 2014
Issue Date: 01 February 2016
|
|
1 |
Khetan S K, Collins T J, Human pharmaceuticals in the aquatic environment: a challenge to Green Chemistry. Chemical Reviews, 2007, 107(6): 2319–2364
https://doi.org/10.1016/S0045-6535(99)00453-1
pmid: 10705557
|
2 |
Stuer-Lauridsen F, Birkved M, Hansen L P, Lützhøft H C H, Halling-Sørensen B. Environmental risk assessment of human pharmaceuticals in Denmark after normal therapeutic use. Chemosphere, 2000, 41(9): 1509–1509
https://doi.org/10.1016/S0045-6535(99)00453-1
pmid: 10705557
|
3 |
Wang D, Li Y, Li G, Wang C, Zhang W, Wang Q. Development and modeling of a flat plate serpentine reactor for photocatalytic degradation of 17-ethinylestradiol. Environmental Science and Pollution Research International, 2013, 20(4): 2321–2329
https://doi.org/10.1007/s11356-012-1107-6
pmid: 22869503
|
4 |
Wang D, Li Y, Li G, Wang C, Zhang W, Wang Q. Modeling of quantitative effects of water components on the photocatalytic degradation of 17α-ethynylestradiol in a modified flat plate serpentine reactor. Journal of Hazardous Materials, 2013, 254–255: 64–71
https://doi.org/10.1016/j.jhazmat.2013.03.049
pmid: 23583950
|
5 |
Bautitz I R, Nogueira R F P. Degradation of tetracycline by photo-Fenton process -Solar irradiation and matrix effects. Journal of Photochemistry and Photobiology A: Chemistry, 2007, 187(1,5): 33–39
https://doi.org/10.1016/j.jphotochem.2006.09.009
|
6 |
Karthikeyan K G, Meyer M T. Occurrence of antibiotics in wastewater treatment facilities in Wisconsin, USA. Science of the Total Environment, 2006, 361(1–3): 196–207
https://doi.org/10.1016/j.scitotenv.2005.06.030
pmid: 16091289
|
7 |
Kolpin D W, Furlong E T, Meyer M T, Thurman E M, Zaugg S D, Barber L B, Buxton H T. Pharmaceuticals, hormones, and other organic wastewater contaminants in U.S. streams, 1999–2000: a national reconnaissance. Environmental Science & Technology, 2002, 36(6): 1202–1211
https://doi.org/10.1021/es011055j
pmid: 11944670
|
8 |
Stumpf M, Ternes T A, Wilken R D, Rodrigues S V, Baumann W. Polar drug residues in sewage and natural waters in the state of Rio de Janeiro, Brazil. Science of the Total Environment, 1999, 225(1–2): 135–141
https://doi.org/10.1016/S0048-9697(98)00339-8
pmid: 10028710
|
9 |
Kümmerer K. Antibiotics in the aquatic environment: a review—Part I. Chemosphere, 2009, 75(4): 417–434
https://doi.org/10.1016/j.chemosphere.2008.11.086
pmid: 19185900
|
10 |
Pailler J Y, Krein A, Pfister L, Hoffmann L, Guignard C. Solid phase extraction coupled to liquid chromatography-tandem mass spectrometry analysis of sulfonamides, tetracyclines, analgesics and hormones in surface water and wastewater in Luxembourg. Science of the Total Environment, 2009, 407(16): 4736–4743
https://doi.org/10.1016/j.scitotenv.2009.04.042
pmid: 19477484
|
11 |
Khan M H, Bae H, Jung J Y. Tetracycline degradation by ozonation in the aqueous phase: proposed degradation intermediates and pathway. Journal of Hazardous Materials, 2010, 181(1–3): 659–665
https://doi.org/10.1016/j.jhazmat.2010.05.063
pmid: 20557998
|
12 |
Liu S, Zhao X R, Sun H Y, Li R R, Fang Y F, Huang Y P. The degradation of tetracycline in a photo-electro-Fenton system. Chemical Engineering Journal, 2013, 231: 441–448
https://doi.org/10.1016/j.cej.2013.07.057
|
13 |
Gómez-Pacheco C V, Sánchez-Polo M, Rivera-Utrilla J, López-Peñalver J J. Tetracycline degradation in aqueous phase by ultraviolet radiation. Chemical Engineering Journal, 2012, 187(1): 89–95
https://doi.org/10.1016/j.cej.2012.01.096
|
14 |
Zhu X D, Wang Y J, Sun R J, Zhou D M. Photocatalytic degradation of tetracycline in aqueous solution by nanosized TiO2. Chemosphere, 2013, 92(8): 925–932
https://doi.org/10.1016/j.chemosphere.2013.02.066
pmid: 23541148
|
15 |
Wang P, Yap P S, Lim T T. C–N–S tridoped TiO2 for photocatalytic degradation of tetracycline under visible-light irradiation. Applied Catalysis A: General, 2011, 399(1–2): 252–261
https://doi.org/10.1016/j.apcata.2011.04.008
|
16 |
Wang D, Li Y, Li G, Wang C, Wang P, Zhang W, Wang Q. Ag/AgCl@helical chiral TiO2 nanofibers as a visible-light driven plasmon photocatalyst. Chemical Communications, 2013, 49(88): 10367–10369
https://doi.org/10.1039/c3cc45193c
pmid: 23999692
|
17 |
Li Y Y, Liu J P, Huang X T, Li G Y. Hydrothermal synthesis of Bi2WO6 uniform hierarchical microspheres. Crystal Growth & Design, 2007, 7(7): 1350–1355
https://doi.org/10.1021/cg070343+
|
18 |
Shang M, Wang W Z, Sun S M, Zhou L, Zhang L. Bi2WO6 nanocrystals with high photocatalytic activities under visible light. Journal of Physical Chemistry C, 2008, 112(28): 10407–10411
https://doi.org/10.1021/jp802115w
|
19 |
Dai K, Peng T Y, Chen H, Liu J, Zan L. Photocatalytic degradation of commercial phoxim over La-doped TiO2 nanoparticles in aqueous suspension. Environmental Science & Technology, 2009, 43(5): 1540–1545
https://doi.org/10.1021/es802724q
pmid: 19350932
|
20 |
Shang M, Wang W Z, Sun S M, Ren J, Zhou L, Zhang L. Efficient visible light-induced photocatalytic degradation of contaminant by spindle-like PANI/BiVO4. Journal of Physical Chemistry C, 2009, 113(47): 20228–20233
https://doi.org/10.1021/jp9067729
|
21 |
Kudo A, Hijii S. H2 or O2 evolution from aqueous solutions on layered oxide photocatalysts consisting of Bi3+ with 6s2 configuration and d0 transition metal ions. Chemistry Letters, 1999, 28(10): 1103–1104
https://doi.org/10.1246/cl.1999.1103
|
22 |
Wang C, Zhang H, Li F, Zhu L. Degradation and mineralization of bisphenol A by mesoporous Bi2WO6 under simulated solar light irradiation. Environmental Science & Technology, 2010, 44(17): 6843–6848
https://doi.org/10.1021/es101890w
pmid: 20704289
|
23 |
Chen P, Zhu L, Fang S, Wang C, Shan G. Photocatalytic degradation efficiency and mechanism of microcystin-RR by mesoporous Bi2WO6 under near ultraviolet light. Environmental Science & Technology, 2012, 46(4): 2345–2351
https://doi.org/10.1021/es2036338
pmid: 22250846
|
24 |
Nyholm R, Berndtsson A, Martensson N. Core level binding energies for the elements Hf to Bi (Z=72−83). Journal of Physics C: Solid State Physics, 1980, 13(36): 1091–1096
https://doi.org/10.1088/0022-3719/13/36/009
|
25 |
Yao S S, Wei J Y, Huang B B, Feng S Y, Zhang X Y, Qin X Y, Wang P, Wang Z Y, Zhang Q, Jing X Y, Zhan J. Morphology modulated growth of bismuth tungsten oxide nanocrystals. Journal of Solid State Chemistry, 2009, 182(2): 236–239
https://doi.org/10.1016/j.jssc.2008.09.016
|
26 |
Pierotti R, Rouquerol J. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure and Applied Chemistry, 1985, 57: 603–619
|
27 |
Huang Y, Ai Z, Ho W, Chen M, Lee S. Ultrasonic spray pyrolysis synthesis of porous Bi2WO6 microspheres and their visible-light-induced photocatalytic removal of NO. Journal of Physics and Chemistry C, 2010, 114(14): 6342–6349
https://doi.org/10.1021/jp912201h
|
28 |
Castillo C, Criado S, Díaz M, García N A. Riboflavin as a sensitiser in the photodegradation of tetracyclines. Kinetics, mechanism and microbiological implications. Dyes and Pigments, 2007, 72(2): 178–184
https://doi.org/10.1016/j.dyepig.2005.08.025
|
29 |
Chang C, Fu Y, Hu M, Wang C, Shan G, Zhu L. Photodegradation of bisphenol A by highly stable palladium-doped mesoporous graphite carbon nitride (Pd/mpg-C3N4) under simulated solar light irradiation. Applied Catalysis B: Environmental, 2013, 142–143: 553–560
https://doi.org/10.1016/j.apcatb.2013.05.044
|
30 |
Wang X, Chen X, Thomas A, Fu X, Antonietti M. Metal-containing carbon nitride compounds: a new functional organic–metal hybrid material. Advanced Materials, 2009, 21(16): 1609–1612
https://doi.org/10.1002/adma.200802627
|
31 |
Xiao F, Wang F, Fu X, Zheng Y. A green and facile self-assembly preparation of gold nanoparticles/ZnO nanocomposite for photocatalytic and photoelectrochemical applications. Journal of Materials Chemistry, 2012, 22(7): 2868–2877
https://doi.org/10.1039/c2jm15122g
|
32 |
Zhang Y, Zhang N, Tang Z R, Xu Y J. Transforming CdS into an efficient visible light photocatalyst for selective oxidation of saturated primary C-H bonds under ambient conditions. Chemical Science, 2012, 3: 2812–2822
https://doi.org/10.1039/C2SC20603J
|
33 |
Wang C, Zhu L, Wei M, Chen P, Shan G. Photolytic reaction mechanism and impacts of coexisting substances on photodegradation of bisphenol A by Bi2WO6 in water. Water Research, 2012, 46(3): 845–853
https://doi.org/10.1016/j.watres.2011.11.057
pmid: 22176744
|
34 |
Amano F, Nogami K, Ohtani B. Enhanced photocatalytic activity of bismuth-tungsten mixed oxides for oxidative decomposition of acetaldehyde under visible light irradiation. Catalysis Communications, 2012, 20(5): 12–16
https://doi.org/10.1016/j.catcom.2011.12.038
|
35 |
Ng J, Wang X, Sun D D. One-pot hydrothermal synthesis of a hierarchical nanofungus-like anatase TiO2 thin film for photocatalytic oxidation of bisphenol A. Applied Catalysis B: Environmental, 2011, 110(2): 260–272
https://doi.org/10.1016/j.apcatb.2011.09.011
|
36 |
Wang R C, Ren D J, Xia S Q, Zhang Y L, Zhao J F. Photocatalytic degradation of Bisphenol A (BPA) using immobilized TiO2 and UV illumination in a horizontal circulating bed photocatalytic reactor (HCBPR). Journal of Hazardous Materials, 2009, 169(1–3): 926–932
https://doi.org/10.1016/j.jhazmat.2009.04.036
pmid: 19500904
|
37 |
Hao R, Xiao X, Zuo X X, Nan J M, Zhang W D. Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. Journal of Hazardous Materials, 2012, 209-210(30): 137–145
https://doi.org/10.1016/j.jhazmat.2012.01.006
pmid: 22277340
|
38 |
Yuan F, Hu C, Hu X X, Wei D B, Chen Y, Qu J H. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of Hazardous Materials, 2011, 185(2–3): 1256–1263
https://doi.org/10.1016/j.jhazmat.2010.10.040
pmid: 21074943
|
39 |
Dai K, Peng T Y, Chen H, Zhang R X, Zhang Y X. Photocatalytic degradation and mineralization of commercial methamidophos in aqueous titania suspension. Environmental Science & Technology, 2008, 42(5): 1505–1510
https://doi.org/10.1021/es702268p
pmid: 18441795
|
40 |
Wang Y, Zhang H, Chen L, Wang S, Zhang D. Ozonation combined with ultrasound for the degradation of tetracycline in a rectangular air-lift reactor. Separation and Purification Technology, 2012, 84(9): 138–146
https://doi.org/10.1016/j.seppur.2011.06.035
|
41 |
Wang Y, Zhang H, Zhang J, Lu C, Huang Q, Wu J, Liu F. Degradation of tetracycline in aqueous media by ozonation in an internal loop-lift reactor. Journal of Hazardous Materials, 2011, 192(1): 35–43
pmid: 21616591
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|