Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2022, Vol. 16 Issue (5) : 56    https://doi.org/10.1007/s11783-021-1490-7
RESEARCH ARTICLE
Investigating the impact of air pollution on AMI and COPD hospital admissions in the coastal city of Qingdao, China
Jiuli Yang1, Mingyang Liu2, Qu Cheng3, Lingyue Yang1, Xiaohui Sun4, Haidong Kan5, Yang Liu6, Michelle L. Bell7, Rohini Dasan3, Huiwang Gao1, Xiaohong Yao1, Yang Gao1()
1. Key Laboratory of Marine Environmental Science and Ecology, and Frontiers Science Center for Deep Ocean Multispheres and Earth System (Ministry of Education), Ocean University of China, and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
2. Department of Emergency Internal Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266100, China
3. Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
4. Department of Chronic Disease Prevention, Qingdao Municipal Center for Disease Control & Prevention, Qingdao 266100, China
5. School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Shanghai 200433, China
6. Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA 30322, USA
7. School of the Environment, Yale University, New Haven, CT 06511, USA
 Download: PDF(1398 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• The impact of air pollution on AMI/COPD hospital admissions were examined.

• Significant connection was found between air pollutants and AMI/COPD in Qingdao.

• Nonlinearity exists between air pollution and AMI/COPD hospital admissions.

Air pollution has been widely associated with adverse effects on the respiratory and cardiovascular systems. We investigated the relationship between acute myocardial infarction (AMI), chronic obstructive pulmonary disease (COPD) and air pollution exposure in the coastal city of Qingdao, China. Air pollution in this region is characterized by inland and oceanic transportation sources in addition to local emission. We examined the influence of PM2.5, PM10, NO2, SO2, CO and O3 concentrations on hospital admissions for AMI and COPD from October 1, 2014, to September 30, 2018, in Qingdao using a Poisson generalized additive model (GAM). We found that PM2.5, PM10, NO2, SO2 and CO exhibited a significant short-term (lag 1 day) association with AMI in the single-pollutant model among older adults (>65 years old) and females, especially during the cold season (October to March). In contrast, only NO2 and SO2 had clear cumulative lag associations with COPD admission for females and those over 65 years old at lag 01 and lag 03, respectively. In the two-pollutant model, the exposure-response relationship fitted by the two-pollutant model did not change significantly. Our findings indicated that there is an inflection point between the concentration of certain air pollutants and the hospital admissions of AMI and COPD even under the linear assumption, indicative of the benefits of reducing air pollution vary with pollution levels. This study has important implications for the development of policy for air pollution control in Qingdao and the public health benefits of reducing air pollution levels.

Keywords AMI      COPD      Air pollution exposure      GAM     
Corresponding Author(s): Yang Gao   
Issue Date: 15 October 2021
 Cite this article:   
Jiuli Yang,Mingyang Liu,Qu Cheng, et al. Investigating the impact of air pollution on AMI and COPD hospital admissions in the coastal city of Qingdao, China[J]. Front. Environ. Sci. Eng., 2022, 16(5): 56.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1490-7
https://academic.hep.com.cn/fese/EN/Y2022/V16/I5/56
Site Longitude Latitude Administrative district
Meteorological data monitoring station 120.3333°E 36.0666°N Qingdao Shibei District
Air pollution data monitoring stations 120.6659°E 36.2403°N Qingdao Laoshan District
120.4587°E 36.0852°N Qingdao Laoshan District
120.4001°E 36.2403°N Qingdao Chengyang District
120.3905°E 36.1851°N Qingdao Licang District
120.3471°E 36.0699°N Qingdao Shibei District
120.3664°E 36.1032°N Qingdao Shibei District
120.4134°E 36.0654°N Qingdao Shinan District
120.2992°E 36.0544°N Qingdao Shinan District
120.1926°E 35.9586°N Qingdao West Coast New Area
Hospital branches 120.4536°E 36.1019°N Qingdao Laoshan District
120.3277°E 36.0670°N Qingdao Shinan District
120.1563°E 35.9871°N Qingdao West Coast New Area
Tab.1  The locations of the hospital branches and air pollutant monitoring stations
Type Variable Mean±SD Min 25th 50th 75th Max IQR
Hospital
admissions
AMI (Total) 14±8 0 7 14 20 51 13
AMI (Age<65 years) 6±4 0 3 5 8 33 5
AMI (Age≥65 years) 9±5 0 4 8 12 32 8
AMI (Male) 10±6 0 5 9 14 36 9
AMI (Female) 5±3 0 2 4 7 20 5
COPD (Total) 121±72 6 54 115 166 367 112
COPD (Age<65 years) 31±15 3 19 29 41 107 22
COPD (Age≥65 years) 90±59 3 34 85 127 307 93
COPD (Male) 81±49 6 35 77 113 252 78
COPD (Female) 40±24 0 18 38 55 121 37
Air
pollutants
PM2.5 (μg/m3) 43.3±33.6 5.8 21.2 33.5 54.0 311.7 32.8
PM10 (μg/m3) 86.4±51.3 16.5 51.2 73.4 106.7 454.7 55.5
NO2 (μg/m3) 34.6±16.2 2.5 23.2 32.1 43.1 107.6 19.9
SO2 (μg/m3) 20.4±14.7 3.2 10.4 17.0 24.9 113.0 14.5
CO (mg/m3) 0.8±0.01 0.3 0.5 0.7 0.9 3.2 0.4
O3 (μg/m3) 71.9±29.3 12.5 48.7 69.6 90.8 188.1 42.1
Meteorological
data
Temperature (°C) 13.9±9.4 −11.5 5.5 14.7 22.0 31.0 16.5
Humidity (%) 68.8±16.7 16 56 71 83 100 27
Tab.2  Distribution of daily hospital admissions of AMI and COPD, air pollutant data and meteorological data in Qingdao, China (from October 1, 2014, to September 30, 2018)
Fig.1  Time series of daily levels of pollutant concentrations during the study period.
Fig.2  Estimated exposure-response curve: relative risk of AMI (a) hospital admissions for lag 1 pollution for daily average NO2, SO2, CO, PM2.5 and PM10 concentrations and COPD (b) for lag 0 pollution for daily average NO2, SO2 and CO concentrations.
Fig.3  Percentage changes (95% CI) in AMI all and subgroups for hospital admissions reported in different study periods (entire period, cold period and warm period) with pollutant concentration increases of 10 μg/m3 at Lag 1. “*” represents P<0.05; “**” represents P<0.01. Adjust P value after Bonferroni correction: season_age: 2.90 × 10−4, season_gender: 0.58.
Fig.4  Percentage change (95% CI) in COPD subgroups for hospital admissions and a NO2 concentration increase of 10 μg/m3 during the entire study period single-day lag and multiday lag. “*” represent P<0.05; “**” represent P<0.01.
Fig.5  Percentage change (95% CI) in COPD subgroups for hospital admissions with a SO2 concentration increase of 10 μg/m3 during the entire study period single-day lag and multiday lag. “*” represent P<0.05; “**” represent P<0.01.
Model Whole period Cold season Warm season
CO 1.038(1.013–1.063)* 1.051(1.021–1.082)* 0.976(0.921–1.035)
+ PM2.5 1.039(0.989–1.091) 1.078(1.006–1.155)* 0.994(0.906–1.089)
+ PM10 1.037(1.001–1.075)* 1.040(0.982–1.101) 0.990(0.923–1.062)
+ NO2 1.031(0.995–1.068) 1.053(1.005–1.103)* 0.959(0.890–1.032)
+ SO2 1.029(0.996–1.064) 1.059(1.016–1.103)* 0.947(0.879–1.021)
+ O3 1.037(1.012–1.062)* 1.050(1.019–1.083)* 0.980(0.921–1.042)
Tab.3  Relative risk (95% CI) at lag 1 day of AMI hospital admissions in two-pollutant models, CO as the main pollutant
1 E N Allred, E R Bleecker, B R Chaitman, T E Dahms, S O Gottlieb, J D Hackney, M Pagano, R H Selvester, S M Walden, J Warren (1989). Short-term effects of carbon monoxide exposure on the exercise performance of subjects with coronary artery disease. New England Journal of Medicine, 321(21): 1426–1432
https://doi.org/10.1056/NEJM198911233212102 pmid: 2682242
2 E Athanasopoulou, M Tombrou, S N Pandis, A G Russell (2008). The role of sea-salt emissions and heterogeneous chemistry in the air quality of polluted coastal areas. Atmospheric Chemistry and Physics, 8(19): 5755–5769
https://doi.org/10.5194/acpd-8-3807-2008
3 O K Baskurt, E Levi, S Caglayan, N Dikmenoglu, M N Kutman (1990). Hematological and hemorheological effects of air pollution. Archives of Environmental Health, 45(4): 224–228
https://doi.org/10.1080/00039896.1990.9940806 pmid: 2400244
4 M L Bell, F Dominici, J M Samet (2005). A meta-analysis of time-series studies of ozone and mortality with comparison to the national morbidity, mortality, and air pollution study. Epidemiology (Cambridge, Mass.), 16(4): 436–445
https://doi.org/10.1097/01.ede.0000165817.40152.85 pmid: 15951661
5 M L Bell, A McDermott, S L Zeger, J M Samet, F Dominici (2004). Ozone and short-term mortality in 95 US urban communities, 1987–2000. Journal of the American Medical Association, 292(19): 2372–2378
https://doi.org/10.1001/jama.292.19.2372 pmid: 15547165
6 S Bie, L Yang, Y Zhang, Q Huang, J Li, T Zhao, X Zhang, P Wang, W Wang (2021). Source appointment of PM2.5 in Qingdao Port, East of China. Science of the Total Environment, 755(Pt 1): 142456
https://doi.org/10.1016/j.scitotenv.2020.142456 pmid: 33017760
7 R D Brook, S Rajagopalan, C A Pope 3rd, J R Brook, A Bhatnagar, A V Diez-Roux, F Holguin, Y Hong, R V Luepker, M A Mittleman, A Peters, D Siscovick, S C Smith Jr, L Whitsel, J D Kaufman, the American Heart Association Council on Epidemiology and Prevention, Council on the Kidney in Cardiovascular Disease, Council on Nutrition, Physical Activity and Metabolism (2010). Particulate matter air pollution and cardiovascular disease: An update to the scientific statement from the American Heart Association. Circulation, 121(21): 2331–2378
https://doi.org/10.1161/CIR.0b013e3181dbece1 pmid: 20458016
8 J Cai, R Chen, W Wang, X Xu, S Ha, H Kan (2015). Does ambient CO have protective effect for COPD patient? Environmental Research, 136: 21–26
https://doi.org/10.1016/j.envres.2014.09.039 pmid: 25460616
9 J Cai, A Zhao, J Zhao, R Chen, W Wang, S Ha, X Xu, H Kan (2014). Acute effects of air pollution on asthma hospitalization in Shanghai, China. Environment and Pollution, 191: 139–144
https://doi.org/10.1016/j.envpol.2014.04.028 pmid: 24836410
10 C K Chan, X Yao (2008). Air pollution in mega cities in China. Atmospheric Environment, 42(1): 1–42
https://doi.org/10.1016/j.atmosenv.2007.09.003
11 C C Chang, S S Tsai, S C Ho, C Y Yang (2005). Air pollution and hospital admissions for cardiovascular disease in Taipei, Taiwan, China. Environmental Research, 98(1): 114–119
https://doi.org/10.1016/j.envres.2004.07.005 pmid: 15721891
12 C Chen, P Zhu, L Lan, L Zhou, R Liu, Q Sun, J Ban, W Wang, D Xu, T Li (2018). Short-term exposures to PM2.5 and cause-specific mortality of cardiovascular health in China. Environmental Research, 161: 188–194
https://doi.org/10.1016/j.envres.2017.10.046 pmid: 29154226
13 J Y Chen, C L Shi, Y Li, H Z Ni, J Zeng, R Lu, L Zhang (2021). Effects of short-term exposure to ambient airborne pollutants on COPD-related mortality among the elderly residents of Chengdu city in Southwest China. Environmental Health and Preventive Medicine, 26, 7
14 R Chen, H Kan, B Chen, W Huang, Z Bai, G Song, G Pan, the CAPES Collaborative Group (2012). Association of particulate air pollution with daily mortality: the China air pollution and health effects study. American Journal of Epidemiology, 175(11): 1173–1181
https://doi.org/10.1093/aje/kwr425 pmid: 22510278
15 A J Cohen, M Brauer, R Burnett, H R Anderson, J Frostad, K Estep, K Balakrishnan, B Brunekreef, L Dandona, R Dandona, et al. (2017). Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet, 389(10082): 1907–1918
https://doi.org/10.1016/S0140-6736(17)30505-6 pmid: 28408086
16 P Collart, Y Coppieters, G Mercier, V Massamba Kubuta, A Leveque (2015). Comparison of four case-crossover study designs to analyze the association between air pollution exposure and acute myocardial infarction. International Journal of Environmental Health Research, 25(6): 601–613
https://doi.org/10.1080/09603123.2014.1003037 pmid: 25650956
17 F Dominici, A McDermott, S L Zeger, J M Samet (2002). On the use of generalized additive models in time-series studies of air pollution and health. American Journal of Epidemiology, 156(3): 193–203
https://doi.org/10.1093/aje/kwf062 pmid: 12142253
18 F Dominici, R D Peng, M L Bell, L Pham, A McDermott, S L Zeger, J M Samet (2006). Fine particulate air pollution and hospital admission for cardiovascular and respiratory diseases. Journal of the American Medical Association, 295(10): 1127–1134 PMCID: PMC3543154
https://doi.org/10.1001/jama.295.10.1127 pmid: 16522832
19 P Fischer, G Hoek, B Brunekreef, A Verhoeff, J van Wijnen (2003). Air pollution and mortality in The Netherlands: are the elderly more at risk? European Respiratory Journal. Supplement, 21(Supplement 40): 34S–38S
https://doi.org/10.1183/09031936.03.00402503 pmid: 12762572
20 Y Gao, H Shan, S Zhang, L Sheng, J Li, J Zhang, M Ma, H Meng, K Luo, H Gao, X Yao (2020). Characteristics and sources of PM2.5 with focus on two severe pollution events in a coastal city of Qingdao, China. Chemosphere, 247: 125861
https://doi.org/10.1016/j.chemosphere.2020.125861 pmid: 31931317
21 W B Goggins, E Y Chan, C Y Yang (2013). Weather, pollution, and acute myocardial infarction in Hong Kong (China) and Taiwan (China). International Journal of Cardiology, 168(1): 243–249
https://doi.org/10.1016/j.ijcard.2012.09.087 pmid: 23041014
22 D R Gold, A Litonjua, J Schwartz, E Lovett, A Larson, B Nearing, G Allen, M Verrier, R Cherry, R Verrier (2000). Ambient pollution and heart rate variability. Circulation, 101(11): 1267–1273
https://doi.org/10.1161/01.CIR.101.11.1267 pmid: 10725286
23 T Götschi, J Sunyer, S Chinn, R de Marco, B Forsberg, J W Gauderman, R Garcia-Esteban, J Heinrich, B Jacquemin, D Jarvis, M Ponzio, S Villani, N Künzli (2008). Air pollution and lung function in the European Community Respiratory Health Survey. International Journal of Epidemiology, 37(6): 1349–1358
https://doi.org/10.1093/ije/dyn136 pmid: 18593748
24 Y Guo, A G Barnett, Y Zhang, S Tong, W Yu, X Pan (2010a). The short-term effect of air pollution on cardiovascular mortality in Tianjin, China: Comparison of time series and case-crossover analyses. Science of the Total Environment, 409(2): 300–306
https://doi.org/10.1016/j.scitotenv.2010.10.013 pmid: 21055792
25 Y Guo, Y Jia, X Pan, L Liu, H E Wichmann (2009). The association between fine particulate air pollution and hospital emergency room visits for cardiovascular diseases in Beijing, China. Science of the Total Environment, 407(17): 4826–4830
https://doi.org/10.1016/j.scitotenv.2009.05.022 pmid: 19501385
26 Y Guo, S Tong, Y Zhang, A G Barnett, Y Jia, X Pan (2010b). The relationship between particulate air pollution and emergency hospital visits for hypertension in Beijing, China. Science of the Total Environment, 408(20): 4446–4450
https://doi.org/10.1016/j.scitotenv.2010.06.042 pmid: 20638709
27 J Huang, X Pan, X Guo, G Li (2018). Health impact of China’s Air Pollution Prevention and Control Action Plan: An analysis of national air quality monitoring and mortality data. Lancet. Planetary Health, 2(7): e313–e323
https://doi.org/10.1016/S2542-5196(18)30141-4 pmid: 30074894
28 T Islam, W J Gauderman, K Berhane, R McConnell, E Avol, J M Peters, F D Gilliland (2007). Relationship between air pollution, lung function and asthma in adolescents. Thorax, 62(11): 957–963
https://doi.org/10.1136/thx.2007.078964 pmid: 17517830
29 H Kan, S J London, G Chen, Y Zhang, G Song, N Zhao, L Jiang, B Chen (2007). Differentiating the effects of fine and coarse particles on daily mortality in Shanghai, China. Environment International, 33(3): 376–384
https://doi.org/10.1016/j.envint.2006.12.001 pmid: 17229464
30 H Kan, S J London, G Chen, Y Zhang, G Song, N Zhao, L Jiang, B Chen (2008). Season, sex, age, and education as modifiers of the effects of outdoor air pollution on daily mortality in Shanghai, China: The public health and air pollution in Asia (PAPA) study. Environmental Health Perspectives, 116(9): 1183–1188
https://doi.org/10.1289/ehp.10851 pmid: 18795161
31 C S Kim, S C Hu (1998). Regional deposition of inhaled particles in human lungs: comparison between men and women. Journal of Applied Physiology, 84(6): 1834–1844
https://doi.org/10.1152/jappl.1998.84.6.1834 pmid: 9609774
32 S Y Kim, J L Peel, M P Hannigan, S J Dutton, L Sheppard, M L Clark, S Vedal (2012). The temporal lag structure of short-term associations of fine particulate matter chemical constituents and cardiovascular and respiratory hospitalizations. Environmental Health Perspectives, 120(8): 1094–1099
https://doi.org/10.1289/ehp.1104721 pmid: 22609899
33 M Kohlhäufl, P Brand, G Scheuch, T S Meyer, H Schulz, K Häussinger, J Heyder (1999). Increased fine particle deposition in women with asymptomatic nonspecific airway hyperresponsiveness. American Journal of Respiratory and Critical Care Medicine, 159(3): 902–906
https://doi.org/10.1164/ajrccm.159.3.9805036 pmid: 10051270
34 P J Landrigan, R Fuller, N J R Acosta, O Adeyi, R Arnold, N Basu, A B Baldé, R Bertollini, S Bose-O'reilly, J I Boufford, et al. (2018). The Lancet Commission on pollution and health. Lancet, 391(10119): 462–512
https://doi.org/10.1016/S0140-6736(17)32345-0 pmid: 29056410
35 H Lee, Y Honda, M Hashizume, Y L Guo, C F Wu, H Kan, K Jung, Y H Lim, S Yi, H Kim (2015). Short-term exposure to fine and coarse particles and mortality: A multicity time-series study in East Asia. Environment and Pollution, 207: 43–51
https://doi.org/10.1016/j.envpol.2015.08.036 pmid: 26340298
36 L Li, D Yan, S Xu, M Huang, X Wang, S Xie (2017a). Characteristics and source distribution of air pollution in winter in Qingdao, eastern China. Environment and Pollution, 224: 44–53
https://doi.org/10.1016/j.envpol.2016.12.037 pmid: 28285887
37 Y Li, X Shi, M Yang, L Liang (2017b). Variable selection in data envelopment analysis via Akaike’s information criteria. Annals of Operations Research, 253(1): 453–476
https://doi.org/10.1007/s10479-016-2382-2
38 C M Lin, H W Kuo (2013). Sex-age differences in association with particulate matter and emergency admissions for cardiovascular diseases: a hospital-based study in Taiwan, China. Public Health, 127(9): 828–833
https://doi.org/10.1016/j.puhe.2013.04.010 pmid: 23972355
39 H Lin, Q An, C Luo, V C Pun, C S Chan, L Tian (2013). Gaseous air pollution and acute myocardial infarction mortality in Hong Kong, China: A time-stratified case-crossover study. Atmospheric Environment, 76: 68–73
https://doi.org/10.1016/j.atmosenv.2012.08.043
40 Y Liu, S Xie, Q Yu, X Huo, X Ming, J Wang, Y Zhou, Z Peng, H Zhang, X Cui, H Xiang, X Huang, T Zhou, W Chen, T Shi (2017). Short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases in Yichang city, China. Environment and Pollution, 227: 116–124
https://doi.org/10.1016/j.envpol.2017.04.029 pmid: 28458242
41 R Lozano, M Naghavi, K Foreman, S Lim, K Shibuya, V Aboyans, J Abraham, T Adair, R Aggarwal, S Y Ahn, et al. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859): 2095–2128
https://doi.org/10.1016/S0140-6736(12)61728-0 pmid: 23245604
42 M Ma, Y Gao, Y Wang, S Zhang, L R Leung, C Liu, S Wang, B Zhao, X Chang, H Su, T Zhang, L Sheng, X Yao, H Gao (2019). Substantial ozone enhancement over the North China Plain from increased biogenic emissions due to heat waves and land cover in summer 2017. Atmospheric Chemistry and Physics, 19(19): 12195–12207
https://doi.org/10.5194/acp-2019-362
43 A L Marius-Nunez (1990). Myocardial infarction with normal coronary arteries after acute exposure to carbon monoxide. Chest, 97(2): 491–494
https://doi.org/10.1378/chest.97.2.491 pmid: 2298080
44 N Middleton, P Yiallouros, S Kleanthous, O Kolokotroni, J Schwartz, D W Dockery, P Demokritou, P Koutrakis (2008). A 10-year time-series analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: the effect of short-term changes in air pollution and dust storms. Environmental Health, 7: 39
https://doi.org/10.1186/1476-069X-7-39 pmid: 18647382
45 C J L Murray, A Y Aravkin, P Zheng, C Abbafati, K M Abbas, M Abbasi-Kangevari, F Abd-Allah, A Abdelalim, M Abdollahi, I Abdollahpour, et al. (2020). Global burden of 87 risk factors in 204 countries and territories, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet, 396(10258): 1223–1249
https://doi.org/10.1016/S0140-6736(20)30752-2 pmid: 33069327
46 D Neumann, V Matthias, J Bieser, A Aulinger, M Quante (2016). Sensitivity of modeled atmospheric nitrogen species and nitrogen deposition to variations in sea salt emissions in the North Sea and Baltic Sea regions. Atmospheric Chemistry and Physics, 16(5): 2921–2942
https://doi.org/10.5194/acpd-15-29705-2015
47 K Newell, C Kartsonaki, K B H Lam, O P Kurmi (2017). Cardiorespiratory health effects of particulate ambient air pollution exposure in low-income and middle-income countries: a systematic review and meta-analysis. The Lancet. Planetary health, 1(9): e368–e380
https://doi.org/10.1016/S2542-5196(17)30166-3 pmid: 29851649
48 J Pekkanen, E J Brunner, H R Anderson, P Tiittanen, R W Atkinson (2000). Daily concentrations of air pollution and plasma fibrinogen in London. Occupational and Environmental Medicine, 57(12): 818–822
https://doi.org/10.1136/oem.57.12.818 pmid: 11077010
49 D Phung, T T Hien, H N Linh, L M Luong, L Morawska, C Chu, N D Binh, P K Thai (2016). Air pollution and risk of respiratory and cardiovascular hospitalizations in the most populous city in Vietnam. Science of the Total Environment, 557– 558: 322–330
https://doi.org/10.1016/j.scitotenv.2016.03.070 pmid: 27016680
50 T G Reames, M A Bravo (2019). People, place and pollution: Investigating relationships between air quality perceptions, health concerns, exposure, and individual- and area-level characteristics. Environment International, 122: 244–255
https://doi.org/10.1016/j.envint.2018.11.013 pmid: 30449629
51 M Ren, N Li, Z Wang, Y Liu, X Chen, Y Chu, X Li, Z Zhu, L Tian, H Xiang (2017). The short-term effects of air pollutants on respiratory disease mortality in Wuhan, China: Comparison of time-series and case-crossover analyses. Scientific Reports, 7(1): 40482
https://doi.org/10.1038/srep40482 pmid: 28084399
52 E Samoli, E Aga, G Touloumi, K Nisiotis, B Forsberg, A Lefranc, J Pekkanen, B Wojtyniak, C Schindler, E Niciu, R Brunstein, M Dodic Fikfak, J Schwartz, K Katsouyanni (2006). Short-term effects of nitrogen dioxide on mortality: an analysis within the APHEA project. European Respiratory Journal, 27(6): 1129–1138
https://doi.org/10.1183/09031936.06.00143905 pmid: 16540496
53 T Schikowski, D Sugiri, U Ranft, U Gehring, J Heinrich, H E Wichmann, U Krämer (2005). Long-term air pollution exposure and living close to busy roads are associated with COPD in women. Respiratory Research, 6(1): 152
https://doi.org/10.1186/1465-9921-6-152 pmid: 16372913
54 R Sinharay, J Gong, B Barratt, P Ohman-Strickland, S Ernst, F J Kelly, J J Zhang, P Collins, P Cullinan, K F Chung (2018). Respiratory and cardiovascular responses to walking down a traffic-polluted road compared with walking in a traffic-free area in participants aged 60 years and older with chronic lung or heart disease and age-matched healthy controls: a randomised, crossover study. Lancet, 391(10118): 339–349
https://doi.org/10.1016/S0140-6736(17)32643-0 pmid: 29221643
55 M Stafoggia, E Samoli, E Alessandrini, E Cadum, B Ostro, G Berti, A Faustini, B Jacquemin, C Linares, M Pascal, G Randi, A Ranzi, E Stivanello, F Forastiere, MED-PARTICLES Study Group (2013). Short-term associations between fine and coarse particulate matter and hospitalizations in Southern Europe: results from the MED-PARTICLES project. Environmental Health Perspectives, 121(9): 1026–1033
https://doi.org/10.1289/ehp.1206151 pmid: 23777832
56 D M Stieb, M Szyszkowicz, B H Rowe, J A Leech (2009). Air pollution and emergency department visits for cardiac and respiratory conditions: a multi-city time-series analysis. Environmental Health, 8(1): 25
https://doi.org/10.1186/1476-069X-8-25 pmid: 19515235
57 V Stone, D M Brown, N Watt, M Wilson, K Donaldson, H Ritchie, W MacNee (2000). Ultrafine particle-mediated activation of macrophages: intracellular calcium signaling and oxidative stress. Inhalation Toxicology, 12(Suppl 3): 345–351
https://doi.org/10.1080/08958378.2000.11463244 pmid: 26368634
58 C Su, S Breitner, A Schneider, L Liu, U Franck, A Peters, X Pan (2016). Short-term effects of fine particulate air pollution on cardiovascular hospital emergency room visits: a time-series study in Beijing, China. International Archives of Occupational and Environmental Health, 89(4): 641–657
https://doi.org/10.1007/s00420-015-1102-6 pmid: 26547916
59 Y Tao, S Mi, S Zhou, S Wang, X Xie (2014). Air pollution and hospital admissions for respiratory diseases in Lanzhou, China. Environment and Pollution, 185: 196–201
https://doi.org/10.1016/j.envpol.2013.10.035 pmid: 24286694
60 G D Thurston, H Kipen, I Annesi-Maesano, J Balmes, R D Brook, K Cromar, S De Matteis, F Forastiere, B Forsberg, M W Frampton, et al. (2017). A joint ERS/ATS policy statement: What constitutes an adverse health effect of air pollution? An analytical framework. European Respiratory Journal, 49(1): 1600419
https://doi.org/10.1183/13993003.00419-2016 pmid: 28077473
61 Touloumi G, Samoli E, Pipikou M, Le Tertre A, Atkinson R, Katsouyanni K, APHEA-2 Project Group (2006). Seasonal confounding in air pollution and health time-series studies: Effect on air pollution effect estimates. Statistics in Medicine, 25(24): 4164–4178
https://doi.org/10.1002/sim.2681 pmid: 16991105
62 C Wang, J Xu, L Yang, Y Xu, X Zhang, C Bai, J Kang, P Ran, H Shen, F Wen, et al. (2018a). Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): A national cross-sectional study. Lancet, 391(10131): 1706–1717
https://doi.org/10.1016/S0140-6736(18)30841-9 pmid: 29650248
63 X Wang, W Kindzierski, P Kaul (2015). Air pollution and acute myocardial infarction hospital admission in Alberta, Canada: A three-step procedure case-crossover study. PLoS One, 10(7): e0132769
https://doi.org/10.1371/journal.pone.0132769 pmid: 26167938
64 Y Wang, Y Zu, L Huang, H Zhang, C Wang, J Hu (2018b). Associations between daily outpatient visits for respiratory diseases and ambient fine particulate matter and ozone levels in Shanghai, China. Environment and Pollution, 240: 754–763
https://doi.org/10.1016/j.envpol.2018.05.029 pmid: 29778811
65 Z B Wang, C L Fang (2016). Spatial-temporal characteristics and determinants of PM2.5 in the Bohai Rim Urban Agglomeration. Chemosphere, 148: 148–162
https://doi.org/10.1016/j.chemosphere.2015.12.118 pmid: 26802272
66 H Xu, X H Bi, W W Zheng, J H Wu, Y C Feng (2015). Particulate matter mass and chemical component concentrations over four Chinese cities along the western Pacific coast. Environmental Science and Pollution Research International, 22(3): 1940–1953
https://doi.org/10.1007/s11356-014-3630-0 pmid: 25292296
67 Q Xu, X Li, S Wang, C Wang, F Huang, Q Gao, L Wu, L Tao, J Guo, W Wang, X Guo (2016). Fine particulate air pollution and hospital emergency room visits for respiratory disease in urban areas in Beijing, China, in 2013. PLoS One, 11(4): e0153099
https://doi.org/10.1371/journal.pone.0153099 pmid: 27054582
68 Q Xu, S Wang, Y Guo, C Wang, F Huang, X Li, Q Gao, L Wu, L Tao, J Guo, et al. (2017). Acute exposure to fine particulate matter and cardiovascular hospital emergency room visits in Beijing, China. Environment and Pollution, 220(Pt A): 317–327
69 G Zhai, K Zhang, G Chai (2021). Lag effects of size-fractionated particulate matter pollution on outpatient visits for respiratory diseases in Lanzhou, China. Annals of Agricultural and Environmental Medicine, 28(1): 131–141
pmid: 33775079
70 G Zhang, Y Gao, W Cai, L R Leung, S Wang, B Zhao, M Wang, H Shan, X Yao, H Gao (2019). Seesaw haze pollution in North China modulated by the sub-seasonal variability of atmospheric circulation. Atmospheric Chemistry and Physics, 19(1): 565–576
https://doi.org/10.5194/acp-2018-916
71 L Zhang, Y Gao, S Wu, S Zhang, K R Smith, X Yao, H Gao (2020). Global impact of atmospheric arsenic on health risk: 2005 to 2015. Proceedings of the National Academy of Sciences of the United States of America, 117(25): 13975–13982
https://doi.org/10.1073/pnas.2002580117 pmid: 32513708
72 P Zhang, G Dong, B Sun, L Zhang, X Chen, N Ma, F Yu, H Guo, H Huang, Y L Lee, N Tang, J Chen (2011). Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China. PLoS One, 6(6): e20827
https://doi.org/10.1371/journal.pone.0020827 pmid: 21695220
73 Z Zhang, J Wang, L Chen, X Chen, G Sun, N Zhong, H Kan, W Lu (2014). Impact of haze and air pollution-related hazards on hospital admissions in Guangzhou, China. Environmental Science and Pollution Research International, 21(6): 4236–4244
https://doi.org/10.1007/s11356-013-2374-6 pmid: 24306726
[1] FSE-21075-OF-YJL_suppl_1 Download
[1] Xiaoman Liu, Chang Tian, Yanxia Zhao, Weiying Xu, Dehua Dong, Kaimin Shih, Tao Yan, Wen Song. Enhanced cross-flow filtration with flat-sheet ceramic membranes by titanium-based coagulation for membrane fouling control[J]. Front. Environ. Sci. Eng., 2022, 16(8): 110-.
[2] Bin Wang, Gang Yu. Emerging contaminant control: From science to action[J]. Front. Environ. Sci. Eng., 2022, 16(6): 81-.
[3] Kehui Liu, Xiaojin Guan, Chunming Li, Keyi Zhao, Xiaohua Yang, Rongxin Fu, Yi Li, Fangming Yu. Global perspectives and future research directions for the phytoremediation of heavy metal-contaminated soil: A knowledge mapping analysis from 2001 to 2020[J]. Front. Environ. Sci. Eng., 2022, 16(6): 73-.
[4] Elizabeth Eastman, Kelly A. Stevens, Cesunica Ivey, Haofei Yu. On the potential of iPhone significant location data to characterize individual mobility for air pollution health studies[J]. Front. Environ. Sci. Eng., 2022, 16(5): 63-.
[5] Xuesong Liu, Jianmin Wang, Yue-Wern Huang. Understanding the role of nano-TiO2 on the toxicity of Pb on C. dubia through modeling–Is it additive or synergistic?[J]. Front. Environ. Sci. Eng., 2022, 16(5): 59-.
[6] Yicai Huang, Jiayuan Chen, Qiannan Duan, Yunjin Feng, Run Luo, Wenjing Wang, Fenli Liu, Sifan Bi, Jianchao Lee. A fast antibiotic detection method for simplified pretreatment through spectra-based machine learning[J]. Front. Environ. Sci. Eng., 2022, 16(3): 38-.
[7] Keke Xiao, Zecong Yu, Kangyue Pei, Mei Sun, Yuwei Zhu, Sha Liang, Huijie Hou, Bingchuan Liu, Jingping Hu, Jiakuan Yang. Anaerobic digestion of sludge by different pretreatments: Changes of amino acids and microbial community[J]. Front. Environ. Sci. Eng., 2022, 16(2): 23-.
[8] Jinhui Liang, Peng Gao, Benhang Li, Longfei Kang, Li Feng, Qi Han, Yongze Liu, Liqiu Zhang. Characteristics of typical dissolved black carbons and their influence on the formation of disinfection by-products in chlor(am)ination[J]. Front. Environ. Sci. Eng., 2022, 16(12): 150-.
[9] Mingyi Yang, Lin Shi, Di Zhang, Zhaohui He, Aiping Liang, Xiao Sun. Adsorption of herring sperm DNA onto pine sawdust biochar: Thermodynamics and site energy distribution[J]. Front. Environ. Sci. Eng., 2022, 16(11): 144-.
[10] Xin Xing, Na Li, Dandan Liu, Jie Cheng, Zhengping Hao. Effect of Cu-ZSM-5 catalysts with different CuO particle size on selective catalytic oxidation of N,N-Dimethylformamide[J]. Front. Environ. Sci. Eng., 2022, 16(10): 125-.
[11] Fu Chen, Qi Zhang, Jing Ma, Qianlin Zhu, Yifei Wang, Huagen Liang. Effective remediation of organic-metal co-contaminated soil by enhanced electrokinetic-bioremediation process[J]. Front. Environ. Sci. Eng., 2021, 15(6): 113-.
[12] Mengqing Ge, Tao Lin, Kemei Zhou, Hong Chen, Hang Xu, Hui Tao, Wei Chen. Characteristics and removal mechanism of the precursors of N-chloro-2,2-dichloroacetamide in a drinking water treatment process at Taihu Lake[J]. Front. Environ. Sci. Eng., 2021, 15(5): 93-.
[13] Shan Xue, Shaobin Sun, Weihua Qing, Taobo Huang, Wen Liu, Changqing Liu, Hong Yao, Wen Zhang. Experimental and computational assessment of 1,4-Dioxane degradation in a photo-Fenton reactive ceramic membrane filtration process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 95-.
[14] Kehui Liu, Jie Xu, Chenglong Dai, Chunming Li, Yi Li, Jiangming Ma, Fangming Yu. Exogenously applied oxalic acid assists in the phytoremediation of Mn by Polygonum pubescens Blume cultivated in three Mn-contaminated soils[J]. Front. Environ. Sci. Eng., 2021, 15(5): 86-.
[15] Xinyi Liu, Caichao Wan, Xianjun Li, Song Wei, Luyu Zhang, Wenyan Tian, Ken-Tye Yong, Yiqiang Wu, Jian Li. Sustainable wood-based nanotechnologies for photocatalytic degradation of organic contaminants in aquatic environment[J]. Front. Environ. Sci. Eng., 2021, 15(4): 54-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed