Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2024, Vol. 18 Issue (6) : 68    https://doi.org/10.1007/s11783-024-1828-z
Challenges and perspectives of air pollution control in China
Bin Zhao1,2, Shuxiao Wang1,2(), Jiming Hao1,2()
1. State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
2. State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex, Beijing 100084, China
 Download: PDF(5301 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● Major challenges of air pollution control in China are summarized.

● A“health-oriented” air pollution control strategy is proposed.

● Directions of air quality standard amendments are discussed.

● “One-atmosphere” concept shall be adopted to synergistically address multiple issues.

Air pollution is one of the most challenging environmental issues in the world. China has achieved remarkable success in improving air quality in last decade as a result of aggressive air pollution control policies. However, the average fine particulate matter (PM2.5) concentration in China is still about six times of the World Health Organization (WHO) Global Air Quality Guidelines (AQG) and causing significant human health risks. Extreme emission reductions of multiple air pollutants are required for China to achieve the AQG. Here we identify the major challenges in future air quality improvement and propose corresponding control strategies. The main challenges include the persistently high health risk attributed to PM2.5 pollution, the excessively loose air quality standards, and coordinated control of air pollution, greenhouse gases (GHGs) emissions and emerging pollutants. To further improve air quality and protect human health, a health-oriented air pollution control strategy shall be implemented by tightening the air quality standards as well as optimizing emission reduction pathways based on the health risks of various sources. In the meantime, an “one-atmosphere” concept shall be adopted to strengthen the synergistic control of air pollutants and GHGs and the control of non-combustion sources and emerging pollutants shall be enhanced.

Keywords Air pollution      China      Health impact      Air quality standards      GHGs      Emerging pollutants     
Corresponding Author(s): Shuxiao Wang,Jiming Hao   
About author:

Li Liu and Yanqing Liu contributed equally to this work.

Issue Date: 18 April 2024
 Cite this article:   
Bin Zhao,Shuxiao Wang,Jiming Hao. Challenges and perspectives of air pollution control in China[J]. Front. Environ. Sci. Eng., 2024, 18(6): 68.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-024-1828-z
https://academic.hep.com.cn/fese/EN/Y2024/V18/I6/68
Fig.1  Comparison of current NAAQS in China and the WHO AQG and that of other countries.
Fig.2  Future perspectives of China’s air pollution control strategies.
  
  
1 S F I Abdillah, Y F Wang. (2023). Ambient ultrafine particle (PM0.1): sources, characteristics, measurements and exposure implications on human health. Environmental Research, 218: 115061
https://doi.org/10.1016/j.envres.2022.115061
2 X Chang, B Zhao, H Zheng, S Wang, S Cai, F Guo, P Gui, G Huang, D Wu, L Han. et al.. (2022). Full-volatility emission framework corrects missing and underestimated secondary organic aerosol sources. One Earth, 5(4): 403–412
https://doi.org/10.1016/j.oneear.2022.03.015
3 J Cheng, D Tong, Y Liu, G Geng, S J Davis, K He, Q Zhang. (2023). A synergistic approach to air pollution control and carbon neutrality in China can avoid millions of premature deaths annually by 2060. One Earth, 6(8): 978–989
https://doi.org/10.1016/j.oneear.2023.07.007
4 C E Enyoh, A W Verla, W Qingyue, F O Ohiagu, A H Chowdhury, E C Enyoh, T Chowdhury, E N Verla, U P Chinwendu. (2020). An overview of emerging pollutants in air: method of analysis and potential public health concern from human environmental exposure. Trends in Environmental Analytical Chemistry, 28: e00107
https://doi.org/10.1016/j.teac.2020.e00107
5 Y Gu, T W Wong, C K Law, G H Dong, K F Ho, Y Yang, S H L Yim. (2018). Impacts of sectoral emissions in China and the implications: air quality, public health, crop production, and economic costs. Environmental Research Letters, 13(8): 084008
https://doi.org/10.1088/1748-9326/aad138
6 L Henneman, C Choirat, I Dedoussi, F Dominici, J Roberts, C Zigler. (2023). Mortality risk from United States coal electricity generation. Science, 382(6673): 941–946
https://doi.org/10.1126/science.adf4915
7 Y Hu, J S Ji, B Zhao. (2022). Deaths attributable to indoor PM2.5 in urban China when outdoor air meets 2021 WHO air quality guidelines. Environmental Science & Technology, 56(22): 15882–15891
https://doi.org/10.1021/acs.est.2c03715
8 of Energy of Peking University Institute (2023). China Dispersed Coal Management Report 2023. Beijing: Institute of Energy, Peking University
9 Y Jiang, D Ding, Z Dong, S Liu, X Chang, H Zheng, J Xing, S Wang. (2023). Extreme emission reduction requirements for China to achieve World Health Organization global air quality guidelines. Environmental Science & Technology, 57(11): 4424–4433
https://doi.org/10.1021/acs.est.2c09164
10 P J Barroso, J L Santos, J Martín, I Aparicio, E. Alonso. (2019). Emerging contaminants in the atmosphere: Analysis, occurrence and future challenges. Critical Reviews in Environmental Science and Technology, 49(2): 104–171
https://doi.org/10.1080/10643389.2018.1540761
11 H KanR J Chen Q Y FuY Niu (2023). Development of health-oriented standards of ambient air quality: methodology to set and its practice in Shanghai, China. Shanghai: Fudan University
12 Y Lei, Z Yin, X Lu, Q Zhang, J Gong, B Cai, C Cai, Q Chai, H Chen, R Chen. et al.. (2024). The 2022 report of synergetic roadmap on carbon neutrality and clean air for China: accelerating transition in key sectors. Environmental Science and Ecotechnology, 19: 100335
https://doi.org/10.1016/j.ese.2023.100335
13 S Li, S Wang, Q Wu, Y Zhang, D Ouyang, H Zheng, L Han, X Qiu, Y Wen, M Liu. et al.. (2023). Emission trends of air pollutants and CO2 in China from 2005 to 2021. Earth System Science Data, 15(6): 2279–2294
https://doi.org/10.5194/essd-15-2279-2023
14 N Liu, W Liu, F Deng, Y Liu, X Gao, L Fang, Z Chen, H Tang, S Hong, M Pan. et al.. (2023a). The burden of disease attributable to indoor air pollutants in China from 2000 to 2017. Lancet. Planetary Health, 7(11): e900–e911
https://doi.org/10.1016/S2542-5196(23)00215-2
15 S Liu, H Tian, C Zhu, K Cheng, Y Wang, L Luo, X Bai, Y Hao, S Lin, S Zhao. et al.. (2023b). Reduced but still noteworthy atmospheric pollution of trace elements in China. One Earth, 6(5): 536–547
https://doi.org/10.1016/j.oneear.2023.04.006
16 Y Liu, D Tong, J Cheng, S J Davis, S Yu, B Yarlagadda, L E Clarke, M Brauer, A J Cohen, H Kan. et al.. (2022). Role of climate goals and clean-air policies on reducing future air pollution deaths in China: a modelling study. Lancet. Planetary Health, 6(2): e92–e99
https://doi.org/10.1016/S2542-5196(21)00326-0
17 of Ecology Ministryof China Environment (2023). Bulletin on the State of China’s Ecological Environment. Beijing: Ministry of Ecology and Environment of China
18 W Mrozik, M A Rajaeifar, O Heidrich, P Christensen. (2021). Environmental impacts, pollution sources and pathways of spent lithium-ion batteries. Energy & Environmental Science, 14(12): 6099–6121
https://doi.org/10.1039/D1EE00691F
19 C J Nielsen, H Herrmann, C Weller. (2012). Atmospheric chemistry and environmental impact of the use of amines in carbon capture and storage (CCS). Chemical Society Reviews, 41(19): 6684–6704
https://doi.org/10.1039/c2cs35059a
20 S Ohlwein, R Kappeler, Joss M Kutlar, N Künzli, B Hoffmann. (2019). Health effects of ultrafine particles: a systematic literature review update of epidemiological evidence. International Journal of Public Health, 64(4): 547–559
https://doi.org/10.1007/s00038-019-01202-7
21 H O T Pye, C K Ward-Caviness, B N Murphy, K W Appel, K M Seltzer. (2021). Secondary organic aerosol association with cardiorespiratory disease mortality in the United States. Nature Communications, 12(1): 7215
https://doi.org/10.1038/s41467-021-27484-1
22 D E Schraufnagel. (2020). The health effects of ultrafine particles. Experimental & Molecular Medicine, 52(3): 311–317
https://doi.org/10.1038/s12276-020-0403-3
23 Q Song, N Zhang, Y Zhang, D Yin, J Hao, S Wang, S Li, W Xu, W Yan, X Meng. et al.. (2024). The development of local ambient air quality standards: a case study of Hainan Province, China. Eco-Environment & Health, 3(1): 11–20
https://doi.org/10.1016/j.eehl.2023.10.002
24 M Strak, G Weinmayr, S Rodopoulou, J Chen, Hoogh K De, Z J Andersen, R Atkinson, M Bauwelinck, T Bekkevold, T Bellander. et al.. (2021). Long term exposure to low level air pollution and mortality in eight European cohorts within the ELAPSE project: pooled analysis. BMJ, 374: n1904
https://doi.org/10.1136/bmj.n1904
25 M Tawalbeh, A Al-Othman, F Kafiah, E Abdelsalam, F Almomani, M Alkasrawi. (2021). Environmental impacts of solar photovoltaic systems: a critical review of recent progress and future outlook. Science of the Total Environment, 759: 143528
https://doi.org/10.1016/j.scitotenv.2020.143528
26 S Weichenthal, L Pinault, T Christidis, R T Burnett, J R Brook, Y Chu, D L Crouse, A C Erickson, P Hystad, C Li. et al.. (2022). How low can you go? Air pollution affects mortality at very low levels. Science Advances, 8(39): eabo3381
https://doi.org/10.1126/sciadv.abo3381
27 D Wu, H Zheng, Q Li, L Jin, R Lyu, X Ding, Y Huo, B Zhao, J Jiang, J Chen. et al.. (2022). Toxic potency-adjusted control of air pollution for solid fuel combustion. Nature Energy, 7(2): 194–202
https://doi.org/10.1038/s41560-021-00951-1
28 D Wu, H Zheng, Q Li, S Wang, B Zhao, L Jin, R Lyu, S Li, Y Liu, X Chen. et al.. (2023). Achieving health-oriented air pollution control requires integrating unequal toxicities of industrial particles. Nature Communications, 14(1): 6491
https://doi.org/10.1038/s41467-023-42089-6
29 T Xue, Y Zheng, X Li, J Liu, Q Zhang, T Zhu. (2021). A component-specific exposure–mortality model for ambient PM2.5 in China: findings from nationwide epidemiology based on outputs from a chemical transport model. Faraday Discussions, 226: 551–568
https://doi.org/10.1039/D0FD00093K
30 L Yao, O Garmash, F Bianchi, J Zheng, C Yan, J Kontkanen, H Junninen, S B Mazon, M Ehn, P Paasonen. et al.. (2018). Atmospheric new particle formation from sulfuric acid and amines in a Chinese megacity. Science, 361(6399): 278–281
https://doi.org/10.1126/science.aao4839
31 X Zhang, B Gu, H Van Grinsven, S K Lam, X Liang, M Bai, D Chen. (2020). Societal benefits of halving agricultural ammonia emissions in China far exceed the abatement costs. Nature Communications, 11(1): 4357
https://doi.org/10.1038/s41467-020-18196-z
32 B Zhao, H Zheng, S Wang, K R Smith, X Lu, K Aunan, Y Gu, Y Wang, D Ding, J Xing. et al.. (2018). Change in household fuels dominates the decrease in PM2.5 exposure and premature mortality in China in 2005–2015. Proceedings of the National Academy of Sciences of the United States of America, 115(49): 12401–12406
https://doi.org/10.1073/pnas.1812955115
33 H Zheng, S Li, Y Jiang, Z Dong, D Yin, B Zhao, Q Wu, K Liu, S Zhang, Y Wu. et al.. (2024). Unpacking the factors contributing to changes in PM2.5-associated mortality in China from 2013 to 2019. Environment International, 184: 108470
https://doi.org/10.1016/j.envint.2024.108470
34 H Zheng (2021). Study on the trends of sources and health impacts of fine particulate matters in China. Dissertation for the Doctoral Degree. Beijing: Tsinghua University
[1] Changbo Qin, Qiang Xue, Jiawei Zhang, Lu Lu, Shangao Xiong, Yang Xiao, Xiaojing Zhang, Jinnan Wang. A Beautiful China Initiative Towards the Harmony between Humanity and the Nature[J]. Front. Environ. Sci. Eng., 2024, 18(6): 71-.
[2] Xinke Song, Shihui Zhang, Hai Huang, Qun Ding, Fang Guo, Yaxin Zhang, Jin Li, Mingyu Li, Wenjia Cai, Can Wang. A systematic review of the inequality of health burdens related to climate change[J]. Front. Environ. Sci. Eng., 2024, 18(5): 63-.
[3] Hankun Yang, Yujuan Li, Hongyu Liu, Nigel J. D. Graham, Xue Wu, Jiawei Hou, Mengjie Liu, Wenyu Wang, Wenzheng Yu. The variation of DOM during long distance water transport by the China South to North Water Diversion Scheme and impact on drinking water treatment[J]. Front. Environ. Sci. Eng., 2024, 18(5): 59-.
[4] Jianxun Yang, Yunqi Liu, Berry van den Berg, Susie Wang, Lele Chen, Miaomiao Liu, Jun Bi. Clean air captures attention whereas pollution distracts: evidence from brain activities[J]. Front. Environ. Sci. Eng., 2024, 18(4): 41-.
[5] Zhou Yang, Murui Zheng, Ze-Lin Yan, Hui Liu, Xiangyi Liu, Jie-Qi Jin, Jiagang Wu, Chun-Quan Ou. Magnitude and direction of temperature variability affect hospitalization for myocardial infarction and stroke: population-based evidence from Guangzhou, China[J]. Front. Environ. Sci. Eng., 2024, 18(3): 27-.
[6] Hao Zheng, Jian Cheng, Hung Chak Ho, Baoli Zhu, Zhen Ding, Wencong Du, Xin Wang, Yang Yu, Juan Fei, Zhiwei Xu, Jinyi Zhou, Jie Yang. Evaluating the short-term effect of ambient temperature on non-fatal outdoor falls and road traffic injuries among children and adolescents in China: a time-stratified case-crossover study[J]. Front. Environ. Sci. Eng., 2023, 17(9): 105-.
[7] Yuhan Zhao, Xiaoping Kang, Xue Tian, Lulu Liu, Zemeng Zhao, Lili Luo, Lixin Tao, Xiangtong Liu, Xiaonan Wang, Xiuhua Guo, Juan Xia, Yanxia Luo. Long-term exposure to air pollution and cerebrovascular disease: findings from Beijing Health Management Cohort study[J]. Front. Environ. Sci. Eng., 2023, 17(7): 84-.
[8] Yang Xie, Hua Zhong, Zhixiong Weng, Xinbiao Guo, Satbyul Estella Kim, Shaowei Wu. PM2.5 concentration declining saves health expenditure in China[J]. Front. Environ. Sci. Eng., 2023, 17(7): 90-.
[9] Yujie Pan, Yalan Li, Hongxia Peng, Yiping Yang, Min Zeng, Yang Xie, Yao Lu, Hong Yuan. Relationship between groundwater cadmium and vicinity resident urine cadmium levels in the non-ferrous metal smelting area, China[J]. Front. Environ. Sci. Eng., 2023, 17(5): 56-.
[10] Zhen Cheng, Xinghua Qiu, Xiaodi Shi, Xing Jiang, Tong Zhu. Discovery of emerging organic pollutants in the atmosphere through an omics approach[J]. Front. Environ. Sci. Eng., 2023, 17(4): 45-.
[11] Jianxun Yang, Qi Gao, Miaomiao Liu, John S. Ji, Jun Bi. Same stimuli, different responses: a pilot study assessing air pollution visibility impacts on emotional well-being in a controlled environment[J]. Front. Environ. Sci. Eng., 2023, 17(2): 20-.
[12] Xiao Li, Yanan Ren, Xuezhao Chen, Yang Li, Marian R. Chertow. Exploring the development of municipal solid waste disposal facilities in Chinese cities: patterns and drivers[J]. Front. Environ. Sci. Eng., 2023, 17(11): 139-.
[13] Xiang Zhang, Yue Xuan, Bin Wang, Chuan Gao, Shengli Niu, Gaiju Zhao, Dong Wang, Junhua Li, Chunmei Lu, John C. Crittenden. Precise regulation of acid pretreatment for red mud SCR catalyst: Targeting on optimizing the acidity and reducibility[J]. Front. Environ. Sci. Eng., 2022, 16(7): 88-.
[14] Jiuli Yang, Mingyang Liu, Qu Cheng, Lingyue Yang, Xiaohui Sun, Haidong Kan, Yang Liu, Michelle L. Bell, Rohini Dasan, Huiwang Gao, Xiaohong Yao, Yang Gao. Investigating the impact of air pollution on AMI and COPD hospital admissions in the coastal city of Qingdao, China[J]. Front. Environ. Sci. Eng., 2022, 16(5): 56-.
[15] Elizabeth Eastman, Kelly A. Stevens, Cesunica Ivey, Haofei Yu. On the potential of iPhone significant location data to characterize individual mobility for air pollution health studies[J]. Front. Environ. Sci. Eng., 2022, 16(5): 63-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed