Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (6) : 73    https://doi.org/10.1007/s11783-024-1833-2
Needs and challenges of optical atmospheric monitoring on the background of carbon neutrality in China
Wenqing Liu(), Chengzhi Xing
Anhui Institute of Optics and Fine Mechanics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 23001, China
 Download: PDF(2047 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● A system of environmental optical monitoring technology has been established.

● New optical monitoring techniques and stereoscopic system should be established.

● The focus on interdisciplinarity should be increased.

● Pay more attention on greenhouse gases monitoring and atmospheric chemistry.

The achievement of the targets of coordinated control of PM2.5 and O3 and the carbon peaking and carbon neutrality depend on the development of pollution and greenhouse gas monitoring technologies. Optical monitoring technology, based on its technical characteristics of high scalability, high sensitivity and wide-targets detection, has obvious advantages in pollution/greenhouse gases monitoring and has become an important direction in the development of environmental monitoring technology. At present, a system of environmental optical monitoring technology with differential optical absorption spectroscopy (DOAS), cavity ring-down spectroscopy (CRDS), light detection and ranging (LIDAR), laser heterodyne spectroscopy (LHS), tunable diode laser absorption spectroscopy (TDLAS), fourier transform infrared spectroscopy (FTIR) and fluorescence assay by gas expansion (FAGE) as the main body has been established. However, with the promotion of “reduction of pollution and carbon emissions” strategy, there have been significant changes in the sources of pollution/greenhouse gases, emission components and emission concentrations, which have put forward new and higher requirements for the development of monitoring technologies. In the future, we should pay more attention to the development of new optical monitoring techniques and the construction of stereoscopic monitoring system, the interdisciplinarity (among mathematics, physics, chemistry and biology, etc.), and the monitoring of greenhouse gases and research on atmospheric chemistry.

Keywords Pollution      Greenhouse gas      Optical atmospheric monitoring      Needs and challenges     
Corresponding Author(s): Wenqing Liu   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Issue Date: 19 April 2024
 Cite this article:   
Wenqing Liu,Chengzhi Xing. Needs and challenges of optical atmospheric monitoring on the background of carbon neutrality in China[J]. Front. Environ. Sci. Eng., 2024, 18(6): 73.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1833-2
https://academic.hep.com.cn/fese/EN/Y2024/V18/I6/73
Fig.1  Environmental optical monitoring system.
Fig.2  History of the development of hyperspectral remote sensing satellites for pollutants and greenhouse gases.
  
Abbreviation Meaning
ACDL Aerosol and carbon dioxide detection lidar
AD-Net Asian dust and aerosol lidar observation network
APACHE All pressure altitude-based calibrator for HOx experimentation
BREDOM Bremen DOAS network for atmospheric measurements
CRDS Cavity ring-down spectroscopy
DOAS Differential optical absorption spectroscopy
EMI Environment Monitoring Instrument
ESA European space agency
FAGE Fluorescence assay by gas expansion
FTIR Fourier transform infrared spectroscopy
GMI Greenhouse gas monitoring Instrument
LEDs Light-emitting diodes
LHS Laser heterodyne spectroscopy
LIDAR Light detection and ranging
LIF Laser-induced fluorescence
LP-DOAS Long path differential optical absorption spectroscopy
MADRAS MAX-DOAS network over Russia and Asia
MAX-DOAS Multi-axis differential optical absorption spectroscopy
MIR-LHS Mid-infrared laser heterodyne spectroscopy
MPLNET Micro pulse lidar network
NASA National aeronautics and space administration of the United States of America
NOVAC Netwok for observation of volcanic and atmospheric change
PollyNET Raman and polarization lidar network
TCCON Total column carbon observing network
TDLAS Tunable diode laser absorption spectroscopy
UAV Unmanned aerial vehicle
USTC University of science and technology of China
  Table A1 Abbreviations used in text, sored alphabetically
1 M D Agee, S E Atkinson, T D Crocker, J W Williams. (2014). Non-separable pollution control: implications for a CO2 emissions cap and trade system. Resource and Energy Economics, 36(1): 64–82
https://doi.org/10.1016/j.reseneeco.2013.11.002
2 H Baars, T Kanitz, R Engelmann, D Althausen, B Heese, M Komppula, J Preißler, M Tesche, A Ansmann, U Wandinger. et al.. (2016). An overview of the first decade of PollyNET: an emerging network of qutomated Raman-polarization lidars for continuous aerosol profiling. Atmospheric Chemistry and Physics, 16(8): 5111–5137
https://doi.org/10.5194/acp-16-5111-2016
3 S Beirle, S Dörner, S Donner, J Remmers, Y Wang, T Wagner. (2019). The Mainz profile algorithm (MAPA). Atmospheric Measurement Techniques, 12(3): 1785–1806
https://doi.org/10.5194/amt-12-1785-2019
4 Y Bian, J Lin, H Han, S Lin, H Li, X Chen. (2023). Mitigation synergy and policy implications in urban transport sector: a case study of Xiamen, China. Environmental Research Letters, 18(8): 084030
https://doi.org/10.1088/1748-9326/ace91e
5 K Bodor, R Szep, Z Bodor. (2022). Time series analysis of the air pollution around Ploiesti oil refining complex, one of the most polluted regions in Romania. Scientific Reports, 12(1): 11817
https://doi.org/10.1038/s41598-022-16015-7
6 K F Boersma, H J Eskes, J P Veefkind, E J Brinksma, der A R J van, M Sneep, den Oord G H J van, P F Levelt, P Stammes, J F Gleason. et al.. (2007). Near-real time retrieval of tropospheric NO2 from OMI. Atmospheric Chemistry and Physics, 7: 2103–2118
https://doi.org/10.5194/acp-7-2103-2007
7 T Bösch, V Rozanov, A Richter, E Peters, A Rozanov, F Wittrock, A Merlaud, J Lampel, S Schmitt, Haij M de. et al.. (2018). BOREAS: a new MAX-DOAS profile retrieval algorithm for aerosols and trace gases. Atmospheric Measurement Techniques, 11(12): 6833–6859
https://doi.org/10.5194/amt-11-6833-2018
8 B Bottorff, E Reidy, L Mielke, S Dusanter, P S Stevens. (2021). Development of a laser-photofragmentation laser-induced fluorescence instrument for the detection of nitrous acid and hydroxyl radicals in the atmosphere. Atmospheric Measurement Techniques, 14(9): 6039–6056
https://doi.org/10.5194/amt-14-6039-2021
9 C Brink, C Kroeze, Z Klimont. (2001). Ammonia abatement and its impact on emissions of nitrous oxide and methane in Europe−Part 1: method. Atmospheric Environment, 35(36): 6299–6312
https://doi.org/10.1016/S1352-2310(01)00434-4
10 J P Burrows, M Weber, M Buchwitz, V Rozanov, A Ladstätter-Weißenmayer, A Richter, R DeBeek, R Hoogen, K Bramstedt, K U Eichmann. et al.. (1999). The global ozone monitoring experiment (GOME): mission concept and first scientific results. Journal of the Atmospheric Sciences, 56(2): 151–175
https://doi.org/10.1175/1520-0469(1999)056<0151:TGOMEG>2.0.CO;2
11 A Bytnerowicz, K Omasa, E Paoletti. (2007). Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective. Environmental Pollution, 147(3): 438–445
https://doi.org/10.1016/j.envpol.2006.08.028
12 J Chen, Z Du, T Sun, J Li, Y Ma. (2019). Self-corrected frequency modulation spectroscopy immune to phase random and light intensity fluctuation. Optics Express, 27(21): 30700–30709
https://doi.org/10.1364/OE.27.030700
13 X Cheng, J Liu, L Xu, H Xu, L Jin, X Shen, Y Sun (2022). Quantitative analysis and source of trans-boundary gas pollution in industrial park. Spectroscopy and Spectral Analysis, 42: 3762–3769 (in Chinese)
14 X Cheng, J Liu, L Xu, H Xu, L Jin, M Xue (2021). IR spectral inversion of methane concentration and emission rate in shale gas backflow. Spectroscopy and Spectral Analysis, 41: 3717–3721 (in Chinese)
15 Smedt I De, N Theys, H Yu, T Danckaert, C Lerot, S Compernolle, Roozendael M Van, A Richter, A Hilboll, E Peters. et al.. (2018). Algorithm theoretical baseline for formaldehyde retrievals from S5P TROPOMI and from the QA4ECV project. Atmospheric Measurement Techniques, 11(4): 2395–2426
https://doi.org/10.5194/amt-11-2395-2018
16 H Deng, M Li, Y He, Z Xu, L Yao, B Chen, C Yang, R Kan. (2020). Laser heterodyne spectroradiometer assisted by self-calibrated wavelength modulation spectroscopy for atmospheric CO2 column absorption measurements. Spectrochimica Acta. Part A: Molecular and Biomolecular Spectroscopy, 230: 118071
https://doi.org/10.1016/j.saa.2020.118071
17 H Deng, R Li, H Liu, Y He, C Yang, X Li, Z Xu, R Kan. (2022). Optical amplification enables a huge sensitivity improvement to laser heterodyne radiometers for high-resolution measurements of atmospheric gases. Optics Letters, 47(17): 4335–4338
https://doi.org/10.1364/OL.468198
18 H Deng, C Yang, Z Xu, M Li, A Huang, L Yao, M Hu, B Chen, Y He, R Kan. et al.. (2021). Development of a laser heterodyne spectroradiometer for high-resolution measurements of CO2, CH4, H2O and O2 in the atmospheric column. Optics Express, 230: 118071
19 Y Deng, L Xu, X Sheng, Y Sun, H Xu, H Xu, H Wu. (2023). Vehicle-mounted solar occultation flux fourier transform infrared spectrometer and its remote sensing application. Sensors, 23(9): 4317
https://doi.org/10.3390/s23094317
20 F Dong, B Yu, T Hadachin, Y Dai, Y Wang, S Zhang, R Long. (2018). Drivers of carbon emission inventory change in China. Resources, Conservation and Recycling, 129: 187–201
https://doi.org/10.1016/j.resconrec.2017.10.035
21 Y Feng, M Ning, Y Lei, Y Sun, W Liu, J Wang. (2019). Defending blue sky in China: effectiveness of the “Air Pollution Prevention and control Action Plan” on air quality improvements from 2013 to 2017. Journal of Environmental Management, 252: 109603
https://doi.org/10.1016/j.jenvman.2019.109603
22 T Fujinawa, A Kuze, H Suto, K Shiomi, Y Kanaya, T Kawashima, F Kataoka, S Mori, H Eskes, H Tanimoto. First concurrent observations of NO2 and CO2 from power plant plumes by airborne remote sensing. Geophysical Research Letters, 2021, 48, e2021GL092685
23 B Galle, M Johansson, C Rivera, Y Zhang, M Kihlman, C Kern, T Lehmann, U Platt, S Arellano, S Hidalgo. (2010). Network for observation of volcanic and atmospheric change (NOVAC)—a global network for volcanic gas monitoring: network layout and instrument description. Journal of Geophysical Research, 115(D5): 2009JD011823
https://doi.org/10.1029/2009JD011823
24 S Gao, S Wang, C Gu, J Zhu, R Zhang, Y Guo, Y Yan, B Zhou. (2021). Study on the measurement of isoprene by differential optical absorption spectroscopy. Atmospheric Measurement Techniques, 14(4): 2649–2657
https://doi.org/10.5194/amt-14-2649-2021
25 C Gebhardt, A Rozanov, R Hommel, M Weber, H Bovensmann, J P Burrows, D Degenstein, L Froidevaux, A M Thompson. (2014). Stratospheric ozone trends and variability as seen by SCIAMACHY from 2002 to 2012. Atmospheric Chemistry and Physics, 14(2): 831–846
https://doi.org/10.5194/acp-14-831-2014
26 Q Hong, L Zhu, C Xing, Q Hu, H Lin, C Zhang, C Zhao, T Liu, W Su, C Liu. (2022a). Inferring vertical variability and diurnal evolution of O3 formation sensitivity based on the vertical distribution of summertime HCHO and NO2 in Guangzhou, China. Science of the Total Environment, 827: 154045
https://doi.org/10.1016/j.scitotenv.2022.154045
27 X Hong, C Liu, C Zhang, Y Tian, H Wu, H Yin, Y Zhu, Y Cheng. (2023a). Vast ecosystem disturbance in a warming climate may jeopardize our climate goal of reducing CO2: a case study for megafires in the Australian ‘black summer’. Science of the Total Environment, 866: 161387
https://doi.org/10.1016/j.scitotenv.2023.161387
28 X Hong, C Zhang, Y Tian, H Wu, Y Zhu, C Liu. (2023b). Quantification and evaluation of atmospheric emissions from crop residue burning constrained by satellite observations in China during 2016–2020. Science of the Total Environment, 865: 161237
https://doi.org/10.1016/j.scitotenv.2022.161237
29 X Hong, P Zhang, Y Bi, C Liu, Y Sun, W Wang, Z Chen, H Yin, C Zhang, Y Tian. et al.. (2022a). Retrieval of global carbon dioxide from TanSat satellite and comprehensive validation with TCCON measurements and satellite observations. IEEE Transactions on Geoscience and Remote Sensing, 60: 1–16
https://doi.org/10.1109/TGRS.2022.3172371
30 M Hu, B Chen, L Yao, C Yang, X Chen, R Kan. (2021b). A fiber-integrated CRDS sensor for in-situ measurement of dissolved carbon dioxide in seawater. Sensors, 21(19): 6436
https://doi.org/10.3390/s21196436
31 Y Hu, L Xu, X Shen, L Jin, H Xu, Y Deng, J Liu, W Liu. (2021a). Reconstruction of a leaking gas cloud from a passive FTIR scanning remote-sensing imaging system. Applied Optics, 60(30): 9396–9403
https://doi.org/10.1364/AO.439086
32 Y Hu, L Xu, H Xu, X Shen, Y Deng, H Xu, J Liu, W Liu. (2022). Three-dimensional reconstruction of a leaking gas cloud based on two scanning FTIR remote-sensing imaging systems. Optics Express, 30(14): 25581–25596
https://doi.org/10.1364/OE.460640
33 X Ji, C Liu, Y Wang, Q Hu, H Lin, F Zhao, C Xing, G Tang, J Zhang, T Wagner. (2023). Ozone profiles without blind area retrieved from MAX-DOAS measurements and comprehensive validation with multi-platform observations. Remote Sensing of Environment, 284: 113339
https://doi.org/10.1016/j.rse.2022.113339
34 J Jiang, B Ye, J Liu. (2019). Peak of CO2 emissions in various sectors and provinces of China: recent progress and avenues for further research. Renewable & Sustainable Energy Reviews, 112: 813–833
https://doi.org/10.1016/j.rser.2019.06.024
35 X Jiang, G Li, W Fu. (2021). Government environmental governance, structural adjustment and air quality: a quasi-natural experiment based on the Three-Year Action Plan to Win the Blue Sky Defense War. Journal of Environmental Management, 277: 111470
https://doi.org/10.1016/j.jenvman.2020.111470
36 Y Kanaya, H Irie, H Takashima, H Iwabuchi, H Akimoto, K Sudo, M Gu, J Chong, Y J Kim, H Lee. et al.. (2014). Long-term MAX-DOAS network observations of NO2 in Russia and Asia (MADRAS) during the period 2007–2012: instrumentation, elucidation of climatology, and comparisons with OMI satellite observations and global model simulations. Atmospheric Chemistry and Physics, 14(15): 7909–7927
https://doi.org/10.5194/acp-14-7909-2014
37 X Kou, B Zhou, X Liu, H Chen, M Zhang, P Liu. (2018). Measurement of trace NH3 concentration in atmosphere by cavity ring-down spectroscopy. Acta Optica Sinica, 38: 361–370
38 A Kukui, G Ancellet, G Le Bras. (2008). Chemical ionisation mass spectrometer for measurements of OH and Peroxy radical concentrations in moderately polluted atmospheres. Journal of Atmospheric Chemistry, 61(2): 133–154
https://doi.org/10.1007/s10874-009-9130-9
39 L Lan, H Ghasemifard, Y Yuan, S Hachinger, X Zhao, S Bhattacharjee, X Bi, Y Bai, A Menzel, J Chen. (2020). Assessment of urban CO2 measurement and source attribution in Munich based on TDLAS-WMS and trajectory analysis. Atmosphere, 11(1): 58
https://doi.org/10.3390/atmos11010058
40 J Li, Z Xue, F Shen, J Wang, Y Li, G Wang, K Liu, W Chen, X Gao, T Tan. (2023c). Erbium-doped fiber amplifier (EDFA)-assisted laser heterodyne radiometer (LHR) working in the short-noise-dominated regime. Optics Letters, 48(20): 5229–5232
https://doi.org/10.1364/OL.501761
41 L Li, D Zhang, W Hu, Y Yang, S Zhang, R Yuan, P Lv, W Zhang, Y Zhang, Y Zhang. (2023a). Improving VOC control strategies in industrial parks based on emission behavior, environmental effects, and health risks: a case study through atmospheric measurement and emission inventory. Science of the Total Environment, 865: 161235
https://doi.org/10.1016/j.scitotenv.2022.161235
42 M Li, B Chen, J Ruan, X Li, Y Liu, Z Xu, Y He, R Kan. (2020b). On-line detection of carbon dioxide in large scale offshore by laser technology. Optics and Precision Engineering, 28(7): 1424–1432
https://doi.org/10.37188/OPE.20202807.1424
43 Q Li, Y Qian, Y Luo, L Cao, H Zhou, T Yang, F Si, W Liu. (2023b). Diffusion height and order of sulfur dioxide and bromine monoxide plumes from the Hunga Tonga-Hunga Ha’apai volcanic eruption. Remote Sensing, 15(6): 1534
https://doi.org/10.3390/rs15061534
44 X Li, X Fan, Y He, B Chen, L Yao, M Hu, R Kan. (2019). Development of a compact tunable diode laser absorption spectroscopy based system for continuous measurements of dissolved carbon dioxide in seawater. Review of Scientific Instruments, 90(6): 065110
https://doi.org/10.1063/1.5095797
45 X Li, F Yuan, M Hu, B Chen, Y He, C Yang, L Shi, R Kan. (2020a). Compact open-path sensor for fast measurements of CO2 and H2O using scanned-wavelength modulation spectroscopy with 1f-Phase Method. Sensors, 20(7): 1910
https://doi.org/10.3390/s20071910
46 Z Li, R Hu, P Xie, H Chen, S Wu, F Wang, Y Wang, L Ling, J Liu, W Liu. (2018a). Development of a portable cavity ring down spectroscopy instrument for simultaneous, in situ measurement of NO3 and N2O5. Optics Express, 26(10): A433–A49
https://doi.org/10.1364/OE.26.00A433
47 Z Li, R Hu, P Xie, H Wang, K Lu, D Wang (2018b). Intercomparison of in situ CRDS and CEAS for measurements of atmospheric N2O5 in Beijing, China. Science of the Total Environment, 613–614: 131–139 10.1016/j.scitotenv.2017.08.302
48 C Lin, R Hu, P Xie, S Lou, G Zhang, J Tong, J Liu, W Liu. (2022b). Nocturnal atmospheric chemistry of NO3 and N2O5 over Changzhou in the Yangtze River Delta in China. Journal of Environmental Sciences (China), 114: 376–390
https://doi.org/10.1016/j.jes.2021.09.016
49 H Lin, C Liu, C Xing, Q Hu, Q Hong, H Liu, Q Li, W Tan, X Ji, Z Wang. et al.. (2020). Validation of water vapor vertical distributions retrieved from MAX-DOAS over Beijing, China. Remote Sensing, 12(19): 3193
https://doi.org/10.3390/rs12193193
50 H Lin, C Xing, Q Hong, C Liu, X Ji, T Liu, J Lin, C Lu, W Tan, Q Li, et al. (2022a). Diagnosis of ozone formation sensitivities in different height layers via MAX-DOAS observations in Guangzhou. Journal of Geophysical Research–Atmospheres, , 127, e2022JD036803
51 C Liu, Q Hu, C Zhang, C Xia, H Yin, W Su, X Wang, Y Xu, Z Zhang. (2022a). First Chinese ultraviolet-visible hyperspectral satellite instrument implicating global air quality during the COVID-19 pandemic in early 2020. Light, Science & Applications, 11(1): 28
https://doi.org/10.1038/s41377-022-00722-x
52 C Liu, C Xing, Q Hu, Q Li, H Liu, Q Hong, W Tan, X Ji, H Lin, C Lu. et al.. (2022). Ground-based hyperspectral stereoscopic remote sensing network: a promising strategy to learn coordinated control of O3 and PM2.5 over China. Engineering, 19: 71–83
https://doi.org/10.1016/j.eng.2021.02.019
53 C Liu, C Xing, Q Hu, S Wang, S Zhao, M Gao. (2022b). Stereoscopic hyperspectral remote sensing of the atmospheric environment: innovation and prospects. Earth-Science Reviews, 226: 103958
https://doi.org/10.1016/j.earscirev.2022.103958
54 P Liu, T Zhang, X Sun, G Fan, Y Xiang, Y Fu, Y Dong. (2020). Compact and movable ozone differential absorption lidar system based on an all-solid-state, tuning-free laser source. Optics Express, 28(9): 13786–13800
https://doi.org/10.1364/OE.391333
55 X Lu, M Qin, P Xie, J Duan, W Fang, W Liu. (2022). Observation of ambient NO3 radicals by LP-DOAS at a rural site in North China Plain. Science of the Total Environment, 804: 149680
https://doi.org/10.1016/j.scitotenv.2021.149680
56 L Lv, W Liu, T Zhang, Z Chen, Y Dong, G Fan, Y Xiang, Y Yao, N Yang, B Chu. et al.. (2017). Observations of particle extinction, PM2.5 mass concentration profile and flux in north China based on mobile lidar technique. Atmospheric Environment, 164: 360–369
https://doi.org/10.1016/j.atmosenv.2017.06.022
57 L Lv, Y Xiang, T Zhang, W Chai, W Liu. (2020). Comprehensive study of regional haze in the North China Plain with synergistic measurement from multiple mobile vehicle-based lidars and a lidar network. Science of the Total Environment, 721: 137773
https://doi.org/10.1016/j.scitotenv.2020.137773
58 K J Maji, V O C Li, J C K Lam. (2020). Effects of China’s current Air Pollution Prevention and Control Action Plan on air pollution patterns, health risks and mortalities in Beijing 2014–2018. Chemosphere, 260: 127572
https://doi.org/10.1016/j.chemosphere.2020.127572
59 M Marc, M Tobiszewski, B Zabiegala, M Guardia. (2015). Current air quality analytics and monitoring: a review. Analytica Chimica Acta, 853: 116–126
https://doi.org/10.1016/j.aca.2014.10.018
60 D Marno, C Ernest, K Hens, U Javed, T Klimach, M Martinez, M Rudolf, J Lelieveld, H Harder. (2020). Calibration of an airborne HOx instrument using the all pressure altitude-based calibrator for HOx experiment (APACHE). Atmospheric Measurement Techniques, 13: 2711–2731
https://doi.org/10.5194/amt-13-2711-2020
61 F Monforti-Ferrario, M Crippa, E ( Pisoni2024). Addressing the different paces of climate and air quality combustion emissions across the world. iScience, 27, 108686.
62 J Monjardino, L Dias, P Fortes, H Tente, F Ferreira, J Seixas. (2021). Carbon neutrality pathways effects on air pollutant emissions: the Portuguese case. Atmosphere, 12(3): 324
https://doi.org/10.3390/atmos12030324
63 N H Motlagh, E Lagerspetz, P Nurmi, X Li, S Varjonen, J Mineraud, M Siekkinen, A Rebeiro-Hargrave, T Hussein, T Petaja. et al.. (2020). Toward massive scale air quality monitoring. IEEE Communications Magazine, 58(2): 54–59
https://doi.org/10.1109/MCOM.001.1900515
64 K M Nam, C J Waugh, S Paltsev, J M Reilly, V J Karplus. (2013). Carbon co-benefits of tighter SO2 and NOx regulations in China. Global Environmental Change, 23(6): 1648–1661
https://doi.org/10.1016/j.gloenvcha.2013.09.003
65 J Nan, S Wang, Y Guo, Y Xiang, B Zhou. (2017). Study on the daytime OH radical and implication for its relationship with fine particles over megacity of Shanghai China. Atmospheric Environment, 154: 167–178
https://doi.org/10.1016/j.atmosenv.2017.01.046
66 P Prasad, M R Raman, M V Ratnam, V Ravikiran, B L Madhavan, S V Bhaskara Rao. (2019). Nocturnal, seasonal and intra-annual variability of tropospheric aerosols observed using ground-based and space-borne lidars over a tropical location of India. Atmospheric Environment, 213: 185–198
https://doi.org/10.1016/j.atmosenv.2019.06.008
67 Y Qian, Y Luo, K Dou, H Zhou, L Xi, T Yang, T Zhang, F Si. (2023b). Retrieval of tropospheric ozone profiles using ground-based MAX-DOAS. Science of the Total Environment, 857: 159341
https://doi.org/10.1016/j.scitotenv.2022.159341
68 Y Qian, Y Luo, H Zhou, T Yang, L Xi, F Si. (2023a). First retrieval of total ozone columns from EMI-2 using the DOAS method. Remote Sensing, 15(6): 1665
https://doi.org/10.3390/rs15061665
69 L Qu, J Liu, Y Deng, L Xu, K Hu, W Yang, L Jin, X Cheng. (2019). Analysis and adjustment of positioning error of PSD system for mobile SOF-FTIR. Sensors, 19(23): 5081
https://doi.org/10.3390/s19235081
70 L Qu, J Liu, L Xu, H Xu, L Jin, Y Deng, X Shen, S Shu (2021a). Vehicle exhaust detection method based on portable FTIR. Spectroscopy and Spectral Analysis, 41: 1751–1757 (in Chinese)
71 L Qu, L Xu, J Liu, M Feng, W Liu, H Xu, L Jin. (2021b). Numerical simulation analysis of portable high-speed FTIR rotary interferometers. Acta Optica Sinica, 41: 0907001
https://doi.org/10.3788/AOS202141.0907001
72 B Ren, P Xie, J Xu, A Li, X Tian, Z Hu, Y Huang, X Li, Q Zhang, H Ren. et al.. (2021). Use of the PSCF method to analyze the variations of potential sources and transports of NO2, SO2, and HCHO observed by MAX-DOAS in Nanjing, China during 2019. Science of the Total Environment, 782: 146865
https://doi.org/10.1016/j.scitotenv.2021.146865
73 A Richter, D Adukpo, S Fietkau, A Heckel, A Ladstätter-Weißenmayer, A Löwe, T Medeke, H Oetjen, F Wittrock, J P Burrows (2002). SCIAMACHY validation using ground-based DOAS measurements of the university of Bremen BREDOM network. In: Proceedings of the ENVISAT Validation Workshop; 2002 Dec 9–13; Frascati, Italy. Frascati: ESRIN
74 A Rodin, A Klimchuk, A Nadezhdinskiy, D Churbanov, D Spiridonov. (2014). High resolution heterodyne spectroscopy of the atmospheric methane NIR absorption. Optics Express, 22(11): 13825–13834
https://doi.org/10.1364/OE.22.013825
75 T Shi, G Han, X Ma, Z Pei, W Chen, J Liu, X Zhang, S Li, W Gong. (2023). Quantifying strong point sources emissions of CO2 using spaceborne LiDAR: method development and potential analysis. Energy Conversion and Management, 292: 117346
https://doi.org/10.1016/j.enconman.2023.117346
76 C Song, L Wu, Y Xie, J He, X Chen, T Wang, Y Lin, T Jin, A Wang, Y Liu. et al.. (2017). Air pollution in China: status and spatiotemporal variations. Environmental Pollution, 227: 334–347
https://doi.org/10.1016/j.envpol.2017.04.075
77 Y Song, C Xing, C Liu, J Lin, H Wu, T Liu, H Lin, C Zhang, W Tan, X Ji. et al.. (2023). Evaluation of transport processes over North China Plain and Yangtze River Delta using MAX-DOAS observations. Atmospheric Chemistry and Physics, 23(3): 1803–1824
https://doi.org/10.5194/acp-23-1803-2023
78 W Su, C Liu, K L Chan, Q Hu, H Liu, X Ji, Y Zhu, T Liu, C Zhang, Y Chen. et al.. (2020). An improved TROPOMI tropospheric HCHO retrieval over China. Atmospheric Measurement Techniques, 13(11): 6271–6292
https://doi.org/10.5194/amt-13-6271-2020
79 W Su, C Liu, Q Hu, C Zhang, H Liu, C Xia, F Zhao, T Liu, J Lin, Y Chen. (2022a). First global observation of tropospheric formaldehyde from Chinese GaoFen-5 satellite: locating source of volatile organic compounds. Environmental Pollution, 297: 118691
https://doi.org/10.1016/j.envpol.2021.118691
80 N Sugimoto, T Nishizawa, A Shimizu, I Matsui, Y Jin. (2014). Characterization of aerosols in east Asia with the Asian dust and aerosol lidar observation network (AD-Net). Lidar remote sensing for environmental monitoring XIV. SPIE, 9262: 74–82
81 Y Sun, C Frankenberg, J D Wood, D S Schimel, M Jung, L Guanter, D T Drewry, M Verma, A Porcar-Castell, T J Griffis. et al.. (2017). OCO-2 advances photosynthesis observation from space via solar-induced chlorophyll fluorescence. Science, 358(6360): eaam5747
https://doi.org/10.1126/science.aam5747
82 Z Sun, S Wang, Y Yan, J Zhu, G Tang, W Gao, W Dai, B Zhou. (2023). Observationally constrained modelling of NO3 radical in different altitudes: implication to vertically resolved nocturnal chemistry. Atmospheric Research, 286: 106674
https://doi.org/10.1016/j.atmosres.2023.106674
83 T Tan, Z Cao, G Wang, L Wang, K Liu, Y Huang, W Chen, X Gao (2015). Study on the technology of the 4.4 μm mid-infrared laser heterodyne spectrum. Spectroscopy and Spectral Analysis, 35: 1516–1519 (in Chinese)
84 T M Thompson, S Rausch, R K Saari, N E Selin. (2014). A systems approach to evaluating the air quality co-benefits of US carbon policies. Nature Climate Change, 4(10): 917–923
https://doi.org/10.1038/nclimate2342
85 X Tian, Z Wang, P Xie, J Xu, A Li, Y Pan, F Hu, Z Hu, M Chen, J Zheng. (2024). A CNN-SVR model for NO2 profile prediction based on MAX-DOAS observations: the influence of Chinese New Year overlapping the 2020 COVID-19 lockdown on vertical distributions of tropospheric NO2 in Nanjing, China. Journal of Environmental Sciences (China), 141: 151–165
https://doi.org/10.1016/j.jes.2023.09.007
86 G Toon, J-F Blavier, R Washenfelder, D Wunch, G Keppel-Aleks, P Wennberg, B Connor, V Sherlock, D Griffith, N Deutscher, et al. (2009). Total column carbon observing network (TCCON). Hyperspectral Imaging and Sensing of the Environment. Washington, DC: Optica Publishing Group
87 T Vlemmix, A J M Piters, A J C Berkhout, L F L Gast, P Wang, P F Levelt (2011). Ability of the MAX-DOAS method to derive profile information for NO2: Can the boundary layer and free troposphere be separated? Atmospheric Measurement Techniques, 4(12): 2659–2684 10.5194/amt-4-2659-2011
88 C Wang, J Qiao, Y Song, Q Yang, D Wang, Q Zhang, Z Shu, Q Xiong. (2022). In situ quantification of NO synthesis in a warm air glow discharge by WMS-based Mid-IR QCL absorption spectroscopy. Plasma Science & Technology, 24(4): 045503
https://doi.org/10.1088/2058-6272/ac496e
89 F Wang, R Hu, H Chen, P Xie, Y Wang, Z Li, H Jin, J Liu, W Liu. (2019). Development of a field system for measurement of tropospheric OH radical using laser-induced fluorescence technique. Optics Express, 27(8): A419–A435
https://doi.org/10.1364/OE.27.00A419
90 H Wang, J Zhou, X Li, Q Ling, H Wei, L Gao, Y He, M Zhu, X Xiao, Y Liu. et al.. (2023). Review on recent progress in on-line monitoring technology for atmospheric pollution source emissions in China. Journal of Environmental Sciences (China), 123: 367–386
https://doi.org/10.1016/j.jes.2022.06.043
91 X Wang, T Zhang, Y Xiang, L Lv, G Fan, J Ou. (2021c). Investigation of atmospheric ozone during summer and autumn in Guangdong Province with a lidar network. Science of the Total Environment, 751: 141740
https://doi.org/10.1016/j.scitotenv.2020.141740
92 Y Wang, C Guo, X Chen, L Jia, X Guo, R Chen, M Zhang, Z Chen, H Wang. (2021a). Carbon peak and carbon neutrality in China: goals, implementation path and prospects. China Geology, 4(0): 720–746
https://doi.org/10.31035/cg2021083
93 Y Wang, R Hu, P Xie, H Chen, F Wang, X Liu, J Liu, W Liu. (2021d). Measurement of tropospheric HO2 radical using fluorescence assay by gas expansion with low interferences. Journal of Environmental Sciences (China), 99: 40–50
https://doi.org/10.1016/j.jes.2020.06.010
94 Y Wang, J Liu, L Xu, W Liu, Q Song, L Jin, H Xu (2021b). Quantitative analysis of accuracy of concentration inversion under different temperature and pressure. Acta Physica Sinica, 70(7): 073201 (in Chinese) 10.7498/aps.70.20201672
95 D Weidmann, A Hoffmann, N Macleod, K Middleton, J Kurtz, S Barraclough, D Griffin. (2017). The methane isotopologues by solar occultation (MISO) nanosatellite mission: spectral channel optimization and early performance analysis. Remote Sensing, 9(10): 1073
https://doi.org/10.3390/rs9101073
96 D Weidmann, B J Perrett, N A Macleod, R M Jenkins. (2011). Hollow waveguide photomixing for quantum cascade laser heterodyne spectro-radiometry. Optics Express, 19(10): 9074–9085
https://doi.org/10.1364/OE.19.009074
97 E J Welton, S A Stewart, J R Lewis, L R Belcher, J R Campbell, S Lolli. (2018). Status of the NASA micro pulse lidar network (MPLNET): overview of the network and future plans, new version 3 data products, and the polarized MPL. EPJ Web of Conferences, 176: 09003
https://doi.org/10.1051/epjconf/201817609003
98 E L Wilson, A J DiGregorio, V J Riot, M S Ammons, W W Bruner, D Carter, J Mao, A Ramanathan, S E Strahan, L D Oma. et al.. (2017). 4 U laser heterodyne radiometer for methane (CH4) and carbon dioxide (CO2) measurements from an occultation-viewing CubeSat. Measurement Science & Technology, 28(3): 035902
https://doi.org/10.1088/1361-6501/aa5440
99 C N Wong, L J Hall. (1985). Servo control of amplitude modulation in frequency-modulation spectroscopy: demonstration of shot-noise-limited detection. Journal of the Optical Society of America. B, Optical Physics, 2(9): 1527–1533
https://doi.org/10.1364/JOSAB.2.001527
100 L Xi, F Si, Y Jiang, H Zhou, K Zhan, Z Chang, X Qiu, D Yang. (2021). First high-resolution tropospheric NO2 observations from the ultraviolet visible hyperspectral imaging spectrometer (UVHIS). Atmospheric Measurement Techniques, 14(1): 435–454
https://doi.org/10.5194/amt-14-435-2021
101 C Xia, C Liu, Z Cai, X Duan, F Zhao, H Liu, X Ji, J Liu. (2020). Evaluation of the accuracy of the Sentinel-5 precursor operational SO2 products over China. Science Bulletin, 65(20): 2106–2111
https://doi.org/10.1360/TB-2019-0772
102 C Xia, C Liu, Z Cai, F Zhao, W Su, C Zhang, Y Liu. (2021a). First sulfur dioxide observations from the environmental trace gases monitoring instrument (EMI) onboard the GaoFen-5 satellite. Science Bulletin, 66(10): 969–973
https://doi.org/10.1016/j.scib.2021.01.018
103 Y Xiang, T Zhang, C Ma, L Lv, J Liu, W Liu, Y Cheng. (2021). Lidar vertical observation network and data assimilation reveal key processes driving the 3-D dynamic evolution of PM2.5 concentrations over the North China Plain. Atmospheric Chemistry and Physics, 21(9): 7023–7037
https://doi.org/10.5194/acp-21-7023-2021
104 C Xing, C Liu, Q Hu, Q Fu, H Lin, S Wang, W Su, W Wang, Z Javed, J Liu. (2020). Identifying the wintertime sources of volatile organic compounds (VOCs) from MAX-DOAS measured formaldehyde and glyoxal in Chongqing, southwest China. Science of the Total Environment, 715: 136258
https://doi.org/10.1016/j.scitotenv.2019.136258
105 C Xing, C Liu, Q Li, S Wang, W Tan, T Zou, Z Wang, C Lu. (2024). Observations of HONO and its precursors between urban and its surrounding agricultural fields: the vertical transports, sources and contribution to OH. Science of the Total Environment, 915: 169159
https://doi.org/10.1016/j.scitotenv.2023.169159
106 C Xing, C Liu, S Wang, K L Chan, Y Gao, X Huang, W Su, C Zhang, Y Dong, G Fan. et al.. (2017). Observations of the vertical distributions of summertime atmospheric pollutants and the corresponding ozone production in Shanghai, China. Atmospheric Chemistry and Physics, 17(23): 14275–14289
https://doi.org/10.5194/acp-17-14275-2017
107 C Xing, C Liu, S Wang, Q Hu, H Liu, W Tan, W Zhang, B Li, J Liu. (2019). A new method to determine the aerosol optical properties from multiple-wavelength O4 absorptions by MAX-DOAS observation. Atmospheric Measurement Techniques, 12(6): 3289–3302
https://doi.org/10.5194/amt-12-3289-2019
108 C Xing, C Liu, H Wu, J Lin, F Wang, S Wang, M Gao. (2021). Ground-based vertical profile observations of atmospheric composition on the Tibetan Plateau (2017–2019). Earth System Science Data, 13(10): 4897–4912
https://doi.org/10.5194/essd-13-4897-2021
109 C Xing, S Xu, Y Song, C Liu, Y Liu, K Lu, W Tan, C Zhang, Q Hu, S Wang. et al.. (2023). A new insight into the vertical differences in NO2 heterogeneous reaction to produce HONO over inland and marginal seas. Atmospheric Chemistry and Physics, 23(10): 5815–5834
https://doi.org/10.5194/acp-23-5815-2023
110 B Xu, X Ye, Y Zhang, X Yang, F Li (2020). Emission characteristics of VOCs from urban catering using portable FTIR technology. Journal of Atmospheric and Environmental Optics, 15: 357–364 (in Chinese)
111 L Xu, J Liu, M Gao, Y Lu, W Liu, X Wei, J Zhu, T Zhang, J Chen (2007a). Monitoring and analysis of CO2 and CH4 using long path FTIR spectroscopy over Beijing. Spectroscopy and Spectral Analysis, 27: 889–891 (in Chinese)
112 L Xu, J Liu, M Gao, Y Lu, X Wei, T Zhang, J Zhu, J Chen (2007b). Application of long open path FTIR system in ambient air monitoring. Spectroscopy and Spectral Analysis, 27: 448–451 (in Chinese)
113 Y Yan, S Wang, J Zhu, Y Guo, G Tang, B Liu, X An, Y Wang, B Zhou. (2021). Vertically increased NO3 radical in the nocturnal boundary layer. Science of the Total Environment, 763: 142969
https://doi.org/10.1016/j.scitotenv.2020.142969
114 X Yang, X Guo, Y Wang. (2023). Characteristics of carbon emission transfer under carbon neutrality and carbon peaking background and the impact of environmental policies and regulations on it. Sustainability, 15(9): 7528
https://doi.org/10.3390/su15097528
115 F Yuan, M Hu, Y He, B Chen, L Yao, Z Xu, R Kan. (2020). Development of an in-situ analysis system for methane dissolved in seawater based on cavity ringdown spectroscopy. Review of Scientific Instruments, 91(8): 083106
https://doi.org/10.1063/5.0004742
116 C Zhang, C Liu, K L Chan, Q Hu, H Liu, B Li, C Xing, W Tan, H Zhou, F Si. et al.. (2020a). First observation of tropospheric nitrogen dioxide from the Environmental Trace Gases Monitoring Instrument onboard the GaoFen-5 satellite. Light, Science & Applications, 9(1): 66
https://doi.org/10.1038/s41377-020-0306-z
117 C Zhang, C Liu, Y Wang, F Si, H Zhou, M Zhao, W Su, W Zhang, K L Chan, X Liu. et al.. (2018). Preflight evaluation of the performance of the Chinese Environmental Trace Gas Monitoring Instrument (EMI) by spectral analyses of nitrogen dioxide. IEEE Transactions on Geoscience and Remote Sensing, 56(6): 3323–3332
https://doi.org/10.1109/TGRS.2018.2798038
118 G Zhang, R Hu, P Xie, C Hu, X Liu, L Zhong, H Cai, B Zhu, S Xia, X Huang, et al. (2023). Intensive photochemical oxidation in the marine atmosphere: evidence from direct radical measurements. EGUsphere, 1–31
119 G Zhang, R Hu, P Xie, S Lou, F Wang, Y Wang, M Qin, X Li, X Liu, Y Wang. et al.. (2022b). Observation and simulation of HOx radicals in an urban area in Shanghai, China. Science of the Total Environment, 810: 152275
https://doi.org/10.1016/j.scitotenv.2021.152275
120 G Zhang, R Hu, P Xie, K Lu, S Lou, X Liu, F Wang, Y Wang, X Yang, H Cai. et al.. (2022a). Intercomparison of OH radical measurement in a complex atmosphere in Chengdu, China. Science of the Total Environment, 838: 155924
https://doi.org/10.1016/j.scitotenv.2022.155924
121 S Zhang, S Wang, R Xue, J Zhu, A Tanvir, D Li, B ( Zhou2022). Impact assessment of COVID-19 lockdown on vertical distributions of NO2 and HCHO from MAX-DOAS observations and machine learning models. Journal of Geophysical Research–Atmospheres, 127, e2021JD036377
122 F Zhao, C Liu, Z Cai, X Liu, J Bak, J Kim, Q Hu, C Xia, C Zhang, Y Sun. et al.. (2021). Ozone profile retrievals from TROPOMI: implication for the variation of tropospheric ozone during the outbreak of COVID-19 in China. Science of the Total Environment, 764: 142886
https://doi.org/10.1016/j.scitotenv.2020.142886
123 F Zhao, C Liu, Q Hu, C Xia, C Zhang, W Su (2023). High spatial resolution ozone profiles retrieved from the first Chinese ultraviolet-visible hyperspectral satellite instrument. Engineering, in press, 10.1016/j.eng.2023.02.020
124 X Zhao, X Ma, B Chen, Y Shang, M Song. (2022). Challenges toward carbon neutrality in China: strategies and countermeasures. Resources, Conservation and Recycling, 176: 105959
https://doi.org/10.1016/j.resconrec.2021.105959
125 J Zheng, Z Mi, D Coffman, S Milcheva, Y Shan, D Guan, S Wang. (2019). Regional development and carbon emissions in China. Energy Economics, 81: 25–36
https://doi.org/10.1016/j.eneco.2019.03.003
[1] Jiuhui Qu, Jiaping Chen. Pathways toward a pollution-free planet and challenges[J]. Front. Environ. Sci. Eng., 2024, 18(6): 67-.
[2] Bin Zhao, Shuxiao Wang, Jiming Hao. Challenges and perspectives of air pollution control in China[J]. Front. Environ. Sci. Eng., 2024, 18(6): 68-.
[3] Bruce Logan, Fang Zhang, Wulin Yang, Le Shi. Your personal choices in transportation and food are important for lowering carbon emissions[J]. Front. Environ. Sci. Eng., 2024, 18(6): 70-.
[4] Sumit Kumar, Sonali Banerjee, Saibal Ghosh, Santanu Majumder, Jajati Mandal, Pankaj Kumar Roy, Pradip Bhattacharyya. Appraisal of pollution and health risks associated with coal mine contaminated soil using multimodal statistical and Fuzzy-TOPSIS approaches[J]. Front. Environ. Sci. Eng., 2024, 18(5): 60-.
[5] Jianxun Yang, Yunqi Liu, Berry van den Berg, Susie Wang, Lele Chen, Miaomiao Liu, Jun Bi. Clean air captures attention whereas pollution distracts: evidence from brain activities[J]. Front. Environ. Sci. Eng., 2024, 18(4): 41-.
[6] Chengjun Li, Riqing Yu, Wenjing Ning, Huan Zhong, Christian Sonne. Embracing digital mindsets to ensure a sustainable future[J]. Front. Environ. Sci. Eng., 2024, 18(3): 39-.
[7] Hailong Yin, Yiyuan Lin, Huijin Zhang, Ruibin Wu, Zuxin Xu. Identification of pollution sources in rivers using a hydrodynamic diffusion wave model and improved Bayesian-Markov chain Monte Carlo algorithm[J]. Front. Environ. Sci. Eng., 2023, 17(7): 85-.
[8] Yuhan Zhao, Xiaoping Kang, Xue Tian, Lulu Liu, Zemeng Zhao, Lili Luo, Lixin Tao, Xiangtong Liu, Xiaonan Wang, Xiuhua Guo, Juan Xia, Yanxia Luo. Long-term exposure to air pollution and cerebrovascular disease: findings from Beijing Health Management Cohort study[J]. Front. Environ. Sci. Eng., 2023, 17(7): 84-.
[9] Yang Xie, Hua Zhong, Zhixiong Weng, Xinbiao Guo, Satbyul Estella Kim, Shaowei Wu. PM2.5 concentration declining saves health expenditure in China[J]. Front. Environ. Sci. Eng., 2023, 17(7): 90-.
[10] Xingyue Qu, Peihe Zhai, Longqing Shi, Xingwei Qu, Ahmer Bilal, Jin Han, Xiaoge Yu. Distribution, enrichment mechanism and risk assessment for fluoride in groundwater: a case study of Mihe-Weihe River Basin, China[J]. Front. Environ. Sci. Eng., 2023, 17(6): 70-.
[11] Tao Ya, Zhimin Wang, Junyu Liu, Minglu Zhang, Lili Zhang, Xiaojing Liu, Yuan Li, Xiaohui Wang. Responses of microbial interactions to elevated salinity in activated sludge microbial community[J]. Front. Environ. Sci. Eng., 2023, 17(5): 60-.
[12] Zhen Cheng, Xinghua Qiu, Xiaodi Shi, Xing Jiang, Tong Zhu. Discovery of emerging organic pollutants in the atmosphere through an omics approach[J]. Front. Environ. Sci. Eng., 2023, 17(4): 45-.
[13] Jianxun Yang, Qi Gao, Miaomiao Liu, John S. Ji, Jun Bi. Same stimuli, different responses: a pilot study assessing air pollution visibility impacts on emotional well-being in a controlled environment[J]. Front. Environ. Sci. Eng., 2023, 17(2): 20-.
[14] Samal Kaumbekova, Mehdi Amouei Torkmahalleh, Naoya Sakaguchi, Masakazu Umezawa, Dhawal Shah. Effect of ambient polycyclic aromatic hydrocarbons and nicotine on the structure of Aβ42 protein[J]. Front. Environ. Sci. Eng., 2023, 17(2): 15-.
[15] Muhammad Masood Ashiq, Farhad Jazaei, Kati Bell, Ahmed Shakir Ali Ali, Alireza Bakhshaee, Peyman Babakhani. Abundance, spatial distribution, and physical characteristics of microplastics in stormwater detention ponds[J]. Front. Environ. Sci. Eng., 2023, 17(10): 124-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed