Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2023, Vol. 17 Issue (4) : 45    https://doi.org/10.1007/s11783-023-1645-9
REVIEW ARTICLE
Discovery of emerging organic pollutants in the atmosphere through an omics approach
Zhen Cheng, Xinghua Qiu(), Xiaodi Shi, Xing Jiang, Tong Zhu
State Key Joint Laboratory for Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Center for Environment and Health, Peking University, Beijing 100871, China
 Download: PDF(1520 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

● We review the framework of discovering emerging pollutants through an omics approach.

● High-resolution MS can digitalize atmospheric samples to full-component data.

● Chemical features and databases can help to translate untargeted data to compounds.

● Biological effect-directed untargeted analyses consider both existence and toxicity.

Ambient air pollution, containing numerous known and hitherto unknown compounds, is a major risk factor for public health. The discovery of harmful components is the prerequisite for pollution control; however, this raises a great challenge on recognizing previously unknown species. Here we systematically review the analytical techniques on air pollution in the framework of an omics approach, with a brief introduction on sample preparation and analysis, and in more detail, compounds prioritization and identification. Through high-resolution mass spectrometry (HRMS, typically coupled with chromatography), the complicated environmental matrix can be digitalized into “full-component” data. A key step to discover emerging compounds is the prioritization of compounds from massive data. Chemical fingerprints, suspect lists and biological effects are the most vital untargeted strategies for comprehensively screening critical and hazardous substances. Afterward, compressed data of compounds can be identified at various confidence levels according to exact mass and the derived molecular formula, MS libraries, and authentic standards. Such an omics approach on full-component data provides a paradigm for discovering emerging air pollutants; nonetheless, new technological advancements of instruments and databases are warranted for further tracking the environmental behaviors, hence to evaluate the health risk of key pollutants.

Keywords Air pollution      Emerging pollutants      Full-component      High-resolution mass spectrometry      Omics approach     
Corresponding Author(s): Xinghua Qiu   
Issue Date: 24 October 2022
 Cite this article:   
Zhen Cheng,Xinghua Qiu,Xiaodi Shi, et al. Discovery of emerging organic pollutants in the atmosphere through an omics approach[J]. Front. Environ. Sci. Eng., 2023, 17(4): 45.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-023-1645-9
https://academic.hep.com.cn/fese/EN/Y2023/V17/I4/45
Fig.1  A general scheme of the omics approach.
Fig.2  Various untargeted strategies emphasizing different known or unknown compounds (i.e., knowns or unknowns) from full-component data. Compound-originated suspect and untargeted screening generally focus on their environmental existence, whereas biological effect-directed analysis considers both existence and toxicity.
1 J Aceña, S Stampachiacchiere, S Pérez, D Barceló. (2015). Advances in liquid chromatography-high-resolution mass spectrometry for quantitative and qualitative environmental analysis. Analytical and Bioanalytical Chemistry, 407(21): 6289–6299
https://doi.org/10.1007/s00216-015-8852-6 pmid: 26138893
2 R Atkinson, J Arey (1994). Atmospheric chemistry of gas-phase polycyclic aromatic hydrocarbons: formation of atmospheric mutagens. Environmental Health Perspectives, 102(Suppl 4): 117–126
pmid: 7821285
3 R Avagyan, M Åberg, R Westerholm. (2016). Suspect screening of OH-PAHs and non-target screening of other organic compounds in wood smoke particles using HR-Orbitrap-MS. Chemosphere, 163: 313–321
https://doi.org/10.1016/j.chemosphere.2016.08.039 pmid: 27544654
4 W Brack (2003). Effect-directed analysis: a promising tool for the identification of organic toxicants in complex mixtures? Analytical and Bioanalytical Chemistry, 377(3): 397–407
https://doi.org/10.1007/s00216-003-2139-z pmid: 12904950
5 W Brack, S Ait-Aissa, R M Burgess, W Busch, N Creusot, Paolo C Di, B I Escher, Hewitt L Mark, K Hilscherova, J Hollender. et al.. (2016). Effect-directed analysis supporting monitoring of aquatic environments: an in-depth overview. Science of the Total Environment, 544: 1073–1118
https://doi.org/10.1016/j.scitotenv.2015.11.102 pmid: 26779957
6 R D Brook, S Rajagopalan, C A 3rd Pope, J R Brook, A Bhatnagar, A V Diez-Roux, F Holguin, Y Hong, R V Luepker, M A Mittleman, American Heart Association Council on Epidemiology ., on the Kidney in Cardiovascular Disease the, on Nutrition Prevention, Activity Council. et al.. (2010). Particulate matter air pollution and cardiovascular disease: an update to the scientific statement from the American Heart Association. Circulation, 121(21): 2331–2378
https://doi.org/10.1161/CIR.0b013e3181dbece1 pmid: 20458016
7 M Brüggemann, Pinxteren D Van, Y Wang, J Z Yu, H Herrmann. (2019). Quantification of known and unknown terpenoid organosulfates in PM10 using untargeted LC-HRMS/MS: contrasting summertime rural Germany and the North China Plain. Environmental Chemistry, 16(5): 333–346
https://doi.org/10.1071/EN19089
8 L K Chan, K Q Nguyen, N Karim, Y Yang, R H Rice, G He, M S Denison, T B Nguyen. (2020). Relationship between the molecular composition, visible light absorption, and health-related properties of smoldering woodsmoke aerosols. Atmospheric Chemistry and Physics, 20(1): 539–559
https://doi.org/10.5194/acp-20-539-2020
9 Z Cheng, X Qiu, X Shi, T Zhu. (2021). Identification of organosiloxanes in ambient fine particulate matters using an untargeted strategy via gas chromatography and time-of-flight mass spectrometry. Environmental Pollution, 271: 116128
https://doi.org/10.1016/j.envpol.2020.116128 pmid: 33421844
10 A C Chiaia-Hernandez, M Krauss, J Hollender. (2013). Screening of lake sediments for emerging contaminants by liquid chromatography atmospheric pressure photoionization and electrospray ionization coupled to high resolution mass spectrometry. Environmental Science & Technology, 47(2): 976–986
https://doi.org/10.1021/es303888v pmid: 23215447
11 B S De Martinis, N Y Kado, L R F de Carvalho, R A Okamoto, L A Gundel. (1999). Genotoxicity of fractionated organic material in airborne particles from São Paulo, Brazil. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 446(1): 83–94
https://doi.org/10.1016/S1383-5718(99)00151-5 pmid: 10613188
12 D J Dix, K A Houck, M T Martin, A M Richard, R W Setzer, R J Kavlock. (2007). The ToxCast program for prioritizing toxicity testing of environmental chemicals. Toxicological Sciences, 95(1): 5–12
https://doi.org/10.1093/toxsci/kfl103 pmid: 16963515
13 L Dobiáš, J Kůsová, O Gajdoš, P Vidová, D Gajdosová, J Havránková, M Fried, B Binková, J Topinka. (1999). Bioassay-directed chemical analysis and detection of mutagenicity in ambient air of the coke oven. Mutation Research/Genetic Toxicology and Environmental Mutagenesis, 445(2): 285–293
https://doi.org/10.1016/S1383-5718(99)00133-3 pmid: 10575437
14 V Dulio, Bavel B van, E Brorström-Lundén, J Harmsen, J Hollender, M Schlabach, J Slobodnik, K Thomas, J Koschorreck. (2018). Emerging pollutants in the EU: 10 years of NORMAN in support of environmental policies and regulations. Environmental Sciences Europe, 30(1): 5
https://doi.org/10.1186/s12302-018-0135-3
15 J L Durant, A L Lafleu. (2011). Effect-Directed analysis of mutagens in ambient airborne particles. In: Brack W, ed. Effect-Directed Analysis of Complex Environmental Contamination. Heidelberg: Springer, 199–236
16 B I Escher, H M Stapleton, E L Schymanski. (2020). Tracking complex mixtures of chemicals in our changing environment. Science, 367(6476): 388–392
https://doi.org/10.1126/science.aay6636 pmid: 31974244
17 S Fernando, A Renaguli, M S Milligan, J J Pagano, P K Hopke, T M Holsen, B S Crimmins. (2018). Comprehensive analysis of the Great Lakes top predator fish for novel halogenated organic contaminants by GC×GC-HR-ToF mass spectrometry. Environmental Science & Technology, 52(5): 2909–2917
https://doi.org/10.1021/acs.est.7b05999 pmid: 29376336
18 P Gago-Ferrero, A Krettek, S Fischer, K Wiberg, L Ahrens. (2018). Suspect screening and regulatory databases: A powerful combination to identify emerging micropollutants. Environmental Science & Technology, 52(12): 6881–6894
https://doi.org/10.1021/acs.est.7b06598 pmid: 29782800
19 P Gago-Ferrero, E L Schymanski, A A Bletsou, R Aalizadeh, J Hollender, N S Thomaidis. (2015). Extended suspect and non-target strategies to characterize emerging polar organic contaminants in raw wastewater with LC-HRMS/MS. Environmental Science & Technology, 49(20): 12333–12341
https://doi.org/10.1021/acs.est.5b03454 pmid: 26418421
20 K Gao, Y Zhang, Y Liu, M Yang, T Zhu. (2021). Screening of imidazoles in atmospheric aerosol particles using a hybrid targeted and untargeted method based on ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry. Analytica Chimica Acta, 1163: 338516
https://doi.org/10.1016/j.aca.2021.338516 pmid: 34024422
21 2019 Risk Factors Collaborators GBD. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. The Lancet, 396(10258): 1223–1249
https://doi.org/10.1016/S0140-6736(20)30752-2
22 B González-Gaya, N Lopez-Herguedas, D Bilbao, L Mijangos, A M Iker, N Etxebarria, M Irazola, A Prieto, M Olivares, O Zuloaga. (2021). Suspect and non-target screening: the last frontier in environmental analysis. Analytical Methods, 13(16): 1876–1904
https://doi.org/10.1039/D1AY00111F pmid: 33913946
23 F Gosetti, E Mazzucco, M C Gennaro, E Marengo. (2016). Contaminants in water: non-target UHPLC/MS analysis. Environmental Chemistry Letters, 14(1): 51–65
https://doi.org/10.1007/s10311-015-0527-1
24 M Grung, A Kringstad, K Bæk, I J Allan, K V Thomas, S Meland, S B Ranneklev (2017). Identification of non-regulated polycyclic aromatic compounds and other markers of urban pollution in road tunnel particulate matter. Journal of Hazardous Materials, 323(Pt A): 36–44
https://doi.org/10.1016/j.jhazmat.2016.05.036 pmid: 27233209
25 F Hernández, T Portolés, E Pitarch, F J López. (2011). Gas chromatography coupled to high-resolution time-of-flight mass spectrometry to analyze trace-level organic compounds in the environment, food safety and toxicology. Trends in Analytical Chemistry, 30(2): 388–400
https://doi.org/10.1016/j.trac.2010.11.007
26 F Hernández, J V Sancho, M Ibáñez, E Abad, T Portolés, L Mattioli. (2012). Current use of high-resolution mass spectrometry in the environmental sciences. Analytical and Bioanalytical Chemistry, 403(5): 1251–1264
https://doi.org/10.1007/s00216-012-5844-7 pmid: 22362279
27 E Hoh, N G Dodder, S J Lehotay, K C Pangallo, C M Reddy, K A Maruya. (2012). Nontargeted comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry method and software for inventorying persistent and bioaccumulative contaminants in marine environments. Environmental Science & Technology, 46(15): 8001–8008
https://doi.org/10.1021/es301139q pmid: 22712571
28 E Hoh, L Zhu, R A Hites. (2006). Dechlorane plus, a chlorinated flame retardant, in the Great Lakes. Environmental Science & Technology, 40(4): 1184–1189
https://doi.org/10.1021/es051911h pmid: 16572773
29 J Hollender, E L Schymanski, H P Singer, P L Ferguson (2017). Nontarget screening with high resolution mass spectrometry in the environment: Ready to go? Environmental Science & Technology, 51(20): 11505–11512
https://doi.org/10.1021/acs.est.7b02184 pmid: 28877430
30 S Hong, J P Giesy, J S Lee, J H Lee, J S Khim. (2016). Effect-directed analysis: current status and future challenges. Ocean Science Journal, 51(3): 413–433
https://doi.org/10.1007/s12601-016-0038-4
31 W Hu, Y Jia, Q Kang, H Peng, H Ma, S Zhang, Y Hiromori, T Kimura, T Nakanishi, L Zheng. et al.. (2019). Screening of house dust from Chinese homes for chemicals with liver X receptors binding activities and characterization of atherosclerotic activity using an in vitro macrophage cell line and ApoE-/- mice. Environmental Health Perspectives, 127(11): 117003
https://doi.org/10.1289/EHP5039 pmid: 31724879
32 K Huang, X Wang, H Zhang, L Zeng, X Zhang, B Wang, Y Zhou, T Jing. (2020). Structure-directed screening and analysis of thyroid-disrupting chemicals targeting transthyretin based on molecular recognition and chromatographic separation. Environmental Science & Technology, 54(9): 5437–5445
https://doi.org/10.1021/acs.est.9b05761 pmid: 32252528
33 C Hug, N Ulrich, T Schulze, W Brack, M Krauss. (2014). Identification of novel micropollutants in wastewater by a combination of suspect and nontarget screening. Environmental Pollution, 184: 25–32
https://doi.org/10.1016/j.envpol.2013.07.048 pmid: 24012788
34 J Jeon, D Kurth, J Hollender. (2013). Biotransformation pathways of biocides and pharmaceuticals in freshwater crustaceans based on structure elucidation of metabolites using high resolution mass spectrometry. Chemical Research in Toxicology, 26(3): 313–324
https://doi.org/10.1021/tx300457f pmid: 23391280
35 S H Jeon, H B Lim, N R Choi, J Y Lee, Y K Ahn, Y P Kim. (2019). Classification and characterization of organic aerosols in the atmosphere over Seoul using two dimensional gas chromatography-time of flight mass spectrometry (GC×GC/TOF-MS) data. Asian Journal of Atmospheric Environment, 13(2): 88–98
https://doi.org/10.5572/ajae.2019.13.2.088
36 H Jiang, J Li, R Sun, C Tian, J Tang, B Jiang, Y Liao, C E Chen, G Zhang. (2021a). Molecular dynamics and light absorption properties of atmospheric dissolved organic matter. Environmental Science & Technology, 55(15): 10268–10279
https://doi.org/10.1021/acs.est.1c01770 pmid: 34286571
37 X Jiang, Y Han, X Qiu, Q Chai, H Zhang, X Chen, Z Cheng, Y Wang, Y Fan, T Xue, W Li, J Gong, T Zhu. (2021b). Organic components of personal PM2.5 exposure associated with inflammation: Evidence from an untargeted exposomic approach. Environmental Science & Technology, 55(15): 10589–10596
https://doi.org/10.1021/acs.est.1c02023 pmid: 34297563
38 X Jiang, F Xu, X Qiu, X Shi, M Pardo, Y Shang, J Wang, Y Rudich, T Zhu. (2019). Hydrophobic organic components of ambient fine particulate matter (PM2.5) associated with inflammatory cellular response. Environmental Science & Technology, 53(17): 10479–10486
https://doi.org/10.1021/acs.est.9b02902 pmid: 31397158
39 M V Johnston, D E Kerecman. (2019). Molecular characterization of atmospheric organic aerosol by mass spectrometry. Annual Review of Analytical Chemistry, 12(1): 247–274
https://doi.org/10.1146/annurev-anchem-061516-045135 pmid: 30901261
40 I J Keyte, R M Harrison, G Lammel. (2013). Chemical reactivity and long-range transport potential of polycyclic aromatic hydrocarbons: a review. Chemical Society Reviews, 42(24): 9333–9391
https://doi.org/10.1039/c3cs60147a pmid: 24077263
41 K H Kim, S A Jahan, E Kabir, R J C Brown. (2013). A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 60(60): 71–80
https://doi.org/10.1016/j.envint.2013.07.019 pmid: 24013021
42 B Y Kuang, H S Yeung, C C Lee, S M Griffith, J Z Yu. (2018). Aromatic formulas in ambient PM2.5 samples from Hong Kong determined using FT-ICR ultrahigh-resolution mass spectrometry. Analytical and Bioanalytical Chemistry, 410(24): 6289–6304
https://doi.org/10.1007/s00216-018-1239-8 pmid: 30022233
43 G Lammel (2015). Polycyclic aromatic compounds in the atmosphere: a review identifying research needs. Polycyclic Aromatic Compounds, 35(2–4): 316–329
https://doi.org/10.1080/10406638.2014.931870
44 Y Lin, Y Ma, X Qiu, R Li, Y Fang, J Wang, Y Zhu, D Hu. (2015). Sources, transformation, and health implications of PAHs and their nitrated, hydroxylated, and oxygenated derivatives in PM2.5 in Beijing. Journal of Geophysical Research. Atmospheres, 120(14): 7219–7228
https://doi.org/10.1002/2015JD023628
45 Y Lin, X Qiu, Y Zhao, J Ma, Q Yang, T Zhu. (2013). Polybromobenzene pollutants in the atmosphere of North China: Levels, distribution, and sources. Environmental Science & Technology, 47(22): 12761–12767
https://doi.org/10.1021/es403854d pmid: 24144297
46 Y Lin, J Yang, Q Fu, T Ruan, G Jiang. (2019). Exploring the occurrence and temporal variation of ToxCast chemicals in fine particulate matter using suspect screening strategy. Environmental Science & Technology, 53(10): 5687–5696
https://doi.org/10.1021/acs.est.9b01197 pmid: 31045341
47 Q Liu, L Li, X Zhang, A Saini, W Li, H Hung, C Hao, K Li, P Lee, J J B Wentzell, C Huo, S M Li, T Harner, J Liggio. (2021a). Uncovering global-scale risks from commercial chemicals in air. Nature, 600(7889): 456–461
https://doi.org/10.1038/s41586-021-04134-6 pmid: 34912090
48 Y Liu, L A D’Agostino, G Qu, G Jiang, J W Martin. (2019). High-resolution mass spectrometry (HRMS) methods for nontarget discovery and characterization of poly- and per-fluoroalkyl substances (PFASs) in environmental and human samples. Trends in Analytical Chemistry, 121: 115420
https://doi.org/10.1016/j.trac.2019.02.021
49 Y Liu, P K Misztal, C Arata, C J Weschler, W W Nazaroff, A H Goldstein. (2021b). Observing ozone chemistry in an occupied residence. Proceedings of the National Academy of Sciences of the United States of America, 118(6): e2018140118
https://doi.org/10.1073/pnas.2018140118 pmid: 33526680
50 C A Manzano, C Marvin, D Muir, T Harner, J Martin, Y Zhang. (2017). Heterocyclic aromatics in petroleum coke, snow, lake sediments, and air samples from the Athabasca oil sands region. Environmental Science & Technology, 51(10): 5445–5453
https://doi.org/10.1021/acs.est.7b01345 pmid: 28453248
51 W Meng, J Li, J Shen, Y Deng, R J Letcher, G Su. (2020). Functional group-dependent screening of organophosphate Esters (OPEs) and discovery of an abundant OPE bis-(2-ethylhexyl)-phenyl phosphate in indoor dust. Environmental Science & Technology, 54(7): 4455–4464
https://doi.org/10.1021/acs.est.9b07412 pmid: 32100996
52 M G Nishioka, C C Howard, D A Contos, L M Ball, J Lewtas. (1988). Detection of hydroxylated nitro aromatic and hydroxylated nitro polycyclic aromatic compounds in an ambient air particulate extract using bioassay-directed fractionation. Environmental Science & Technology, 22(8): 908–915
https://doi.org/10.1021/es00173a007 pmid: 22195711
53 X Ouyang, J M Weiss, J de Boer, M H Lamoree, P E G Leonards. (2017). Non-target analysis of household dust and laundry dryer lint using comprehensive two-dimensional liquid chromatography coupled with time-of-flight mass spectrometry. Chemosphere, 166: 431–437
https://doi.org/10.1016/j.chemosphere.2016.09.107 pmid: 27705830
54 H Peng, C Chen, J Cantin, D M V Saunders, J Sun, S Tang, G Codling, M Hecker, S Wiseman, P D Jones. et al.. (2016). Untargeted screening and distribution of organo-iodine compounds in sediments from Lake Michigan and the Arctic Ocean. Environmental Science & Technology, 50(18): 10097–10105
https://doi.org/10.1021/acs.est.6b03221 pmid: 27611727
55 K A Phillips, A Yau, K A Favela, K K Isaacs, A McEachran, C Grulke, A M Richard, A J Williams, J R Sobus, R S Thomas, J F Wambaugh. (2018). Suspect screening analysis of chemicals in consumer products. Environmental Science & Technology, 52(5): 3125–3135
https://doi.org/10.1021/acs.est.7b04781 pmid: 29405058
56 M Pourchet, L Debrauwer, J Klanova, E J Price, A Covaci, N Caballero-Casero, H Oberacher, M Lamoree, A Damont, F Fenaille. et al.. (2020). Suspect and non-targeted screening of chemicals of emerging concern for human biomonitoring, environmental health studies and support to risk assessment: from promises to challenges and harmonisation issues. Environment International, 139: 105545
https://doi.org/10.1016/j.envint.2020.105545 pmid: 32361063
57 S Rajagopalan, S G Al-Kindi, R D Brook. (2018). Air pollution and cardiovascular disease: JACC state-of-the-art review. Journal of the American College of Cardiology, 72(17): 2054–2070
https://doi.org/10.1016/j.jacc.2018.07.099 pmid: 30336830
58 P J Roach, J Laskin, A Laskin. (2011). Higher-order mass defect analysis for mass spectra of complex organic mixtures. Analytical Chemistry, 83(12): 4924–4929
https://doi.org/10.1021/ac200654j pmid: 21526851
59 W F Rogge, M A Mazurek, L M Hildemann, G R Cass, B R T Simoneit. (1993). Quantification of urban organic aerosols at a molecular level: identification, abundance and seasonal variation. Atmospheric Environment. Part A, General Topics, 27(8): 1309–1330
https://doi.org/10.1016/0960-1686(93)90257-Y
60 L Röhler, P Bohlin-Nizzetto, P Rostkowski, R Kallenborn, M Schlabach. (2021). Non-target and suspect characterisation of organic contaminants in ambient air – Part 1: Combining a novel sample clean-up method with comprehensive two-dimensional gas chromatography. Atmospheric Chemistry and Physics, 21(3): 1697–1716
https://doi.org/10.5194/acp-21-1697-2021
61 L Röhler, M Schlabach, P Haglund, K Breivik, R Kallenborn, P Bohlin-Nizzetto. (2020). Non-target and suspect characterisation of organic contaminants in Arctic air, Part II: Application of a new tool for identification and prioritisation of chemicals of emerging Arctic concern in air. Atmospheric Chemistry and Physics, 20(14): 9031–9049
https://doi.org/10.5194/acp-20-9031-2020
62 I T Salmeen, A M Pero, R Zator, D Schuetzle, T L Riley. (1984). Ames assay chromatograms and the identification of mutagens in diesel particle extracts. Environmental Science & Technology, 18(5): 375–382
https://doi.org/10.1021/es00123a017 pmid: 22280088
63 E L Schymanski, J Jeon, R Gulde, K Fenner, M Ruff, H P Singer, J Hollender. (2014a). Identifying small molecules via high resolution mass spectrometry: communicating confidence. Environmental Science & Technology, 48(4): 2097–2098
https://doi.org/10.1021/es5002105 pmid: 24476540
64 E L Schymanski, H P Singer, P Longrée, M Loos, M Ruff, M A Stravs, Vidal C Ripollés, J Hollender. (2014b). Strategies to characterize polar organic contamination in wastewater: exploring the capability of high resolution mass spectrometry. Environmental Science & Technology, 48(3): 1811–1818
https://doi.org/10.1021/es4044374 pmid: 24417318
65 E L Schymanski, H P Singer, J Slobodnik, I M Ipolyi, P Oswald, M Krauss, T Schulze, P Haglund, T Letzel, S Grosse. et al.. (2015). Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Analytical and Bioanalytical Chemistry, 407(21): 6237–6255
https://doi.org/10.1007/s00216-015-8681-7 pmid: 25976391
66 X Shi, X Qiu, Q Chen, S Chen, M Hu, Y Rudich, T Zhu. (2021a). Organic iodine compounds in fine particulate matter from a continental urban region: Insights into secondary formation in the atmosphere. Environmental Science & Technology, 55(3): 1508–1514
https://doi.org/10.1021/acs.est.0c06703 pmid: 33443418
67 X Shi, X Qiu, Z Cheng, Q Chen, Y Rudich, T Zhu. (2020). Isomeric identification of particle-phase organic nitrates through gas chromatography and time-of-flight mass spectrometry coupled with an electron capture negative ionization source. Environmental Science & Technology, 54(2): 707–713
https://doi.org/10.1021/acs.est.9b05818 pmid: 31865702
68 X Shi, X Qiu, X Jiang, Y Rudich, T Zhu. (2021b). Comprehensive detection of nitrated aromatic compounds in fine particulate matter using gas chromatography and tandem mass spectrometry coupled with an electron capture negative ionization source. Journal of Hazardous Materials, 407: 124794
https://doi.org/10.1016/j.jhazmat.2020.124794 pmid: 33338805
69 L W Sumner, A Amberg, D Barrett, M H Beale, R Beger, C A Daykin, T W M Fan, O Fiehn, R Goodacre, J L Griffin. et al.. (2007). Proposed minimum reporting standards for chemical analysis. Metabolomics, 3(3): 211–221
https://doi.org/10.1007/s11306-007-0082-2 pmid: 24039616
70 C Veenaas, A Bignert, P Liljelind, P Haglund. (2018). Nontarget screening and time-trend analysis of sewage sludge contaminants via two-dimensional gas chromatography-high resolution mass spectrometry. Environmental Science & Technology, 52(14): 7813–7822
https://doi.org/10.1021/acs.est.8b01126 pmid: 29898598
71 R Vermeulen, E L Schymanski, A L Barabási, G W Miller. (2020). The exposome and health: Where chemistry meets biology. Science, 367(6476): 392–396
https://doi.org/10.1126/science.aay3164 pmid: 31974245
72 K Wang, R J Huang, M Brüggemann, Y Zhang, L Yang, H Ni, J Guo, M Wang, J Han, M Bilde. et al.. (2021). Urban organic aerosol composition in eastern China differs from north to south: Molecular insight from a liquid chromatography-mass spectrometry (Orbitrap) study. Atmospheric Chemistry and Physics, 21(11): 9089–9104
https://doi.org/10.5194/acp-21-9089-2021
73 A J Williams, C M Grulke, J Edwards, A D McEachran, K Mansouri, N C Baker, G Patlewicz, I Shah, J F Wambaugh, R S Judson, A M Richard. (2017). The CompTox chemistry dashboard: a community data resource for environmental chemistry. Journal of Cheminformatics, 9(1): 61
https://doi.org/10.1186/s13321-017-0247-6 pmid: 29185060
74 C Xu, L Gao, M Zheng, L Qiao, K Wang, D Huang, S Wang. (2021). Nontarget screening of polycyclic aromatic compounds in atmospheric particulate matter using ultrahigh resolution mass spectrometry and comprehensive two-dimensional gas chromatography. Environmental Science & Technology, 55(1): 109–119
https://doi.org/10.1021/acs.est.0c02290 pmid: 33171047
75 D Yang, J Han, D R Hall, J Sun, J Fu, S Kutarna, K A Houck, C A LaLone, J A Doering, C A Ng, H Peng. (2020). Nontarget screening of per- and polyfluoroalkyl substances binding to human liver fatty acid binding protein. Environmental Science & Technology, 54(9): 5676–5686
https://doi.org/10.1021/acs.est.0c00049 pmid: 32249562
76 L Ye, W Meng, J Huang, J Li, G Su. (2021). Establishment of a target, suspect, and functional group-dependent screening strategy for organophosphate esters (OPEs): “Into the Unknown” of OPEs in the sediment of Taihu Lake, China. Environmental Science & Technology, 55(9): 5836–5847
https://doi.org/10.1021/acs.est.0c07825 pmid: 33891400
77 T M Young, G P Black, L Wong, C S Bloszies, O Fiehn, G He, M S Denison, C F A Vogel, B Durbin-Johnson. (2021). Identifying toxicologically significant compounds in urban wildfire ash using in vitro bioassays and high-resolution mass spectrometry. Environmental Science & Technology, 55(6): 3657–3667
https://doi.org/10.1021/acs.est.0c06712 pmid: 33647203
78 N Yu, H Guo, J Yang, L Jin, X Wang, W Shi, X Zhang, H Yu, S Wei. (2018). Non-target and suspect screening of per- and polyfluoroalkyl substances in airborne particulate matter in China. Environmental Science & Technology, 52(15): 8205–8214
https://doi.org/10.1021/acs.est.8b02492 pmid: 30008206
79 N Yu, H Wen, X Wang, E Yamazaki, S Taniyasu, N Yamashita, H Yu, S Wei. (2020). Nontarget discovery of per- and polyfluoroalkyl substances in atmospheric particulate matter and gaseous phase using cryogenic air sampler. Environmental Science & Technology, 54(6): 3103–3113
https://doi.org/10.1021/acs.est.9b05457 pmid: 32122131
80 X Zhang, A Saini, C Hao, T Harner. (2020). Passive air sampling and nontargeted analysis for screening POP-like chemicals in the atmosphere: opportunities and challenges. Trends in Analytical Chemistry, 132: 116052
https://doi.org/10.1016/j.trac.2020.116052
81 Y Zheng, Q Chen, X Cheng, C Mohr, J Cai, W Huang, M Shrivastava, P Ye, P Fu, X Shi, Y Ge, K Liao, R Miao, X Qiu, T K Koenig, S Chen. (2021). Precursors and pathways leading to enhanced secondary organic aerosol formation during severe haze episodes. Environmental Science & Technology, 55(23): 15680–15693
https://doi.org/10.1021/acs.est.1c04255 pmid: 34775752
82 B Zhou. (2015). Adverse outcome pathway: framework, application, and challenges in chemical risk assessment. Journal of Environmental Sciences (China), 35: 191–193
https://doi.org/10.1016/j.jes.2015.07.001 pmid: 26354708
83 C Zwiener, F H Frimmel. (2004). LC-MS analysis in the aquatic environment and in water treatment: a critical review. Part I: Instrumentation and general aspects of analysis and detection. Analytical and Bioanalytical Chemistry, 378(4): 851–861
https://doi.org/10.1007/s00216-003-2404-1 pmid: 14647937
[1] Yuhan Zhao, Xiaoping Kang, Xue Tian, Lulu Liu, Zemeng Zhao, Lili Luo, Lixin Tao, Xiangtong Liu, Xiaonan Wang, Xiuhua Guo, Juan Xia, Yanxia Luo. Long-term exposure to air pollution and cerebrovascular disease: findings from Beijing Health Management Cohort study[J]. Front. Environ. Sci. Eng., 2023, 17(7): 84-.
[2] Yang Xie, Hua Zhong, Zhixiong Weng, Xinbiao Guo, Satbyul Estella Kim, Shaowei Wu. PM2.5 concentration declining saves health expenditure in China[J]. Front. Environ. Sci. Eng., 2023, 17(7): 90-.
[3] Jianxun Yang, Qi Gao, Miaomiao Liu, John S. Ji, Jun Bi. Same stimuli, different responses: a pilot study assessing air pollution visibility impacts on emotional well-being in a controlled environment[J]. Front. Environ. Sci. Eng., 2023, 17(2): 20-.
[4] Xiang Zhang, Yue Xuan, Bin Wang, Chuan Gao, Shengli Niu, Gaiju Zhao, Dong Wang, Junhua Li, Chunmei Lu, John C. Crittenden. Precise regulation of acid pretreatment for red mud SCR catalyst: Targeting on optimizing the acidity and reducibility[J]. Front. Environ. Sci. Eng., 2022, 16(7): 88-.
[5] Jiuli Yang, Mingyang Liu, Qu Cheng, Lingyue Yang, Xiaohui Sun, Haidong Kan, Yang Liu, Michelle L. Bell, Rohini Dasan, Huiwang Gao, Xiaohong Yao, Yang Gao. Investigating the impact of air pollution on AMI and COPD hospital admissions in the coastal city of Qingdao, China[J]. Front. Environ. Sci. Eng., 2022, 16(5): 56-.
[6] Elizabeth Eastman, Kelly A. Stevens, Cesunica Ivey, Haofei Yu. On the potential of iPhone significant location data to characterize individual mobility for air pollution health studies[J]. Front. Environ. Sci. Eng., 2022, 16(5): 63-.
[7] Fengping Hu, Yongming Guo. Health impacts of air pollution in China[J]. Front. Environ. Sci. Eng., 2021, 15(4): 74-.
[8] Xuying Ma, Ian Longley, Jennifer Salmond, Jay Gao. PyLUR: Efficient software for land use regression modeling the spatial distribution of air pollutants using GDAL/OGR library in Python[J]. Front. Environ. Sci. Eng., 2020, 14(3): 44-.
[9] Chao Liu, Hancheng Dai, Lin Zhang, Changchun Feng. The impacts of economic restructuring and technology upgrade on air quality and human health in Beijing-Tianjin-Hebei region in China[J]. Front. Environ. Sci. Eng., 2019, 13(5): 70-.
[10] Zunaira Asif, Zhi Chen. An integrated optimization and simulation approach for air pollution control under uncertainty in open-pit metal mine[J]. Front. Environ. Sci. Eng., 2019, 13(5): 74-.
[11] Christian GEORGE, Anne BEELDENS, Fotios BARMPAS, Jean-François DOUSSIN, Giuseppe MANGANELLI, Hartmut HERRMANN, Jörg KLEFFMANN, Abdelwahid MELLOUKI. Impact of photocatalytic remediation of pollutants on urban air quality[J]. Front. Environ. Sci. Eng., 2016, 10(5): 2-.
[12] Jinnan WANG,Jing ZHANG,Hongqiang JIANG,Yaling LU. API-based assessment on urban air environment bearing capability in China[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1049-1055.
[13] Junhua LI, Hong HE, Chun HU, Jincai ZHAO. The abatement of major pollutants in air and water by environmental catalysis[J]. Front Envir Sci Eng, 2013, 7(3): 302-325.
[14] Ni SHENG, U Wa TANG. A building-based data capture and data mining technique for air quality assessment[J]. Front Envir Sci Eng Chin, 2011, 5(4): 543-551.
[15] NIE Yongfeng. Development and prospects of municipal solid waste (MSW) incineration in China[J]. Front.Environ.Sci.Eng., 2008, 2(1): 1-7.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed