Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (3) : 44    https://doi.org/10.1007/s11783-020-1336-8
REVIEW ARTICLE
The source and transport of bioaerosols in the air: A review
Wenwen Xie1, Yanpeng Li1,3(), Wenyan Bai1, Junli Hou1, Tianfeng Ma1, Xuelin Zeng1, Liyuan Zhang1,3, Taicheng An2
1. School of Water and Environment, Chang’an University, Xi’an 710054, China
2. Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environment Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
3. Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region (Ministry of Education), Chang’an University, Xi’an 710054, China
 Download: PDF(1943 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Emission of microbe from local environments is a main source of bioaerosols.

• Regional transport is another important source of the bioaerosols.

• There are many factors affecting the diffusion and transport of bioaerosols.

• Source identification method uncovers the contribution of sources of bioaerosols.

Recent pandemic outbreak of the corona-virus disease 2019 (COVID-19) has raised widespread concerns about the importance of the bioaerosols. They are atmospheric aerosol particles of biological origins, mainly including bacteria, fungi, viruses, pollen, and cell debris. Bioaerosols can exert a substantial impact on ecosystems, climate change, air quality, and public health. Here, we review several relevant topics on bioaerosols, including sampling and detection techniques, characterization, effects on health and air quality, and control methods. However, very few studies have focused on the source apportionment and transport of bioaerosols. The knowledge of the sources and transport pathways of bioaerosols is essential for a comprehensive understanding of the role microorganisms play in the atmosphere and control the spread of epidemic diseases associated with them. Therefore, this review comprehensively summarizes the up to date progress on the source characteristics, source identification, and diffusion and transport process of bioaerosols. We intercompare three types of diffusion and transport models, with a special emphasis on a widely used mathematical model. This review also highlights the main factors affecting the source emission and transport process, such as biogeographic regions, land-use types, and environmental factors. Finally, this review outlines future perspectives on bioaerosols.

Keywords Bioaerosols      Diffusion      Source identification      Biogeography     
Corresponding Author(s): Yanpeng Li   
Issue Date: 15 December 2020
 Cite this article:   
Wenwen Xie,Yanpeng Li,Wenyan Bai, et al. The source and transport of bioaerosols in the air: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 44.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-020-1336-8
https://academic.hep.com.cn/fese/EN/Y2021/V15/I3/44
Fig.1  Number of published articles on bioaerosols (The data from Web of Science).
Fig.2  Sources and transport of bioaerosols in nature. Adapted from Smets et al. (2016) and Fröhlich-Nowoisky et al. (2016).
Fig.3  The different transport routes of bioaerosols emitted by humans. Small water droplets (<5 mm) are responsible for short-range airborne route, long-range airborne route, and indirect contact routes. Adapted from Wei and Li (2016).
Sampling Site Basic Information Enumeration
Technique
Bacteria Fungi Reference
Conc. Dominant Genera Pathogenic Microorganism Conc. Dominant Genera Pathogenic Microorganism
Poultry Farms Chicken number:
6000
(China)
Biochemical
Identification
Brachybacterium, Brevibacterium, Salinicoccus, Staphylococcus, Faecalibacterium Enterococcus, Parabacteroides, Escherichia,
Megamonas
Microascus, Aspergillus, Paraglomus Scopulariopsis, Wallemia,
Fusarium
Dai et al., 202026
Bird number:
8000–42000
(Poland)
Cultivation
Microscopy
(3.2±5.0)×109 (CFU/g) Bacillus,
Clostridia, Corynebacterium, Enterobacter,
Chlamydia ornithosis, Bacillus anthracis, Mycoplasma spp., Staphylococcus aureus (1.2±1.1)×106 (CFU/g) Cladosporium, Penicillium,
Aspergillus, Alternaria
Paecilomyces variotii
A. fumigatus
Skora et al., 201692
Swine Houses Swine number:
140–480
(Republic of Korea)
Biochemical
Identification
Clavaria, Fusarium,
Rhodotorula,
Mortierella,
Fusarium (10.8%) Kumari et al., 201659
Cattle Feed Yards via Cattle number:
20000–50000
(USA)
Biochemical
Identification
Corynebacterium,
Leptospira,
Clostridium, Bacteroides, Staphylococcus
Corynebacterium (present in 90% of all
samples)
McEachran et al., 201573
Waste
Sorting
Plants
Garbage type: paper
Weight: 4000
tons per month
(France)
Biochemical
Identification
unclassified Enterobacteriaceae, Staphylococcus, Acinetobacter Penicillium, Aspergillus,
Rhizopus,
Wallemia
Degois et al., 201727
Landfill Area Total area of 37 ha
Since 1974
(Poland)
Cultivation
Microscopy
112–16445 (CFU/m3) Aspergillus, Cladosporium, Penicillium Fraczek et al., 201735
The largest open dumpsite in the Philippines
Since: 2000
Cultivation Microscopy and Biochemical Identification 7.87×102–5.57×103 (CFU/m3) Staphylococcus,
Bacillus,
Enterococcus,
Pseudomonas,
Acinetobacter
B. Subtilis,
S. Aureus, K.Pneumoniae
Pagalilauan et al., 201882
Wastewater
Treatment Plant
Type: anaerobic–anoxic–oxic
(A2/O)
Number: 6.0×105 m3/day
(China)
Cultivation Microscopy and Biochemical Identification 459–4364 (CFU/m3) Brevundimonas, Bacillus,
Thauera,
Zooglea, Dechloromonas
Xu et al., 2018117
Type: activated sludge
(Poland)
Cultivation Microscopy 5.1×101
–6.9×103 (CFU/m3)
Staphylococcus,
Bacillus,
Pseudomonas,
Microbacterium
Staphylococcus gallinarum,
Staphylococcus xylosus,
Bacillus firmus,
Pseudomonas stutzeri
6.3×102
–3.9×103 (CFU/m3)
Cladosporidies,
Rhodotorula,
Penicillium
C.herbarum
Fusarium graminearum
Kowalski et al., 201758
Tab.1  Characteristics of bioaerosols released from various artificial sources
Model Type Characteristic Advantage Limitation
Mathematical Model Mathematics and computer model;
Simulate under specific parameters
Avoid building complex structures;
Detect different scenarios by changing variables;
No environmental pollution problem;
Reduce time and expenses
Need to integrate data across the environment;
Test in the ideal environment
Non-biological Simulant Model Create an artificial environment similar to the simulated scene Have authenticity;
Experimental particles are less harmful to human body
Cause environmental pollution;
Spend a lot of money;
Be differences between test particles and biological particles
Biological Simulant Model Use a biological simulant Experimental particles are more realistic;
Significantly reduce model uncertainty
Cause environmental pollution or the spread of pathogenic bacteria;
Spend a lot of money;
Need to design experimental apparatus
Tab.2  Advantages and limitations of different types of diffusion and transport models
Region Geographical conditions Climate type Sampling Bacteria Fungi Reference
Phyla Dominant genera Phyla Dominant genera
Urumqi, China An important central city in north-west China Temperate continental climate PM10 Proteobacteria (74.1)
Firmicutes (15.3)
Actinobacteria (6.2)
Pseudomonas
Delftia
Serratia
Acinetobacter
Gou et al., 201642
Changsha, China A city in the middle reaches of the Yangtze river in China Subtropical monsoon climate PM2.5 Proteobacteria (95.6)
Firmicutes (3.4)
Acinetobacter
Massillia
Xanthomonadaceae
Ascomycota (44.6)
Basidiomycota (54.9)
Polyporales
Aspergillus
Schizophyllum
Runlan et al., 201988
Mount Tai, China The highest mountain in the North China Plain Monsoon climate of medium latitudes (Significant vertical variation) PM2.5 Proteobacteria (60.6)
Firmicutes (3.0)
Actinobacteria (15.3)
Cyanobacteria (9.8)
Methylobacterium
Rhodococcus
Pseudomonas
Acinetobacter
Ascomycota (84.2)
Basidiomycota (3.8)
Alternaria
Davidiella
Epicoccum
Cryptococcus
Xu et al., 2019115
Beijing, China The capital of China, located in the north of the North China Plain Monsoon climate of medium latitudes PM2.5 Proteobacteria (33)
Actinobacteria (28.1)
Firmicutes (19.30)
Bacteroidetes (8.14)
Streptophyta,
Kocuria,
Paracoccus,
Sphingomonas,
Rubellimicrobium
Ascomycota (95.37)
Basidiomycota (1.51)
Zygomycota (0.13)
Epicoccum
Penicillium
Selenophoma
Mycosphaerella
Cladosporium
Du et al., 201830
Denver, USA The largest urban city in the Colorado Front Range Highland climate PM10&PM2.5 Actinobacteria (22)
Bacteroidetes (9.7)
Firmicutes (28.2)
Proteobacteria (34.6)
Ascomycota (78)
Basidiomycota (21)
Bowers et al., 201313
Thessaloniki, Greece The largest port and second city in northern Greece Mediterranean climate Bioaerosol Proteobacteria (56.0)
Firmicutes (20.0)
Actinobacteria (20.0)
Pseudomonas
Herbaspirillum
Bacillus
Genitsaris et al., 201739
Madrid, Spain The capital and largest metropolis of Spain Temperate continental climate with Mediterranean climate characteristics Bioaerosol Proteobacteria
Firmicutes
Actinobacteria
Kocuria
Arthrobacter
Sphingomonas
Pantoea
Ascomycota
Basidiomycota
Chytridiomycota
Davidiella
Cladosporium
Alternaria
Aureobasidlum
Núñez et al., 201980
Gwangju Metropolitan City, Republic of Korea Located in the south-west of Republic of Korea West coast type climate PM2.5 Ascomycota
Basidiomycota
Phaeosphaeria
Pyrenophora
Botryotinia
Abd Aziz et al., 20181
The North-western Pacific Ocean,
China
The Bohai Sea;
The Yellow Sea; The north-western Pacific Ocean
(a ship cruise)
Monsoon climate of medium latitudes Bioaerosol Bacteroidetes (26.99)
Firmicutes (26.72)
Proteobacteria (21.8)
Bacteroides (9.56)
Prevotella (5.42)
Megamonas (3.22)
Ma et al., 201968
Toyama Prefecture, Japan Surrounded by steep
mountains on three sides and spreading fields
Oceanic climate (snow coverage throughout the year in top) Bioaerosol Proteobacteria (49.1)
Actinobacteria (26.3)
Firmicutes (14.0)
Basidiomycota (41.7)
Ascomycota (30.9)
Streptophyta (14.9)
Alternaria
Epicoccum
Curvularia
Cladosporium
Tanaka et al., 201997
Tab.3  The airborne microbial communities in different regions worldwide
Fig.4  Bioaerosol characteristics of different land-use types. (a) “A” Bacterial abundance of varying land-use types, “B” the total number of ice nuclei. (b) The dominant bacterial phyla in samples of different land-use types. Adapted from Bowers et al. (2011a).
Fig.5  Analysis of heatmap of dominant bacteria genera in Xi’an, China, based on Spearman rank correlation (**p<0.01; *p<0.05).
Fig.6  Effects of environmental factors on bioaerosols. (a) Relative effects of environmental conditions on opportunistic pathogens in particulate matter (Reprint from Fan et al. (2019) with permission of Elsevier); (b) Effect of environmental conditions on the richness and diversity of airborne fungus (Reprint from Qi et al. (2020) with permission of Elsevier).
Source Identification Method Main Content Advantage Limitation
Database Analysis Method BLAST searches;
MetametaDB;
Global Catalogue of Microorganisms (GCM) database
No need to collect samples from potential sources;
Accurate microbial sources;
Further analysis of various source contribution rates
Unknown relationship to local sources;
Need of long time and a lot of work
Correlation Analysis Method Principal component analysis (PCA) Known relationship to local sources;
Easy to operate
Need to collect samples from potential sources and identify microbial communities;
Unable to determine the contribution rate of local sources
Model Analysis Method Source Tracker Determining the contribution rate of local sources;
Easy to operate
Need to collect samples from potential sources and identify microbial communities;
Limited to collected source samples;
Calculation error
Tab.4  Advantages and limitations of various source identification methods
Region Time Environmental sample Analysis method Source distribution Reference
Tokyo, Japan 2016.8–2017.2 Soil; Bay; River; Pond SourceTracker2 Summer: bay>soil>river>pond
Autumn: soil>river>bay>pond
Winter: bay>soil>river>pond
Uetake et al., 2019102
Mayville, USA 2007 (min-summer; min-winter) Soil;
Leaf surface;
Feces
A procedure to calculate different source contributions Summer: feces>leaf surface>soil
Winter: feces>leaf surface>soil
Bowers et al., 2011b15
Chicago, USA Summer: feces>soil>leaf surface
Winter: feces>soil>leaf surface
Detroit, USA Summer: soil>feces>leaf surface
Winter: feces>soil>leaf surface
Cleveland,
USA
Summer: soil>leaf surface>feces
Winter: feces>soil>leaf surface
Xi’an, China 2017 (autumn; winter) Soil;
Leaf surface;
A procedure to calculate different source contributions Autumn: leaf surface>soil>feces
Winter: soil>leaf surface>feces
Fan et al.,
2019
Southnest Greenland 2013.7–8 Soil; Plant; Snow; Water; Rain Correlation analysis Major: soil, decaying vegetation, long-range transport Šantl-Temkiv et al., 201889
Tab.5  Distribution of bacterial sources in different regions worldwide
Fig.7  The sources of bacteria and fungi in Xi’an, China. (a) The contribution of different sources to the airborne bacterial loading; (b) The contribution of various sources to airborne fungi.
1 A Abd Aziz, K Lee, B Park, H Park, K Park, I G Choi, I S Chang (2018). Comparative study of the airborne microbial communities and their functional composition in fine particulate matter (PM2.5) under non-extreme and extreme PM2.5 conditions. Atmospheric Environment, 194: 82–92
https://doi.org/10.1016/j.atmosenv.2018.09.027
2 D A Alves, A R Glynn, K E Steele, M G Lackemeyer, N L Garza, J G Buck, C Mech, D S Reed (2010). Aerosol exposure to the Angola Strain of Marburg Virus causes lethal viral hemorrhagic fever in cynomolgus macaques. Veterinary Pathology, 47(5): 831–851
https://doi.org/10.1177/0300985810378597
3 P Amato, M Joly, C Schaupp, E Attard, O Mohler, C E Morris, Y Brunet, A M Delort (2015). Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber. Atmospheric Chemistry and Physics, 15(11): 6455–6465
https://doi.org/10.5194/acp-15-6455-2015
4 J M Anglada, M Martins-Costa, J S Francisco, M F Ruiz-Lopez (2015). Interconnection of reactive oxygen species chemistry across the interfaces of atmospheric, environmental, and biological processes. Accounts of Chemical Research, 48(3): 575–583
https://doi.org/10.1021/ar500412p
5 T U Ansari, A E Valsan, N Ojha, R Ravikrishna, B Narasimhan, S S Gunthe (2015). Model simulations of fungal spore distribution over the Indian region. Atmospheric Environment, 122: 552–560
https://doi.org/10.1016/j.atmosenv.2015.10.020
6 S Asadi, N Bouvier, A S Wexler, W D Ristenpart (2020). The coronavirus pandemic and aerosols: Does COVID-19 transmit via expiratory particles? Aerosol Science and Technology, 54(6): 635–638
https://doi.org/10.1080/02786826.2020.1749229
7 P Balyan, S Das, C Ghosh, B D Baneriee (2017). Spatial variation of biogenic aerosols at different land use configurations in urban delhi. International Journal of Applied Environmental Sciences, 12(5(1)): 731–744
8 P Balyan, C Ghosh, S Das, B D Banerjee (2020). Spatio-temporal characterisation of bioaerosols at diverse outdoor land-use sites in an urban environment. Aerobiologia, 36(1): 77–81
https://doi.org/10.1007/s10453-019-09582-2
9 A Barberan, R R Dunn, B J Reich, K Pacifici, E B Laber, H L Menninger, J M Morton, J B Henley, J W Leff, S L Miller, N Fierer (2015a). The ecology of microscopic life in household dust. Proceedings of the Royal Society B-Biological Sciences, 282(1814): 212–220
10 A Barberan, J Ladau, J W Leff, K S Pollard, H L Menninger, R R Dunn, N Fierer (2015b). Continental-scale distributions of dust-associated bacteria and fungi. Proceedings of the National Academy of Sciences of the United States of America, 112(18): 5756–5761
https://doi.org/10.1073/pnas.1420815112
11 F Barnaba, A Bolignano, L Di Liberto, M Morelli, F Lucarelli, S Nava, C Perrino, S Canepari, S Basart, F Costabile, D Dionisi, S Ciampichetti, R Sozzi, G P Gobbi (2017). Desert dust contribution to PM10 loads in Italy: Methods and recommendations addressing the relevant European Commission Guidelines in support to the Air Quality Directive 2008/50. Atmospheric Environment, 161: 288–305
https://doi.org/10.1016/j.atmosenv.2017.04.038
12 H Bauer, H Giebl, R Hitzenberger, A Kasper-Giebl, G Reischl, F Zibuschka, H Puxbaum (2003). Airborne bacteria as cloud condensation nuclei. Journal of Geophysical Research, 108(D21): AAC2–1–AAC2–AAC2–5
13 R M Bowers, N Clements, J B Emerson, C Wiedinmyer, M P Hannigan, N Fierer (2013). Seasonal variability in bacterial and fungal diversity of the near-surface atmosphere. Environmental Science & Technology, 47(21): 12097–12106
https://doi.org/10.1021/es402970s
14 R M Bowers, S Mcletchie, R Knight, N Fierer (2011a). Spatial variability in airborne bacterial communities across land-use types and their relationship to the bacterial communities of potential source environments. ISME Journal, 5(4): 601–612
https://doi.org/10.1038/ismej.2010.167
15 R M Bowers, A P Sullivan, E K Costello, J L Collett Jr, R Knight, N Fierer (2011b). Sources of bacteria in outdoor air across cities in the midwestern United States. Applied and Environmental Microbiology, 77(18): 6350–6356
https://doi.org/10.1128/AEM.05498-11
16 V N Bui, T T Nguyen, N V Hung, A N Bui, K A Mccallion, H S Lee, S T Than, K K Coleman, G C Gray (2019). Bioaerosol sampling to detect avian influenza virus in Hanoi’s largest live poultry market. Clinical Infectious Diseases, 68(6): 972–975
https://doi.org/10.1093/cid/ciy583
17 S M Burrows, T Butler, P Jöckel, H Tost, A Kerkweg, U Pöschl, M G Lawrence (2009a). Bacteria in the global atmosphere – part 2: modeling of emissions and transport between different ecosystems. Atmospheric Chemistry and Physics, 9(23): 9281–9297
https://doi.org/10.5194/acp-9-9281-2009
18 S M Burrows, W Elbert, M G Lawrence, U Pöschl (2009b). Bacteria in the global atmosphere – part 1: review and synthesis of literature data for different ecosystems. Atmospheric Chemistry and Physics, 9(23): 9263–9280
https://doi.org/10.5194/acp-9-9263-2009
19 S M Burrows, P J Rayner, T Butler, M G Lawrence (2013). Estimating bacteria emissions from inversion of atmospheric transport: sensitivity to modelled particle characteristics. Atmospheric Chemistry and Physics, 13(11): 5473–5488
https://doi.org/10.5194/acp-13-5473-2013
20 J Cáliz, X Triadó-Margarit, L Camarero, E O Casamayor (2018). A long-term survey unveils strong seasonal patterns in the airborne microbiome coupled to general and regional atmospheric circulations. Proceedings of the National Academy of Sciences of the United States of America, 115(48): 12229–12234
https://doi.org/10.1073/pnas.1812826115
21 S Cha, D Lee, J H Jang, S Lim, D Yang, T Seo (2016). Alterations in the airborne bacterial community during Asian dust events occurring between February and March 2015 in Korea. Scientific Reports, 6(1): 37271
https://doi.org/10.1038/srep37271
22 J Chao, X Mu, Y Xue, F Li, W Li, C H Lin, J Pei, Q Chen (2014). A modified tracer-gas decay model for ventilation rate measurements in long and narrow spaces. Indoor and Built Environment, 23(7): 1012–1020
https://doi.org/10.1177/1420326X13487743
23 X L Chi, Z Y Tang, J Y Fang (2014). Patterns of phylogenetic beta diversity in China’s grasslandsin in relation to geographical and environmental distance. Basic and Applied Ecology, 15(5): 416–425
https://doi.org/10.1016/j.baae.2014.07.003
24 B C Cho, C Y Hwang (2011). Prokaryotic abundance and 16S rRNA gene sequences detected in marine aerosols on the East Sea (Korea). FEMS Microbiology Ecology, 76(2): 327–341
https://doi.org/10.1111/j.1574-6941.2011.01053.x
25 E K Costello, C L Lauber, M Hamady, N Fierer, J I Gordon, R Knight (2009). Bacterial community variation in human body habitats across space and time. Science, 326(5960): 1694–1697
https://doi.org/10.1126/science.1177486
26 P Dai, D Shen, Q Tang, K Huang, C Li (2020). PM2.5 from a broiler breeding production system: The characteristics and microbial community analysis. Environmental Pollution, 256: 113368
https://doi.org/10.1016/j.envpol.2019.113368
27 J Degois, F Clerc, X Simon, C Bontemps, P Leblond, P Duquenne (2017). First metagenomic survey of the microbial diversity in bioaerosols emitted in waste sorting plants. Annals of Work Exposures and Health, 61(9): 1076–1086
https://doi.org/10.1093/annweh/wxx075
28 V Després, J A Huffman, S M Burrows, C Hoose, A Safatov, G Buryak, J Fröhlich-Nowoisky, W Elbert, M Andreae, U Pöschl, R Jaenicke (2012). Primary biological aerosol particles in the atmosphere: a review. Tellus B. Chemical and Physical Meteorology, 64(1): 15598
https://doi.org/10.3402/tellusb.v64i0.15598
29 V Després, J Nowoisky, M Klose, R Conrad, U Pöschl (2007). Molecular genetics and diversity of primary biogenic aerosol particles in urban, rural, and high-alpine air. Biogeosciences Discussions, 4(1): 349–384
https://doi.org/10.5194/bgd-4-349-2007
30 P Du, R Du, W Ren, Z Lu, P Fu (2018). Seasonal variation characteristic of inhalable microbial communities in PM2.5 in Beijing city, China. Science of the Total Environment, 610–611: 308–315
https://doi.org/10.1016/j.scitotenv.2017.07.097
31 M El Jarroudi, H Karjoun, L Kouadio, M El Jarroudi (2020). Mathematical modelling of non-local spore dispersion of wind-borne pathogens causing fungal diseases. Applied Mathematics and Computation, 376: 125107
https://doi.org/10.1016/j.amc.2020.125107
32 A D Estillore, J V Trueblood, V H Grassian (2016). Atmospheric chemistry of bioaerosols: heterogeneous and multiphase reactions with atmospheric oxidants and other trace gases. Chemical Science (Cambridge), 7(11): 6604–6616
https://doi.org/10.1039/C6SC02353C
33 C Fan, Y Li, P Liu, F Mu, Z Xie, R Lu, Y Qi, B Wang, C Jin (2019). Characteristics of airborne opportunistic pathogenic bacteria during autumn and winter in Xi’an, China. Science of the Total Environment, 672: 834–845
https://doi.org/10.1016/j.scitotenv.2019.03.412
34 H Fan, X Li, J Deng, G Da, E Gehin, M Yao (2017). Time-dependent sze-resolved bacterial and fungal aerosols in Beijing subway. Aerosol and Air Quality Research, 17(3): 799–809
https://doi.org/10.4209/aaqr.2016.03.0114
35 K Fraczek, J Kozdrój, R L Górny, M Cyprowski, M Golofit-Szymczak (2017). Fungal air contamination in distinct sites within a municipal landfill area. International Journal of Environmental Science and Technology, 14(12): 2637–2648
https://doi.org/10.1007/s13762-017-1344-9
36 J Fröhlich-Nowoisky, C J Kampf, B Weber, J A Huffman, C Pöhlker, M O Andreae, N Lang-Yona, S M Burrows, S S Gunthe, W Elbert, H Su, P Hoor, E Thines, T Hoffmann, V R Després, U Pöschl (2016). Bioaerosols in the Earth system: Climate, health, and ecosystem interactions. Atmospheric Research, 182: 346–376
https://doi.org/10.1016/j.atmosres.2016.07.018
37 V H Garrison, M S Majewski, W T Foreman, S A Genualdi, A Mohammed, S L M Simonich (2014). Persistent organic contaminants in Saharan dust air masses in West Africa, Cape Verde and the eastern Caribbean. Science of the Total Environment, 468–469: 530–543
https://doi.org/10.1016/j.scitotenv.2013.08.076
38 A G Garza, S M Van Cuyk, M J Brown, K M Omberg (2014). Detection of the urban release of a bacillus anthracis simulant by air sampling. Biosecurity and Bioterrorism, 12(2): 66–75
https://doi.org/10.1089/bsp.2013.0086
39 S Genitsaris, N Stefanidou, M Katsiapi, K A Kormas, U Sommer, M Moustaka-Gouni (2017). Variability of airborne bacteria in an urban Mediterranean area (Thessaloniki, Greece). Atmospheric Environment, 157: 101–110
https://doi.org/10.1016/j.atmosenv.2017.03.018
40 F Ghanizadeh, H Godini (2018). A review of the chemical and biological pollutants in indoor air in hospitals and assessing their effects on the health of patients, staff and visitors. Reviews on Environmental Health, 33(3): 231–245
https://doi.org/10.1515/reveh-2018-0011
41 S Gopalakrishnan, R Arigela, S K Gupta, R Raghunathan (2019). Dynamic response of passive release of fungal spores from exposure to air. Journal of Aerosol Science, 133: 37–48
https://doi.org/10.1016/j.jaerosci.2019.04.005
42 H Gou, J Lu, S Li, Y Tong, C Xie, X Zheng (2016). Assessment of microbial communities in PM1 and PM10 of Urumqi during winter. Environmental Pollution, 214: 202–210
https://doi.org/10.1016/j.envpol.2016.03.073
43 A D Hagerman, D D South, T C Sondgerath, K A Patyk, R L Sanson, R S Schumacher, A H Delgado, S Magzamen (2018). Temporal and geographic distribution of weather conditions favorable to Check 1 airborne spread of foot-and-mouth disease in the coterminous United States. Preventive Veterinary Medicine, 161: 41–49
https://doi.org/10.1016/j.prevetmed.2018.10.016
44 H J Han, H L Wen, C M Zhou, F F Chen, L M Luo, J W Liu, X J Yu (2015). Bats as reservoirs of severe emerging infectious diseases. Virus Research, 205: 1–6
https://doi.org/10.1016/j.virusres.2015.05.006
45 C Hoose, J E Kristjansson, S M Burrows (2010). How important is biological ice nucleation in clouds on a global scale? Environmental Research Letters, 5(2): 024009
https://doi.org/10.1088/1748-9326/5/2/024009
46 D Hospodsky, N Yamamoto, W W Nazaroff, D Miller, S Gorthala, J Peccia (2015). Characterizing airborne fungal and bacterial concentrations and emission rates in six occupied children’s classrooms. Indoor Air, 25(6): 641–652
https://doi.org/10.1111/ina.12172
47 T C Hsiao, A Y C Lin, W C Lien, Y C Lin (2020). Size distribution, biological characteristics and emerging contaminants of aerosols emitted from an urban wastewater treatment plant. Journal of Hazardous Materials, 388: 121809
https://doi.org/10.1016/j.jhazmat.2019.121809
48 W Hu, K Murata, S Fukuyama, Y Kawai, E Oka, M Uematsu, D Zhang (2017). Concentration and viability of airborne bacteria over the kuroshio extension region in the northwestern Pacific Ocean: data from three cruises. Journal of Geophysical Research, D, Atmospheres, 122(23): 12891–12905
https://doi.org/10.1002/2017JD027287
49 W Hu, Z Wang, S Huang, L Ren, S Yue, P Li, Q Xie, W Zhao, L Wei, H Ren, L Wu, J Deng, P Fu (2020). Biological aerosol particles in polluted regions. Current Pollution Reports, 6(2): 65–89
https://doi.org/10.1007/s40726-020-00138-4
50 M Hummel, C Hoose, M Gallagher, D A Healy, J A Huffman, D O’connor, U Poschl, C Pohlker, N H Robinson, M Schnaiter, J R Sodeau, M Stengel, E Toprak, H Vogel (2015). Regional-scale simulations of fungal spore aerosols using an emission parameterization adapted to local measurements of fluorescent biological aerosol particles. Atmospheric Chemistry and Physics, 15(11): 6127–6146
https://doi.org/10.5194/acp-15-6127-2015
51 M A Jahne, S W Rogers, T M Holsen, S J Grimberg, I P Ramler, S Kim (2016). Bioaerosol deposition to food crops near manure application: Quantitative microbial risk assessment. Journal of Environmental Quality, 45(2): 666–674
https://doi.org/10.2134/jeq2015.04.0187
52 A M Jones, R M Harrison (2004). The effects of meteorological factors on atmospheric bioaerosol concentrations—a review. Science of the Total Environment, 326(1/3): 151–180
https://doi.org/10.1016/j.scitotenv.2003.11.021
53 Y S Joung, Z F Ge, C R Buie (2017). Bioaerosol generation by raindrops on soil. Nature Communications, 8(1): 14668
https://doi.org/10.1038/ncomms14668
54 S M Kang, K J Heo, B U Lee (2015). Why does rain increase the concentrations of environmental bioaerosols during monsoon? Aerosol and Air Quality Research, 15(6): 2320–2324
https://doi.org/10.4209/aaqr.2014.12.0328
55 K H Kim, E Kabir, S A Jahan (2018). Airborne bioaerosols and their impact on human health. Journal of Environmental Sciences-China, 67: 23–35
https://doi.org/10.1016/j.jes.2017.08.027
56 D Knights, J Kuczynski, E S Charlson, J Zaneveld, M C Mozer, R G Collman, F D Bushman, R Knight, S T Kelley (2011). Bayesian community-wide culture-independent microbial source tracking. Nature Methods, 8(9): 761–763
https://doi.org/10.1038/nmeth.1650
57 M Kowalski, J S Pastuszka (2018). Effect of ambient air temperature and solar radiation on changes in bacterial and fungal aerosols concentration in the urban environment. Annals of Agricultural and Environmental Medicine, 25(2): 259–261
https://doi.org/10.26444/aaem/75877
58 M Kowalski, J Wolany, J S Pastuszka, G Plaza, A Wlazlo, K Ulfig, A Malina (2017). Characteristics of airborne bacteria and fungi in some Polish wastewater treatment plants. International Journal of Environmental Science and Technology, 14(10): 2181–2192
https://doi.org/10.1007/s13762-017-1314-2
59 P Kumari, C Woo, N Yamamoto, H L Choi (2016). Variations in abundance, diversity and community composition of airborne fungi in swine houses across seasons. Scientific Reports, 6(1): 37929
https://doi.org/10.1038/srep37929
60 I Lee, J P P Bitog, S W Hong, I H Seo, K S Kwon, T Bartzanas, M Kacira (2013). The past, present and future of CFD for agro-environmental applications. Computers and Electronics in Agriculture, 93: 168–183
https://doi.org/10.1016/j.compag.2012.09.006
61 W Li, J Yang, D Zhang, B Li, E Wang, H Yuan (2018). Concentration and community of airborne bacteria in response to cyclicalhaze events during the fall and midwinter in Beijing, China. Frontiers in Microbiology, 9: 12
62 Y Lin, L Xiangdong, Y Yihuan, T Jiyuan (2018). Effects of cough-jet on airflow and contaminant transport in an airliner cabin section. Journal of Computational Multiphase Flows, 10(2): 72–82
https://doi.org/10.1177/1757482X17746920
63 W G Lindsley, F M Blachere, R E Thewlis, A Vishnu, K A Davis, G Cao, J E Palmer, K E Clark, M A Fisher, R Khakoo, D H Beezhold (2010). Measurements of airborne influenza virus in aerosol particles from human coughs. PLoS One, 5(11): e15100
https://doi.org/10.1371/journal.pone.0015100
64 R Lu, Y P Li, W X Li, Z S Xie, C L Fan, P X Liu, S X Deng (2018). Bacterial community structure in atmospheric particulate matters of different sizes during the haze days in Xi’an, China. Science of the Total Environment, 637–638: 244–252
https://doi.org/10.1016/j.scitotenv.2018.05.006
65 D T Luckey (1972). Introduction to intestinal microecology. American Journal of Clinical Nutrition, 25(12): 1292–1294
https://doi.org/10.1093/ajcn/25.12.1292
66 D S Lymperopoulou, R I Adams, S E Lindow (2016). Contribution of vegetation to the microbial composition of nearby outdoor air. Applied and Environmental Microbiology, 82(13): 3822–3833
https://doi.org/10.1128/AEM.00610-16
67 J Ma, X Qi, H Chen, X Li, Z Zhang, H Wang, L Sun, L Zhang, J Guo, L Morawska, S A Grinshpun, P Biswas, R C Flagan, M Yao (2020). COVID-19 patients in earlier stages exhaled millions of SARS-CoV-2 per hour. Clinical Infectious Diseases, ciaa1283
https://doi.org/10.1093/cid/ciaa1283
68 M Ma, Y Zhen, T Mi (2019). Characterization of bacterial communities in bioaerosols over northern chinese marginal seas and the northwestern Pacific Ocean in spring. Journal of Applied Meteorology and Climatology, 58(4): 903–917
https://doi.org/10.1175/JAMC-D-18-0142.1
69 T P Makhalanyane, A Valverde, E Gunnigle, A Frossard, J B Ramond, D A Cowan (2015). Microbial ecology of hot desert edaphic systems. FEMS Microbiology Reviews, 39(2): 203–221
https://doi.org/10.1093/femsre/fuu011
70 T Maki, S Furumoto, Y Asahi, K C Lee, K Watanabe, K Aoki, M Murakami, T Tajiri, H Hasegawa, A Mashio, Y Iwasaka (2018). Long-range-transported bioaerosols captured in snow cover on Mount Tateyama, Japan: impacts of Asian-dust events on airborne bacterial dynamics relating to ice-nucleation activities. Atmospheric Chemistry and Physics, 18(11): 8155–8171
https://doi.org/10.5194/acp-18-8155-2018
71 E Martin, P Kampfer, U Jackel (2010). Quantification and identification of culturable airborne bacteria from duck houses. Annals of Occupational Hygiene, 54(2): 217–227
72 S Matthias-Maser, R Jaenicke (1995). The size distribution of primary biological aerosol particles with radii>0. 2 mm in an urban /rural influenced region. Atmospheric Research, 39(4): 279–286
https://doi.org/10.1016/0169-8095(95)00017-8
73 A D McEachran, B R Blackwell, J D Hanson, K J Wooten, G D Mayer, S B Cox, P N Smith (2015). Antibiotics, bacteria, and antibiotic resistance genes: aerial transport from cattle feed yards via particulate matter. Environmental Health Perspectives, 123(4): 337–343
https://doi.org/10.1289/ehp.1408555
74 G Mhuireach, B R Johnson, A E Altrichter, J Ladau, J F Meadow, K S Pollard, J L Green (2016). Urban greenness influences airborne bacterial community composition. Science of the Total Environment, 571: 680–687
https://doi.org/10.1016/j.scitotenv.2016.07.037
75 M Michalkiewicz (2019). Wastewater treatment plants as a source of bioaerosols. Polish Journal of Environmental Studies, 28(4): 2261–2271
https://doi.org/10.15244/pjoes/90183
76 F F Mu, Y P Li, R Lu, Y Z Qi, W W Xie, W Y Bai (2020). Source identification of airborne bacteria in the mountainous area and the urban areas. Atmospheric Research, 231: 104676
https://doi.org/10.1016/j.atmosres.2019.104676
77 K Murata, D Z Zhang (2016). Concentration of bacterial aerosols in response to synoptic weather and land-sea breeze at a seaside site downwind of the Asian continent. Journal of Geophysical Research, D, Atmospheres, 121(19): 11636–11647
https://doi.org/10.1002/2016JD025028
78 D R Nemergut, E K Costello, M Hamady, C Lozupone, L Jiang, S K Schmidt, N Fierer, A R Townsend, C C Cleveland, L Stanish, R Knight (2011). Global patterns in the biogeography of bacterial taxa. Environmental Microbiology, 13(1): 135–144
https://doi.org/10.1111/j.1462-2920.2010.02315.x
79 T Nguyen, X X Yu, Z M Zhang, M M Liu, X H Liu (2015). Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. Journal of Environmental Sciences-China, 27: 33–41
https://doi.org/10.1016/j.jes.2014.04.019
80 A Núñez, G Amo De Paz, A Rastrojo, Z Ferencova, A M Gutiérrez-Bustillo, A Alcamí, D A Moreno, R Guantes (2019). Temporal patterns of variability for prokaryotic and eukaryotic diversity in the urban air of Madrid (Spain). Atmospheric Environment, 217: 116972
https://doi.org/10.1016/j.atmosenv.2019.116972
81 F Oduber, A I Calvo, C Blanco-Alegre, A Castro, T Nunes, C Alves, M Sorribas, D Feraandez-Gonzalez, A M Vega-Maray, R M Valencia-Barrera, F Lucarelli, S Nava, G Calzolai, E Alonso-Blanco, B Fraile, P Fialho, E Coz, A S H Prevot, V Pont, R Fraile (2019). Unusual winter Saharan dust intrusions at Northwest Spain: Air quality, radiative and health impacts. Science of the Total Environment, 669: 213–228
https://doi.org/10.1016/j.scitotenv.2019.02.305
82 H a M Pagalilauan, C E M Paraoan, P G Vital (2018). Detection of pathogenic bioaerosols and occupational risk in a Philippine landfill site. Archives of Environmental & Occupational Health, 73(2): 107–114
83 L Pellissier, A Oppliger, A H Hirzel, D Savova-Bianchi, G Mbayo, F Mascher, S Kellenberger, H Niculita-Hirzel (2016). Airborne and grain dust fungal community compositions are shaped regionally by plant genotypes and farming practices. Applied and Environmental Microbiology, 82(7): 2121–2131
https://doi.org/10.1128/AEM.03336-15
84 U Poschl, M Shiraiwa (2015). Multiphase chemistry at the atmosphere-biosphere interface influencing climate and public health in the anthropocene. Chemical Reviews, 115(10): 4440–4475
https://doi.org/10.1021/cr500487s
85 Y Z Qi, Y P Li, W W Xie, R Lu, F F Mu, W Y Bai, S L Du (2020). Temporal-spatial variations of fungal composition in PM2.5 and source tracking of airborne fungi in mountainous and urban regions. Science of the Total Environment, 708: 135027
https://doi.org/10.1016/j.scitotenv.2019.135027
86 A J Redford, R M Bowers, R Knight, L Yan, N Fierer (2010). The ecology of the phyllosphere: geographic and phylogenetic variability in the distribution of bacteria on tree leaves. Environmental Microbiology, 12(11): 2885–2893
https://doi.org/10.1111/j.1462-2920.2010.02258.x
87 X Rodo, J Ballester, D Cayan, M E Melish, Y Nakamura, R Uehara, J C Burns (2011). Association of Kawasaki disease with tropospheric wind patterns. Scientific Reports, 1(1): 152
https://doi.org/10.1038/srep00152
88 Y Runlan, W Shuokun, W Xueling, S Li, L Yuandong, L Jiaokun, Q Guanzhou, Z Weimin (2019). Community structure variation associated with airborne particulate matter at central south of China during hazy and nonhazy days. Atmospheric Pollution Research, 10(5): 1536–1542
https://doi.org/10.1016/j.apr.2019.05.002
89 T Šantl-Temkiv, U Gosewinkel, P Starnawski, M Lever, K Finster (2018). Aeolian dispersal of bacteria in southwest Greenland: their sources, abundance, diversity and physiological states. FEMS Microbiology Ecology, 94(4):1–10
https://doi.org/10.1093/femsec/fiy031
90 A Sesartic, U Lohmann, T Storelvmo (2012). Bacteria in the ECHAM5-HAM global climate model. Atmospheric Chemistry and Physics, 12(18): 8645–8661
https://doi.org/10.5194/acp-12-8645-2012
91 B Sialve, A Gales, J Hamelin, N Wery, J P Steyer (2015). Bioaerosol emissions from open microalgal processes and their potential environmental impacts: what can be learned from natural and anthropogenic aquatic environments? Current Opinion in Biotechnology, 33: 279–286
https://doi.org/10.1016/j.copbio.2015.03.011
92 J Skora, K Matusiak, P Wojewodzki, A Nowak, M Sulyok, A Ligocka, M Okrasa, J Hermann, B Gutarowska (2016). Evaluation of microbiological and chemical contaminants in poultry farms. International Journal of Environmental Research and Public Health, 13(2): 192
https://doi.org/10.3390/ijerph13020192
93 W Smets, S Moretti, S Denys, S Lebeer (2016). Airborne bacteria in the atmosphere: Presence, purpose, and potential. Atmospheric Environment, 139: 214–221
https://doi.org/10.1016/j.atmosenv.2016.05.038
94 A F Stein, R R Draxler, G D Rolph, B J B Stunder, M D Cohen, F Ngan (2015). NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bulletin of the American Meteorological Society, 96(12): 2059–2077
https://doi.org/10.1175/BAMS-D-14-00110.1
95 R E Stockwell, L Ballard, P O’rourke, L D Knibbs, L Morawska, S C Bell (2019). Indoor hospital air and the impact of ventilation on bioaerosols: a systematic review. Journal of Hospital Infection, 103(2): 175–184
https://doi.org/10.1016/j.jhin.2019.06.016
96 M Szylak-Szydlowski, A Kulig, E Miaśkiewicz-Peska (2016). Seasonal changes in the concentrations of airborne bacteria emitted from a large wastewater treatment plant. International Biodeterioration & Biodegradation, 115: 11–16
https://doi.org/10.1016/j.ibiod.2016.07.008
97 D Tanaka, K Sato, M Goto, S Fujiyoshi, F Maruyama, S Takato, T Shimada, A Sakatoku, K Aoki, S Nakamura (2019). Airborne microbial communities at high-altitude and suburban sites in Toyama, Japan Suggest a new perspective for bioprospecting. Frontiers in Bioengineering and Biotechnology, 7: 12
https://doi.org/10.3389/fbioe.2019.00012
98 J W Tang (2009). The effect of environmental parameters on the survival of airborne infectious agents. Journal of the Royal Society, Interface, 6(Suppl 6): S737–S746
https://doi.org/10.1098/rsif.2009.0227.focus
99 K Tang, Z Huang, J Huang, T Maki, S Zhang, A Shimizu, X Ma, J Shi, J Bi, T Zhou, G Wang, L Zhang (2018). Characterization of atmospheric bioaerosols along the transport pathway of Asian dust during the Dust-Bioaerosol 2016 Campaign. Atmospheric Chemistry and Physics, 18(10): 7131–7148
https://doi.org/10.5194/acp-18-7131-2018
100 D S Thatiparti, U Ghia, K R Mead (2017). Computational fluid dynamics study on the influence of an alternate ventilation configuration on the possible flow path of infectious cough aerosols in a mock airborne infection isolation room. Science and Technology for the Built Environment, 23(2): 355–366
https://doi.org/10.1080/23744731.2016.1222212
101 C G Theofel, T R Williams, E Gutierrez, G R Davidson, M Jay-Russell, L J Harris (2020). Microorganisms move a short distance into an almond orchard from an adjacent upwind poultry operation. Applied and Environmental Microbiology, 86(15): e00573–20
https://doi.org/10.1128/AEM.00573-20
102 J Uetake, Y Tobo, Y Uji, T C J Hill, P J Demott, S M Kreidenweis, R Misumi (2019). Seasonal changes of airborne bacterial communities over Tokyo and influence of local meteorology. Frontiers in Microbiology, 10: 1572
https://doi.org/10.3389/fmicb.2019.01572
103 N van Doremalen, T Bushmaker, D H Morris, M G Holbrook, A Gamble, B N Williamson, A Tamin, J L Harcourt, N J Thornburg, S I Gerber, J O Lloyd-Smith, E De Wit, V J Munster (2020). Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1. New England Journal of Medicine, 382(16): 1564–1567
https://doi.org/10.1056/NEJMc2004973
104 T Varin, C Lovejoy, A D Jungblut, W F Vincent, J Corbeil (2012). Metagenomic analysis of stress genes in microbial mat communities from Antarctica and the High Arctic. Applied and Environmental Microbiology, 78(2): 549–559
https://doi.org/10.1128/AEM.06354-11
105 E P Vejerano, L C Marr (2018). Physico-chemical characteristics of evaporating respiratory fluid droplets. Journal of the Royal Society, Interface, 15(139): 20170939
https://doi.org/10.1098/rsif.2017.0939
106 S D Veresoglou, M C Rillig (2014). Challenging cherished ideas in mycorrhizal ecology: the Baylis postulate. New Phytologist, 204(1): 1–3
https://doi.org/10.1111/nph.12995
107 J A Vorholt (2012). Microbial life in the phyllosphere. Nature Reviews. Microbiology, 10(12): 828–840
https://doi.org/10.1038/nrmicro2910
108 J M Wang, C Chen, J W Li, Y M Feng, Q Lu (2019). Different ecological processes determined the alpha and beta components of taxonomic, functional, and phylogenetic diversity for plant communities in dryland regions of Northwest China. PeerJ, 6: e6220
https://doi.org/10.7717/peerj.6220
109 J J Wei, Y G Li (2016). Airborne spread of infectious agents in the indoor environment. American Journal of Infection Control, 44(9): S102–S108
https://doi.org/10.1016/j.ajic.2016.06.003
110 J K White, J L Nielsen, A M Madsen (2019). Microbial species and biodiversity in settling dust within and between pig farms. Environmental Research, 171: 558–567
https://doi.org/10.1016/j.envres.2019.01.008
111 B W William, C C David, W J Wiebe (1998). Prokaryotes: The unseen majority. Proceedings of the National Academy of Sciences of the United States of America, 95: 6578–6583
112 L T Wong, W Y Chan, K W Mui, A C K Lai (2010). An experimental and numerical study on deposition of bioaerosols in a scaled chamber. Aerosol Science and Technology, 44(2): 117–128
https://doi.org/10.1080/02786820903426226
113 Z Xie, C Fan, R Lu, P Liu, B Wang, S Du, C Jin, S Deng, Y Li (2018). Characteristics of ambient bioaerosols during haze episodes in China: A review. Environmental Pollution, 243(Pt B): 1930–1942
114 J B Xiong, Y Q Liu, X G Lin, H Y Zhang, J Zeng, J Z Hou, Y P Yang, T D Yao, R Knight, H Y Chu (2012). Geographic distance and pH drive bacterial distribution in alkaline lake sediments across Tibetan Plateau. Environmental Microbiology, 14(9): 2457–2466
https://doi.org/10.1111/j.1462-2920.2012.02799.x
115 C Xu, M Wei, J Chen, C Zhu, J Li, X Xu, W Wang, Q Zhang, A Ding, H Kan, Z Zhao, A Mellouki (2019). Profile of inhalable bacteria in PM2.5 at Mt. Tai, China: Abundance, community, and influence of air mass trajectories. Ecotoxicology and Environmental Safety, 168: 110–119
https://doi.org/10.1016/j.ecoenv.2018.10.071
116 C H Xu, M H Wei, J M Chen, X F Wang, C Zhu, J R Li, L L Zheng, G D Sui, W J Li, W X Wang, Q Z Zhang, A Mellouki (2017). Bacterial characterization in ambient submicron particles during severe haze episodes at Ji’nan, China. Science of the Total Environment, 580: 188–196
https://doi.org/10.1016/j.scitotenv.2016.11.145
117 G Xu, Y Han, L Li, J Liu (2018). Characterization and source analysis of indoor/outdoor culturable airborne bacteria in a municipal wastewater treatment plant. Journal of Environmental Sciences-China, 74: 71–78
https://doi.org/10.1016/j.jes.2018.02.007
118 J Zhang, Y Li, E Xu, L Jiang, J Tang, M Li, X Zhao, G Chen, H Zhu, X Yu, X Zhang (2019). Bacterial communities in PM2.5 and PM10 in broiler houses at different broiler growth stages in spring. Polish Journal of Veterinary Sciences, 22(3): 495–504
119 Q Zhen, Y Deng, Y Wang, X Wang, H Zhang, X Sun, Z Ouyang (2017). Meteorological factors had more impact on airborne bacterial communities than air pollutants. Science of the Total Environment, 601–602: 703–712
https://doi.org/10.1016/j.scitotenv.2017.05.049
[1] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[2] Pil Uthaug Rasmussen, Katrine Uhrbrand, Mette Damkjær Bartels, Helle Neustrup, Dorina Gabriela Karottki, Ute Bültmann, Anne Mette Madsen. Occupational risk of exposure to methicillin-resistant Staphylococcus aureus (MRSA) and the quality of infection hygiene in nursing homes[J]. Front. Environ. Sci. Eng., 2021, 15(3): 41-.
[3] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[4] Yang Li, Yixin Zhang, Guangshen Xia, Juhong Zhan, Gang Yu, Yujue Wang. Evaluation of the technoeconomic feasibility of electrochemical hydrogen peroxide production for decentralized water treatment[J]. Front. Environ. Sci. Eng., 2021, 15(1): 1-.
[5] Yang Li, Lei Shi, Yi Qian, Jie Tang. Diffusion of municipal wastewater treatment technologies in China: a collaboration network perspective[J]. Front. Environ. Sci. Eng., 2017, 11(1): 11-.
[6] Yanping HOU, Haiping LUO, Guangli LIU, Renduo ZHANG, Yong LUO, Bangyu QIN, Shanshan CHEN. DOW CORNING 1-2577 Conformal Coating as an efficient diffusion material for cathode in the microbial fuel cell[J]. Front Envir Sci Eng, 2013, 7(4): 526-530.
[7] Qian YAO, Hua ZHANG, Jun WU, Liming SHAO, Pinjing HE, . Biosorption of Cr(III) from aqueous solution by freeze-dried activated sludge: Equilibrium, kinetic and thermodynamic studies[J]. Front.Environ.Sci.Eng., 2010, 4(3): 286-294.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed