Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (5) : 106    https://doi.org/10.1007/s11783-021-1394-6
RESEARCH ARTICLE
Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process
Majid Mustafa1(), Huijiao Wang2, Richard H. Lindberg1, Jerker Fick1, Yujue Wang2(), Mats Tysklind1
1. Department of Chemistry, Umeå University, Umeå S-90187, Sweden
2. School of Environment, Beijing Key Laboratory for Emerging Organic Contaminants Control, State Key Joint Laboratory of Environmental Simulation and Pollution Control (Ministry of Education), Tsinghua University, Beijing 100084, China
 Download: PDF(1398 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Effect of converting ozonation to E-peroxone was studied on pharmaceutical removal.

• A QSAR model was developed for selected 89 pharmaceuticals of special concern.

• Both processes abated the pharmaceuticals of moderate and high kO3 quickly.

• E-peroxone process accelerated the elimination of pharmaceuticals with low k O3.

• Developed QSAR model reliably predicted kO3 of 418 out of 491 pharmaceuticals.

The abatements of 89 pharmaceuticals in secondary effluent by ozonation and the electro-peroxone (E-peroxone) process were investigated. Based on the results, a quantitative structure-activity relationship (QSAR) model was developed to explore relationship between chemical structure of pharmaceuticals and their oxidation rates by ozone. The orthogonal projection to latent structure (OPLS) method was used to identify relevant chemical descriptors of the pharmaceuticals, from large number of descriptors, for model development. The resulting QSAR model, based on 44 molecular descriptors related to the ozone reactivity of the pharmaceuticals, showed high goodness of fit (R2 = 0.963) and predictive power (Q2 = 0.84). After validation, the model was used to predict second-order rate constants of 491 pharmaceuticals of special concern ( kO3) including the 89 studied experimentally. The predicted k O3 values and experimentally determined pseudo-first order rate constants of the pharmaceuticals’ abatement during ozonation (kOZ) and the E-peroxone process (kEP) were then used to assess effects of switching from ozonation to the E-peroxone process on removal of these pharmaceuticals. The results indicate that the E-peroxone process could accelerate the abatement of pharmaceuticals with relatively low ozone reactivity ( kO3<~102 M-1·s1) than ozonation (3–10 min versus 5–20 min). The validated QSAR model predicted 66 pharmaceuticals to be highly O3-resistant. The developed QSAR model may be used to estimate the ozone reactivity of pharmaceuticals of diverse chemistry and thus predict their fate in ozone-based processes.

Keywords Ozone      Electro-peroxone      Wastewater      Quantitative structure activity relationship      Advanced oxidation processes     
Corresponding Author(s): Majid Mustafa,Yujue Wang   
Issue Date: 03 February 2021
 Cite this article:   
Majid Mustafa,Huijiao Wang,Richard H. Lindberg, et al. Identification of resistant pharmaceuticals in ozonation using QSAR modeling and their fate in electro-peroxone process[J]. Front. Environ. Sci. Eng., 2021, 15(5): 106.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1394-6
https://academic.hep.com.cn/fese/EN/Y2021/V15/I5/106
Fig.1  Abatement of the selected set of 89 pharmaceuticals during (a) ozonation and (b) E-peroxone treatment of the selected wastewater. The pharmaceuticals are ordered from left to right along the x-axis in accordance with rapidity of their removal (highest to lowest). (Reaction conditions: volume= 250 mL, concentration of each pharmaceutical= ~1 mg/L, inlet O3 gas phase concentration= 4.8 mg/L, gas flow rate= 0.35 L/min, current= 35 mA).
Compound pKa kO3 (M1·s1) k•OHb
(M1· s–1)
kOZ
(min–1)
kEP
(min–1)
kEP/kOZ
Reported a Predicted
Alfuzosin 1.11 × 105
Alprazolam 2.79 × 10-1 0.458 0.662 1.45
Amitriptyline 2.53 × 102 1.554 1.657 1.07
Atenolol 9.6 c 1.7 × 103 c 2.24 × 103 8 × 109 c 1.004 0.865 0.86
Atorvastatin 1.63 × 104 1.19 × 1010 d
*Atracurium 1.63 × 1011 3.028 3.291 1.09
Azelastine 5.62 × 101 1.499 2.214 1.48
Azithromycin 8.7, 9.5 e 1.1 × 105 e 1.24 × 105 2.9 × 109 e
Beclomethasone 2.49 × 103
Biperiden 2.14 × 103 1.304 0.963 0.74
Bisoprolol 1.83 × 104 1.694 1.189 0.70
Bromocriptine 6.90 × 101
Budesonide 5.10 × 102 0.508 0.583 1.15
Buprenorphine 1.70 × 105
Bupropion 2.16 × 102 3.3 × 109 f 0.779 0.808 1.04
Caffeine 6.5 × 102 g 5.9 × 102 5.9 × 109 h 0.490 0.709 1.45
Carbamazepine 3 × 105 i 8.8 × 109 i 2.959 2.828 0.96
Cilazapril 5.14 × 102 2.056
Ciprofloxacin 6.2, 8.8 e 1.9 × 104 e 3.59 × 104 4.1 × 109 e 1.633 1.626 1.00
Citalopram 1.11 × 103 0.868 1.301 1.50
Clarithromycin 9.0 c 4.0 × 104 c 6.07 × 104 5 × 109 c 2.458 1.842 0.75
Clemastine 6.51 × 102 1.558 2.463 1.58
Clindamycin 7.6 c 4.3 × 106 c 4.97 × 105 1010 c
Clomipramine 1.32 × 102
Clonazepam 2.35 0.362 0.690 1.91
Clotrimazole 8.36 × 101 0.728 1.065 1.46
Codeine 4.82 × 104
Cyproheptadine 1.87 × 102
Desloratadine 4.07 × 101 0.904 1.033 1.14
Diclofenac 4.2 i 1 × 106 i 7.5 × 109 i
Dicycloverine 5.06 × 103
Dihydroergotamine 1.46 × 102
Diltiazem 8.2, 12.9 j 5.65 × 105 8.3 × 109
Diphenhydramine 3.27 × 103 5.42 × 109 d 1.993 1.942 0.97
*Dipyridamole 3.28 × 103
Donepezil 1.67 × 106 1.590 2.523 1.59
Duloxetine 9.7 3.04 × 105 9.72 × 109 f
Eprosartan 4.9 × 105 k 1.00 × 106
Erythromycin 8.4 c 7.9 × 104 c 5.21 × 104 5 × 109 c
Fexofenadine 9 l 9.0 × 103 l 2.26 × 104 0.860 1.016 1.18
Finasteride 1.97 × 102 1.334 1.185 0.89
Flecainide 1.17 × 104 1.714 1.261 0.74
Fluconazole <1 c 0.69 4.6 × 109 c 0.207 0.501 2.43
Flunitrazepam 1.70 0.300 0.487 1.62
Fluoxetine 8.7 m 2.5 × 104 6.14 × 103 8.4 × 109 n 0.974 1.439 1.48
*Flupentixol 1.68 × 107
*Fluphenazine 3.24 × 107
*Glibenclamide 5.77 × 103 0.625
*Glimepiride 1.53 × 103 0.474 0.693 1.46
Haloperidol 6.39 × 103 2.440 2.190 0.90
*Hydroxyzine 2.87 × 103 2.376
Irbesartan 2.4 × 101 k 6.99 1010 0.326 0.631 1.93
Levomepromazine 2.07 × 107
Loperamide 1.29 × 102 2.650 2.391 0.90
Maprotiline 4.03 × 102 0.765 0.525 0.69
Memantine 7.75 0.474 0.843 1.78
Metoprolol 9.7 o 2.0 × 103 c 1.37 × 104 7.3 × 109 p 1.268 0.980 0.77
Mianserin 6.31 × 102
Mirtazapine 1.25 × 103
Naloxone 7.06 × 104
*Nefazodone 1.01 × 103
Norfloxacin 8.8 c 1.9 × 104 c 3.14 × 104 5 × 109 c 1.900 2.007 1.06
Ofloxacin 7.9 q 1.95 × 106 r 4.70 × 105 4.2 × 109 r 3.480 4.103 1.18
Orphenadrine 2.84 × 103 2.272 1.759 0.77
Oxazepam ~1 c 1.55 9.1 × 109 c 0.518 0.797 1.54
*Oxytetracycline 1.48 × 106 6.96 × 109 s 2.606
Paracetamol 2.57 × 106 t 4.94 × 109 t 4.472 4.635 1.04
Paroxetine 6.91 × 104 9.6 × 109 f
*Perphenazine 3.75 × 106
Pizotifen 6.44 × 103 2.545
*Promethazine 1.67 × 106
Propranolol 9.5 c 1 × 105 c 1.95 × 104 1010 p
Ranitidine 8.2 c 4.1 × 106 c 2.01 × 107 1010 c
Repaglinide 6.31 × 103
Risperidone 2.25 × 103 2.828
Rosuvastatin 5.02 × 104 0.785 0.918 1.17
Roxithromycin 9.2 e 6.3 × 104 e 3.88 × 104 5.4 × 109 e
Sertraline 1.60 × 101
Sotalol 9.4 c 1.9 × 104 c 6.06 × 104 ~1010 c
Sulfamethoxazole 5.6 o 5.5 × 105 e 1.72 × 105 5.5 × 109 e
Telmisartan 1.2 × 105 k 4.29 × 104 0.702 0.823 1.17
Terbutaline 8.6 u 1.23 × 105 6.87 × 109 j
*Tetracycline 3.3,7.7,9.7 e 1.9 × 106 e 1.63 × 106 7.7 × 109 e 3.205
Tramadol 9.4 c 4.0 × 103 c 1.57 × 104 6.3 × 109 v 0.856 0.981 1.15
Trihexyphenidyl 2.02 × 103 1.192 1.008 0.85
Trimethoprim 3.2, 7.1 o 4.1 × 105 c 4.57 × 105 6.9 × 109 e 3.398
Venlafaxine 9.4 c 8.5 × 103 c 1.60 ×104 1010 c 0.842 0.977 1.16
Verapamil 9.7 c 2.7 × 106 c 3.74 × 106 1010 c
Zolpidem 1.01 × 103
Tab.1  pKa values, previously published and QSAR model-predicted ozone rate constants ( kO3), pseudo-first order rate constants obtained for abatement during ozonation (kOZ) and the E-peroxone process (kEP), and kEP/kOZ ratios for the tested pharmaceuticals
Fig.2  Correlation between the literature-reported and QSAR model-predicted second-order rate constants for the reaction of O3 with compounds used for model training. The solid line represents the linear regression line obtained, while the lower and upper dashed lines represent the prediction error ranges of factors of 1/3 and 3, respectively.
Fig.3  VIP plot showing predictive descriptors (Table S6) in order from highest to lowest importance to kO3. Descriptors shown as white column bars were positively and descriptors as gray column bars were negatively correlated to k O3.
Fig.4  The ratio of pseudo-first order rate constants for pharmaceutical abatement during the E-peroxone process and ozonation treatment (kEP/kOZ) in relation to the second-order rate constant for pharmaceutical reaction with ozone ( k O3) predicted by the QSAR model.
Pharmaceutical kO3 (M1·s1) Pharmaceutical kO3 (M1·s1) Pharmaceutical kO3 (M1·s1)
Ciclosporin 7.5 × 10-5* Ribavirin 6.58 Lomustine 42.1
Triazolam 0.0574 Praziquantel 6.60 Loratadine 47.6
Lorazepam 0.28 Irbesartan 6.99** Dihydroergotamine 52.0
Alprazolam 0.28** Ethosuximide 7.13 Guanethidine 55.0
Clobazam 0.67 Memantine 7.75** Azelastine 56.2**
Fluconazole 0.69** Felbamate 10.4 Itraconazole 60.8*
Anastrozole 1.23 Nitrazepam 13.0 Lisinopril 67.1
Oxazepam 1.55** Zidovudine 15.2 Piperacillin 68.0
Letrozole 1.69 Sertraline 16.0** Bromocriptine 69.0**
Flunitrazepam 1.70** Methohexital 16.2 Mercaptopurine 80.7
Methenamine 2.0* Levosimendan 16.9* Domperidone 81.5
Clonazepam 2.35** Phenobarbital 19.2 Clotrimazole 83.6**
Clonidine 2.52 Mitotane 20.7 Flucytosine 84.2
Carisoprodol 2.86 Moxonidine 20.9 Efavirenz 84.9
Amiloride 3.01 Dihydralazine 24.6 Baclofen 91.0
Amantadine 3.45 Chlordiazepoxide 29.3 Caspofungin 93.1*
Voriconazole 3.56 Streptomycin 29.3* Gemcitabine 93.1
Proguanil 3.88 Melagatran 33.4 Nortriptyline 93.8
Artemether 4.75 Pyrimethamine 36.4 Oxcarbazepine 94.4
Pentobarbital 4.88 Ketamine 39.2 Quinaprilate 94.4
Midazolam 5.46 Desloratadine 40.7** Alfentanil 96.2
Anagrelide 6.08 Isoflurane 41.9 Loracarbef 96.9
Tab.2  The 66 O3-resistant pharmaceuticals with k O3<100 M1·s1 predicted by the QSAR model
1 R I Allen, K J Box, J E A Comer, C Peake, K Y Tam (1998). Multiwavelength spectrophotometric determination of acid dissociation constants of ionizable drugs. Journal of Pharmaceutical and Biomedical Analysis, 17(4–5): 699–712
https://doi.org/10.1016/S0731-7085(98)00010-7
2 J Benner, E Salhi, T Ternes, U von Gunten (2008). Ozonation of reverse osmosis concentrate: Kinetics and efficiency of beta blocker oxidation. Water Research, 42(12): 3003–3012
https://doi.org/10.1016/j.watres.2008.04.002
3 T N Borhani, M Saniedanesh, M Bagheri, J S Lim (2016). QSPR prediction of the hydroxyl radical rate constant of water contaminants. Water Research, 98: 344–353
https://doi.org/10.1016/j.watres.2016.04.038
4 E Borowska, M Bourgin, J Hollender, C Kienle, C S Mcardell, U von Gunten (2016). Oxidation of cetirizine, fexofenadine and hydrochlorothiazide during ozonation: Kinetics and formation of transformation products. Water Research, 94: 350–362
https://doi.org/10.1016/j.watres.2016.02.020
5 M Bourgin, B Beck, M Boehler, E Borowska, J Fleiner, E Salhi, R Teichler, U von Gunten, H Siegrist, C S Mcardell (2018). Evaluation of a full-scale wastewater treatment plant upgraded with ozonation and biological post-treatments: Abatement of micropollutants, formation of transformation products and oxidation by-products. Water Research, 129: 486–498
https://doi.org/10.1016/j.watres.2017.10.036
6 M Bourgin, E Borowska, J Helbing, J Hollender, H P Kaiser, C Kienle, C S Mcardell, E Simon, U von Gunten (2017). Effect of operational and water quality parameters on conventional ozonation and the advanced oxidation process O3/H2O2: Kinetics of micropollutant abatement, transformation product and bromate formation in a surface water. Water Research, 122: 234–245
https://doi.org/10.1016/j.watres.2017.05.018
7 R Broséus, S Vincent, K Aboulfadl, A Daneshvar, S Sauvé, B Barbeau, M Prévost (2009). Ozone oxidation of pharmaceuticals, endocrine disruptors and pesticides during drinking water treatment. Water Research, 43(18): 4707–4717
https://doi.org/10.1016/j.watres.2009.07.031
8 M C Dodd, M O Buffle, U von Gunten (2006). Oxidation of antibacterial molecules by aqueous ozone: Moiety-specific reaction kinetics and application to ozone-based wastewater treatment. Environmental Science & Technology, 40(6): 1969–1977
https://doi.org/10.1021/es051369x
9 L Eriksson, P L Andersson, E Johansson, M Tysklind (2006). Megavariate analysis of environmental QSAR data. Part I–A basic framework founded on principal component analysis (PCA), partial least squares (PLS), and statistical molecular design (SMD). Molecular Diversity, 10(2): 169–186
https://doi.org/10.1007/s11030-006-9024-6
10 J Fick, R H Lindberg, M Tysklind, D G Larsson (2010). Predicted critical environmental concentrations for 500 pharmaceuticals. Regulatory Toxicology and Pharmacology, 58(3): 516–523
https://doi.org/10.1016/j.yrtph.2010.08.025
11 A Fischbacher, J von Sonntag, C von Sonntag, T C Schmidt (2013). The OH radical yield in the H2O2 + O3 (peroxone) reaction. Environmental Science & Technology, 47(17): 9959–9964
https://doi.org/10.1021/es402305r
12 R Flyunt, A Leitzke, G Mark, E Mvula, E Reisz, R Schick, C von Sonntag (2003). Determination of •OH, O2•‒, and hydroperoxide yields in ozone reactions in aqueous solution. Journal of Physical Chemistry B, 107(30): 7242–7253
https://doi.org/10.1021/jp022455b
13 R Grabic, J Fick, R H Lindberg, G Fedorova, M Tysklind (2012). Multi-residue method for trace level determination of pharmaceuticals in environmental samples using liquid chromatography coupled to triple quadrupole mass spectrometry. Talanta, 100: 183–195
https://doi.org/10.1016/j.talanta.2012.08.032
14 Y Guo, H Wang, B Wang, S Deng, J Huang, G Yu, Y Wang (2018). Prediction of micropollutant abatement during homogeneous catalytic ozonation by a chemical kinetic model. Water Research, 142: 383–395
https://doi.org/10.1016/j.watres.2018.06.019
15 N Hamdi El Najjar, A Touffet, M Deborde, R Journel, N Karpel Vel Leitner (2014). Kinetics of paracetamol oxidation by ozone and hydroxyl radicals, formation of transformation products and toxicity. Separation and Purification Technology, 136: 137–143
https://doi.org/10.1016/j.seppur.2014.09.004
16 J Hoigné, H Bader (1983). Rate constants of reactions of ozone with organic and inorganic compounds in water—II: Dissociating organic compounds. Water Research, 17(2): 185–194
https://doi.org/10.1016/0043-1354(83)90099-4
17 M M Huber, S Canonica, G Y Park, U von Gunten (2003). Oxidation of pharmaceuticals during ozonation and advanced oxidation processes. Environmental Science & Technology, 37(5): 1016–1024
https://doi.org/10.1021/es025896h
18 M M Huber, A Gobel, A Joss, N Hermann, D Loffler, C S Mcardell, A Ried, H Siegrist, T A Ternes, U von Gunten (2005). Oxidation of pharmaceuticals during ozonation of municipal wastewater effluents: A pilot study. Environmental Science & Technology, 39(11): 4290–4299
https://doi.org/10.1021/es048396s
19 X Jin, S Peldszus, P M Huck (2015). Predicting the reaction rate constants of micropollutants with hydroxyl radicals in water using QSPR modeling. Chemosphere, 138: 1–9
https://doi.org/10.1016/j.chemosphere.2015.05.034
20 X Jin, S Peldszus, D I Sparkes (2014). Modeling ozone reaction rate constants of micropollutants using quantitative structure-property relationships. Ozone Science and Engineering, 36(4): 289–302
https://doi.org/10.1080/01919512.2014.910444
21 M W Lam, C J Young, S A Mabury (2005). Aqueous photochemical reaction kinetics and transformations of fluoxetine. Environmental Science & Technology, 39(2): 513–522
https://doi.org/10.1021/es0494757
22 M Lee, S G Zimmermann-Steffens, J S Arey, K Fenner, U von Gunten (2015). Development of prediction models for the reactivity of organic compounds with ozone in aqueous solution by quantum chemical calculations: The role of delocalized and localized molecular orbitals. Environmental Science & Technology, 49(16): 9925–9935
https://doi.org/10.1021/acs.est.5b00902
23 Y Lee, D Gerrity, M Lee, A E Bogeat, E Salhi, S Gamage, R A Trenholm, E C Wert, S A Snyder, U von Gunten (2013). Prediction of micropollutant elimination during ozonation of municipal wastewater effluents: Use of kinetic and water specific information. Environmental Science & Technology, 47(11): 5872–5881
https://doi.org/10.1021/es400781r
24 Y Lee, L Kovalova, C S Mcardell, U von Gunten (2014). Prediction of micropollutant elimination during ozonation of a hospital wastewater effluent. Water Research, 64(0): 134–148
https://doi.org/10.1016/j.watres.2014.06.027
25 Y Lee, U von Gunten (2012). Quantitative structure-activity relationships (QSARs) for the transformation of organic micropollutants during oxidative water treatment. Water Research, 46(19): 6177–6195
https://doi.org/10.1016/j.watres.2012.06.006
26 H Lei, S A Snyder (2007). 3D QSPR models for the removal of trace organic contaminants by ozone and free chlorine. Water Research, 41(18): 4051–4060
https://doi.org/10.1016/j.watres.2007.05.010
27 X Li, H Shi, K Li, L Zhang, Y Gan (2014). Occurrence and fate of antibiotics in advanced wastewater treatment facilities and receiving rivers in Beijing, China. Frontiers of Environmental Science & Engineering, 8(6): 888–894
https://doi.org/10.1007/s11783-014-0735-0
28 X Li, B Wang, Y Wang, K Li, G Yu (2019). Synergy effect of E-peroxone process in the degradation of structurally diverse pharmaceuticals: A QSAR analysis. Chemical Engineering Journal, 360: 1111–1118
https://doi.org/10.1016/j.cej.2018.10.191
29 Y Li, Y Zhang, G Xia, J Zhan, G Yu, Y Wang (2021). Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment. Frontiers of Environmental Science & Engineering, 15(1): 1
https://doi.org/10.1007/s11783-020-1293-2
30 R Loos, R Carvalho, D C António, S Comero, G Locoro, S Tavazzi, B Paracchini, M Ghiani, T Lettieri, L Blaha, B Jarosova, S Voorspoels, K Servaes, P Haglund, J Fick, R H Lindberg, D Schwesig, B M Gawlik (2013). EU-wide monitoring survey on emerging polar organic contaminants in wastewater treatment plant effluents. Water Research, 47(17): 6475–6487
https://doi.org/10.1016/j.watres.2013.08.024
31 J J López-Peñalver, M Sánchez-Polo, C V Gómez-Pacheco, J Rivera-Utrilla (2010). Photodegradation of tetracyclines in aqueous solution by using UV and UV/H2O2 oxidation processes. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 85(10): 1325–1333
https://doi.org/10.1002/jctb.2435
32 H A Okeri, I M Arhewoh (2008). Analytical profile of the fluoroquinolone antibacterials. I. Ofloxacin. African Journal of Biotechnology, 7(6): 670–680
33 E V Ortiz, D O Bennardi, D E Bacelo, S E Fioressi, P R Duchowicz (2017). The conformation-independent QSPR approach for predicting the oxidation rate constant of water micropollutants. Environmental Science and Pollution Research International, 24(35): 27366–27375
https://doi.org/10.1007/s11356-017-0315-5
34 B Razavi, S Ben Abdelmelek, W Song, K E O’shea, W J Cooper (2011). Photochemical fate of atorvastatin (lipitor) in simulated natural waters. Water Research, 45(2): 625–631
https://doi.org/10.1016/j.watres.2010.08.012
35 , E M Rodríguez , G Marquez, E A Leon, P M Alvarez, A M Amat F J Beltran (2013). Mechanism considerations for photocatalytic oxidation, ozonation and photocatalytic ozonation of some pharmaceutical compounds in water. Journal of Environmental Management, 127: 114–124
https://doi.org/10.1016/j.jenvman.2013.04.024
36 H Santoke, W Song, W J Cooper, B M Peake (2012). Advanced oxidation treatment and photochemical fate of selected antidepressant pharmaceuticals in solutions of Suwannee River humic acid. Journal of Hazardous Materials, 217–218(0): 382–390
https://doi.org/10.1016/j.jhazmat.2012.03.049
37 X Shi, N S Dalal, A C Jain (1991). Antioxidant behaviour of caffeine: Efficient scavenging of hydroxyl radicals. Food and Chemical Toxicology, 29(1): 1–6
https://doi.org/10.1016/0278-6915(91)90056-D
38 F Soltermann, C Abegglen, M Tschui, S Stahel, U von Gunten (2017). Options and limitations for bromate control during ozonation of wastewater. Water Research, 116: 76–85
https://doi.org/10.1016/j.watres.2017.02.026
39 S Sudhakaran, J Calvin, G L Amy (2012). QSAR models for the removal of organic micropollutants in four different river water matrices. Chemosphere, 87(2): 144–150
https://doi.org/10.1016/j.chemosphere.2011.12.006
40 J Trygg, S Wold (2002). Orthogonal projections to latent structures (O-PLS). Journal of Chemometrics, 16(3): 119–128
https://doi.org/10.1002/cem.695
41 C von Sonntag, U von Gunten (2012). Chemistry of ozone in water and wastewater treatment: From basic principles to applications. London: IWA Publishing
42 H Wang, M Mustafa, G Yu, M Ostman, Y Cheng, Y Wang, M Tysklind (2019). Oxidation of emerging biocides and antibiotics in wastewater by ozonation and the electro-peroxone process. Chemosphere, 235: 575–585
https://doi.org/10.1016/j.chemosphere.2019.06.205
43 H Wang, J Zhan, W Yao, B Wang, S Deng, J Huang, G Yu, Y Wang (2018a). Comparison of pharmaceutical abatement in various water matrices by conventional ozonation, peroxone (O3/H2O2), and an electro-peroxone process. Water Research, 130: 127–138
https://doi.org/10.1016/j.watres.2017.11.054
44 Y Wang, G Yu, S Deng, J Huang, B Wang (2018b). The electro-peroxone process for the abatement of emerging contaminants: Mechanisms, recent advances, and prospects. Chemosphere, 208: 640–654
https://doi.org/10.1016/j.chemosphere.2018.05.095
45 S Wold, M Sjöström, L Eriksson (2001). PLS-regression: A basic tool of chemometrics. Chemometrics and Intelligent Laboratory Systems, 58(2): 109–130
https://doi.org/10.1016/S0169-7439(01)00155-1
46 W Yao, Q Qu, U von Gunten, C Chen, G Yu, Y Wang (2017). Comparison of methylisoborneol and geosmin abatement in surface water by conventional ozonation and an electro-peroxone process. Water Research, 108: 373–382
https://doi.org/10.1016/j.watres.2016.11.014
47 W Yao, S W Ur Rehman, H Wang, H Yang, G Yu, Y Wang (2018). Pilot-scale evaluation of micropollutant abatements by conventional ozonation, UV/O3, and an electro-peroxone process. Water Research, 138: 106–117
https://doi.org/10.1016/j.watres.2018.03.044
48 W Yao, X Wang, H Yang, G Yu, S Deng, J Huang, B Wang, Y Wang (2016). Removal of pharmaceuticals from secondary effluents by an electro-peroxone process. Water Research, 88: 826–835
https://doi.org/10.1016/j.watres.2015.11.024
49 W Zhao, Y Guo, S Lu, P Yan, Q Sui (2016). Recent advances in pharmaceuticals and personal care products in the surface water and sediments in China. Frontiers of Environmental Science & Engineering, 10(6): 2
https://doi.org/10.1007/s11783-016-0868-4
50 Y Zhao, G Yu, S Y Chen, S Y Zhang, B Wang, J Huang, S B Deng, Y J Wang (2017). Ozonation of antidepressant fluoxetine and its metabolite product norfluoxetine: Kinetics, intermediates and toxicity. Chemical Engineering Journal, 316: 951–963
https://doi.org/10.1016/j.cej.2017.02.032
51 B Zhu, B Zonja, O Gonzalez, C Sans, S Perez, D Barcelo, S Esplugas, K Xu, Z Qiang (2015). Degradation kinetics and pathways of three calcium channel blockers under UV irradiation. Water Research, 86: 9–16
https://doi.org/10.1016/j.watres.2015.05.028
52 S G Zimmermann, A Schmukat, M Schulz, J Benner, U von Gunten, T A Ternes (2012). Kinetic and mechanistic investigations of the oxidation of tramadol by ferrate and ozone. Environmental Science & Technology, 46(2): 876–884
https://doi.org/10.1021/es203348q
53 I Zucker, D Avisar, H Mamane, M Jekel, U Hübner (2016). Determination of oxidant exposure during ozonation of secondary effluent to predict contaminant removal. Water Research, 100: 508–516
https://doi.org/10.1016/j.watres.2016.05.049
[1] FSE-20173-OF-MM_suppl_1 Download
[1] Jun Li, Aimin Li, Yan Li, Minhui Cai, Gan Luo, Yaping Wu, Yechao Tian, Liqun Xing, Quanxing Zhang. PICRUSt2 functionally predicts organic compounds degradation and sulfate reduction pathways in an acidogenic bioreactor[J]. Front. Environ. Sci. Eng., 2022, 16(4): 47-.
[2] Feng Hou, Ting Zhang, Yongzhen Peng, Xiaoxin Cao, Hongtao Pang, Yanqing Shao, Xianchun Lu, Ju Yuan, Xi Chen, Jin Zhang. Partial anammox achieved in full scale biofilm process for typical domestic wastewater treatment[J]. Front. Environ. Sci. Eng., 2022, 16(3): 33-.
[3] Tao Liu, Yudong Song, Zhiqiang Shen, Yuexi Zhou. Inhibition character of crotonaldehyde manufacture wastewater on biological acidification[J]. Front. Environ. Sci. Eng., 2021, 15(6): 119-.
[4] Yuan Meng, Weiyi Liu, Heidelore Fiedler, Jinlan Zhang, Xinrui Wei, Xiaohui Liu, Meng Peng, Tingting Zhang. Fate and risk assessment of emerging contaminants in reclaimed water production processes[J]. Front. Environ. Sci. Eng., 2021, 15(5): 104-.
[5] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[6] Byungjin Lee, Eun Seo Jo, Dong-Wha Park, Jinsub Choi. Submerged arc plasma system combined with ozone oxidation for the treatment of wastewater containing non-degradable organic compounds[J]. Front. Environ. Sci. Eng., 2021, 15(5): 90-.
[7] Haoran Feng, Min Liu, Wei Zeng, Ying Chen. Optimization of the O3/H2O2 process with response surface methodology for pretreatment of mother liquor of gas field wastewater[J]. Front. Environ. Sci. Eng., 2021, 15(4): 78-.
[8] Safaa M. Ezzat, Mohammed T. Mohammed T.. Treating wastewater under zero waste principle using wetland mesocosms[J]. Front. Environ. Sci. Eng., 2021, 15(4): 59-.
[9] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[10] Jiangbo Jin, Yun Zhu, Jicheng Jang, Shuxiao Wang, Jia Xing, Pen-Chi Chiang, Shaojia Fan, Shicheng Long. Enhancement of the polynomial functions response surface model for real-time analyzing ozone sensitivity[J]. Front. Environ. Sci. Eng., 2021, 15(2): 31-.
[11] Shengjie Qiu, Jinjin Liu, Liang Zhang, Qiong Zhang, Yongzhen Peng. Sludge fermentation liquid addition attained advanced nitrogen removal in low C/N ratio municipal wastewater through short-cut nitrification-denitrification and partial anammox[J]. Front. Environ. Sci. Eng., 2021, 15(2): 26-.
[12] Yang Li, Yixin Zhang, Guangshen Xia, Juhong Zhan, Gang Yu, Yujue Wang. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment[J]. Front. Environ. Sci. Eng., 2021, 15(1): 1-.
[13] Kun Zhang, Jialuo Xu, Qing Huang, Lei Zhou, Qingyan Fu, Yusen Duan, Guangli Xiu. Precursors and potential sources of ground-level ozone in suburban Shanghai[J]. Front. Environ. Sci. Eng., 2020, 14(6): 92-.
[14] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[15] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed