Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (5) : 919-928    https://doi.org/10.1007/s11783-015-0794-x
RESEARCH ARTICLE
Efficient dechlorination of 2,4-dichlorophenol in an aqueous media with a mild pH using a Pd/TiO2NTs/Ti cathode
Jiangkun DU,Jianguo BAO(),Wei HU
School of Environmental Studies, China University of Geosciences, Wuhan 430074, China
 Download: PDF(767 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

In this study, palladium-loaded titania nanotubes was fabricated on a titanium plate (Pd/TiO2NTs/Ti) for efficient electrodechlorination of 2,4-chlorophenol with a mild pH condition. The nature of Pd/TiO2NTs/Ti electrodes was characterized by field-emission scanning electron microscope (FESEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) techniques. The characterization results indicated the generation of Pd0 nanoparticles which were evenly dispersed on titania nanotubes arrays on the Pd/TiO2NTs/Ti surface. An effective degradation efficiency of up to 91% was achieved within 60 min at cathode potential of −0.7 V (vs. SCE) and initial pH of 5.5. The effects of the applied cathode potential and initial pH on the degradation efficiency were studied. A near neutral condition was more favorable since very low and very high pHs were not conducive to the dechlorination process. Furthermore, the intermediates analysis showed that the Pd/TiO2NTs/Ti electrode could completely remove chlorine from 2, 4-dichlorophenol since only phenol was detected as the byproduct and the concentration of released chlorine ions indicated near-complete dechlorination. This work presents a good alternative technique for eliminating persistent chlorophenols in polluted wastewater without maintaining strong acidic environment.

Keywords Pd/TiO2NTs/Ti cathode      chlorophenols      electrocatalytic dechlorination      wastewater treatment     
Corresponding Author(s): Jianguo BAO   
Online First Date: 09 June 2015    Issue Date: 08 October 2015
 Cite this article:   
Jiangkun DU,Jianguo BAO,Wei HU. Efficient dechlorination of 2,4-dichlorophenol in an aqueous media with a mild pH using a Pd/TiO2NTs/Ti cathode[J]. Front. Environ. Sci. Eng., 2015, 9(5): 919-928.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0794-x
https://academic.hep.com.cn/fese/EN/Y2015/V9/I5/919
Fig.1  Side view showing the cross-sectional FESEM images of: (a) TiO2NTs/Ti (the inset is the top-view amplification of pores of TiO2NTs/Ti); and (b) Pd/TiO2NTs/Ti
Fig.2  Characterization of the TiO2NTs/Ti and Pd/TiO2NTs/Ti electrode: (a) XRD pattern; and (b) XPS spectra
Fig.3  CV plots of Pd/TiO2NTs/Ti electrode with varied scan cycles. (experimental condition: scan rate: 100 mV·s−1; electrolyte: 50 mmol·L−1 Na2SO4 and 20 mg·L−1 2,4-DCP; pH 5.5)
Fig.4  Removal of 2,4-DCP with Pd/TiO2NTs/Ti or Ti/TiO2NTs cathode. (Electrolyte: 50 mmol·L−1 Na2SO4 and 20 mg·L−1 2,4-DCP; pH 5.5; cathode potential: −0.7 V)
Fig.5  (a) 2,4-DCP dechlorination at different cathode potentials; and (b) relationship between pseudo-first-order kinetics and cathode potential. (Electrolyte: 50 mmol·L−1 Na2SO4 and 20 mg·L−1 2,4-DCP; pH 5.5)
Fig.6  Effect of pH on 2,4-DCP degradation in the Pd/TiO2TNTi electrolysis system. (Electrolyte: 50 mmol·L−1 Na2SO4 and 20 mg·L−1 2,4-DCP; cathode potential: −0.7 V)
Fig.7  Dechlorination test in the cathodic compartment of a divided electro-system connected by a salt bridge (a) byproducts of 2,4-DCP; (b) generation of chlorine ions. (Electrolyte: 50 mmol·L−1 Na2SO4 and 20 mg·L−1 2,4-DCP; applied cathode potential: −5.0 V; initial pH: 5.5)
Fig.8  Proposed dechlorination mechanism and pathway of 2,4-DCP on the Pd/TiO2NTs/Ti cathode surface
1 Fan  C, Li  N, Cao  X. Determination of chlorophenols in honey samples using in-situ ionic liquid-dispersive liquid-liquid microextraction as a pretreatment method followed by high-performance liquid chromatography. Food Chemistry, 2015, 174(0): 446–451
https://doi.org/10.1016/j.foodchem.2014.11.050 pmid: 25529704
2 Olaniran  A O, Igbinosa  E O. Chlorophenols and other related derivatives of environmental concern: properties, distribution and microbial degradation processes. Chemosphere, 2011, 83(10): 1297–1306
https://doi.org/10.1016/j.chemosphere.2011.04.009 pmid: 21531434
3 Karci  A, Arslan-Alaton  I, Olmez-Hanci  T, Bekbölet  M. Transformation of 2,4-dichlorophenol by H2O2/UV-C, Fenton and photo-Fenton processes: oxidation products and toxicity evolution. Journal of Photochemistry and Photobiology A Chemistry, 2012, 230(1): 65–73
https://doi.org/10.1016/j.jphotochem.2012.01.003
4 Carmona  M, Garcia  M T, Carnicer  Á, Madrid  M, Rodríguez  J F. Adsorption of phenol and chlorophenols onto granular activated carbon and their desorption by supercritical CO2. Journal of Chemical Technology and Biotechnology (Oxford, Oxfordshire), 2014, 89(11): 1660–1667
https://doi.org/10.1002/jctb.4233
5 Du  J, Bao  J, Tong  M, Yuan  S. Dechlorination of pentachlorophenol by palladium/iron nanoparticles immobilized in a membrane synthesized by sequential and simultaneous reduction of trivalent iron and divalent palladium ions. Environmental Engineering Science, 2013, 30(7): 350–356
https://doi.org/10.1089/ees.2011.0318
6 Sun  Z, Wei  X, Hu  X, Wang  K, Shen  H. Electrocatalytic dechlorination of 2,4-dichlorophenol in aqueous solution on palladium loaded meshed titanium electrode modified with polymeric pyrrole and surfactant. Colloids and Surfaces. A, Physicochemical and Engineering Aspects, 2012, 414(46): 314–319
https://doi.org/10.1016/j.colsurfa.2012.08.035
7 Sharma  S, Mukhopadhyay  M, Murthy  Z V P. Degradation of 4-chlorophenol in wastewater by organic oxidants. Industrial & Engineering Chemistry Research, 2010, 49(7): 3094–3098
https://doi.org/10.1021/ie9018066
8 Pera-Titus  M, García-Molina  V, Baños  M A, Giménez  J, Esplugas  S. Degradation of chlorophenols by means of advanced oxidation processes: a general review. Applied Catalysis B: Environmental, 2004, 47(4): 219–256
https://doi.org/10.1016/j.apcatb.2003.09.010
9 Czaplicka  M. Sources and transformations of chlorophenols in the natural environment. Science of the Total Environment, 2004, 322(1−3): 21–39
https://doi.org/10.1016/j.scitotenv.2003.09.015 pmid: 15081735
10 Zheng  M, Bao  J, Liao  P, Wang  K, Yuan  S, Tong  M, Long  H. Electrogeneration of H2 for Pd-catalytic hydrodechlorination of 2,4-dichlorophenol in groundwater. Chemosphere, 2012, 87(10): 1097–1104
https://doi.org/10.1016/j.chemosphere.2012.01.058 pmid: 22377173
11 Mitoma  Y, Kakeda  M, Simion  A M, Egashira  N, Simion  C. Metallic Ca-Rh/C-methanol, a high-performing system for the hydrodechlorination/ring reduction of mono- and poly chlorinated aromatic substrates. Environmental Science & Technology, 2009, 43(15): 5952–5958
https://doi.org/10.1021/es9004587 pmid: 19731703
12 Sun  Z, Wang  K, Wei  X, Tong  S, Hu  X. Electrocatalytic hydrodehalogenation of 2,4-dichlorophenol in aqueous solution on palladium–nickel bimetallic electrode synthesized with surfactant assistance. International Journal of Hydrogen Energy, 2012, 37(23): 17862–17869
https://doi.org/10.1016/j.ijhydene.2012.09.109
13 Xu  Y H, Cai  Q Q, Ma  H X, He  Y, Zhang  H, Ma  C A. Optimisation of electrocatalytic dechlorination of 2,4-dichlorophenoxyacetic acid on a roughened silver–palladium cathode. Electrochimica Acta, 2013, 96(5): 90–96
https://doi.org/10.1016/j.electacta.2013.02.068
14 Xu  Y H, Zhang  H, Chu  C P, Ma  C A. Dechlorination of chloroacetic acids by electrocatalytic reduction using activated silver electrodes in aqueous solutions of different pH. Journal of Electroanalytical Chemistry, 2012, 664(1): 39–45
https://doi.org/10.1016/j.jelechem.2011.10.010
15 Sun  Z, Ge  H, Hu  X, Peng  Y. Preparation of foam-nickel composite electrode and its application to 2,4-dichlorophenol dechlorination in aqueous solution. Separation and Purification Technology, 2010, 72(2): 133–139
https://doi.org/10.1016/j.seppur.2010.01.014
16 Wang  H, Wang  J. Comparative study on electrochemical degradation of 2,4-dichlorophenol by different Pd/C gas-diffusion cathodes. Applied Catalysis B: Environmental, 2009, 89(1−2): 111–117
https://doi.org/10.1016/j.apcatb.2008.12.003
17 Chen  G, Wang  Z, Xia  D. Electrochemically reductive dechlorination of micro amounts of 2,4,6-trichlorophenol in aqueous medium on molybdenum oxide containing supported palladium. Electrochimica Acta, 2004, 50(4): 933–937
https://doi.org/10.1016/j.electacta.2004.06.019
18 Wang  H, Wang  J. Electrochemical degradation of 4-chlorophenol using a novel Pd/C gas-diffusion electrode. Applied Catalysis B: Environmental, 2007, 77(1−2): 58–65
https://doi.org/10.1016/j.apcatb.2007.07.004
19 Cui  C, Quan  X, Yu  H, Han  Y. Electrocatalytic hydrodehalogenation of pentachlorophenol at palladized multiwalled carbon nanotubes electrode. Applied Catalysis B: Environmental, 2008, 80(1−2): 122–128
https://doi.org/10.1016/j.apcatb.2007.11.019
20 Huang  S, Ganesan  P, Popov  B N. Titania supported platinum catalyst with high electrocatalytic activity and stability for polymer electrolyte membrane fuel cell. Applied Catalysis B: Environmental, 2011, 102(1−2): 71–77
https://doi.org/10.1016/j.apcatb.2010.11.026
21 Ferreira  P J, la O’  G J, Shao-Horn  Y, Morgan  D, Makharia  R, Kocha  S, Gasteiger  H A. Instability of Pt/C electrocatalysts in proton exchange membrane fuel cells. Journal of the Electrochemical Society, 2005, 152(11): A2256–A2271
https://doi.org/10.1149/1.2050347
22 Quan  X, Yang  S, Ruan  X, Zhao  H. Preparation of titania nanotubes and their environmental applications as electrode. Environmental Science & Technology, 2005, 39(10): 3770–3775
https://doi.org/10.1021/es048684o pmid: 15952384
23 Xie  W, Yuan  S, Mao  X, Hu  W, Liao  P, Tong  M, Alshawabkeh  A N. Electrocatalytic activity of Pd-loaded Ti/TiO2 nanotubes cathode for TCE reduction in groundwater. Water Research, 2013, 47(11): 3573–3582
https://doi.org/10.1016/j.watres.2013.04.004 pmid: 23726693
24 Zhao  G, Cui  X, Liu  M, Li  P, Zhang  Y, Cao  T, Li  H, Lei  Y, Liu  L, Li  D. Electrochemical degradation of refractory pollutant using a novel microstructured TiO2 nanotubes/ Sb-doped SnO2 electrode. Environmental Science & Technology, 2009, 43(5): 1480–1486
https://doi.org/10.1021/es802155p pmid: 19350923
25 Sun  Z, Wei  X, Shen  H, Hu  X. Preparation of palladium–nickel loaded titanium electrode with surfactant assistance and its application in pentachlorophenol reductive dechlorination. Separation and Purification Technology, 2014, 124(6): 224–230
https://doi.org/10.1016/j.seppur.2014.01.022
26 Sun  Z, Wei  X, Shen  H, Hu  X. Preparation and evaluation of Pd/polymeric pyrrole-sodium lauryl sulfonate/foam-Ni electrode for 2,4-dichlorophenol dechlorination in aqueous solution. Electrochimica Acta, 2014, 129(16): 433–440
https://doi.org/10.1016/j.electacta.2014.02.126
27 Prakasam  H E, Shankar  K, Paulose  M, Varghese  O K, Grimes  C A. A new benchmark for TiO2 nanotube array growth by anodization. Journal of Physical Chemistry C, 2007, 111(20): 7235–7241
https://doi.org/10.1021/jp070273h
28 Wang  G, Wang  H, Ling  Y, Tang  Y, Yang  X, Fitzmorris  R C, Wang  C, Zhang  J Z, Li  Y. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano Letters, 2011, 11(7): 3026–3033
https://doi.org/10.1021/nl201766h pmid: 21710974
29 Ureta-Zañartu  M S, Bustos  P, Berríos  C, Diez  M C, Mora  M L, Gutiérrez  C. Electrooxidation of 2,4-dichlorophenol and other polychlorinated phenols at a glassy carbon electrode. Electrochimica Acta, 2002, 47(15): 2399–2406
https://doi.org/10.1016/S0013-4686(02)00043-9
30 Sun  Z, Wei  X, Han  Y, Tong  S, Hu  X. Complete dechlorination of 2,4-dichlorophenol in aqueous solution on palladium/polymeric pyrrole-cetyl trimethyl ammonium bromide/foam-nickel composite electrode. Journal of Hazardous Materials, 2013, 244−245: 287–294
https://doi.org/10.1016/j.jhazmat.2012.11.017 pmid: 23270952
31 Brewster  J H. Mechanisms of reductions at metal surfaces. I. A general working hypothesis. Journal of the American Chemical Society, 1954, 76(24): 6361–6363
https://doi.org/10.1021/ja01653a034
32 Wang  X, Zhu  M, Liu  H, Ma  J, Li  F. Modification of Pd-Fe nanoparticles for catalytic dechlorination of 2,4-dichlorophenol. Science of the Total Environment, 2013, 449(0): 157–167
https://doi.org/10.1016/j.scitotenv.2013.01.008 pmid: 23425792
[1] FSE-15020-OF-DJK_suppl_1 Download
[1] Kangying Guo, Baoyu Gao, Jie Wang, Jingwen Pan, Qinyan Yue, Xing Xu. Flocculation behaviors of a novel papermaking sludge-based flocculant in practical printing and dyeing wastewater treatment[J]. Front. Environ. Sci. Eng., 2021, 15(5): 103-.
[2] Yunping Han, Lin Li, Ying Wang, Jiawei Ma, Pengyu Li, Chao Han, Junxin Liu. Composition, dispersion, and health risks of bioaerosols in wastewater treatment plants: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 38-.
[3] Wenyue Li, Min Chen, Zhaoxiang Zhong, Ming Zhou, Weihong Xing. Hydroxyl radical intensified Cu2O NPs/H2O2 process in ceramic membrane reactor for degradation on DMAc wastewater from polymeric membrane manufacturer[J]. Front. Environ. Sci. Eng., 2020, 14(6): 102-.
[4] Luxi Zou, Huaibo Li, Shuo Wang, Kaikai Zheng, Yan Wang, Guocheng Du, Ji Li. Characteristic and correlation analysis of influent and energy consumption of wastewater treatment plants in Taihu Basin[J]. Front. Environ. Sci. Eng., 2019, 13(6): 83-.
[5] Jiuhui Qu, Hongchen Wang, Kaijun Wang, Gang Yu, Bing Ke, Han-Qing Yu, Hongqiang Ren, Xingcan Zheng, Ji Li, Wen-Wei Li, Song Gao, Hui Gong. Municipal wastewater treatment in China: Development history and future perspectives[J]. Front. Environ. Sci. Eng., 2019, 13(6): 88-.
[6] Yuhan Zheng, Zhiguo Su, Tianjiao Dai, Feifei Li, Bei Huang, Qinglin Mu, Chuanping Feng, Donghui Wen. Identifying human-induced influence on microbial community: A comparative study in the effluent-receiving areas in Hangzhou Bay[J]. Front. Environ. Sci. Eng., 2019, 13(6): 90-.
[7] Muhammad Kashif Shahid, Yunjung Kim, Young-Gyun Choi. Adsorption of phosphate on magnetite-enriched particles (MEP) separated from the mill scale[J]. Front. Environ. Sci. Eng., 2019, 13(5): 71-.
[8] Tiezheng Tong, Kenneth H. Carlson, Cristian A. Robbins, Zuoyou Zhang, Xuewei Du. Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge[J]. Front. Environ. Sci. Eng., 2019, 13(4): 63-.
[9] Lian Yang, Qinxue Wen, Zhiqiang Chen, Ran Duan, Pan Yang. Impacts of advanced treatment processes on elimination of antibiotic resistance genes in a municipal wastewater treatment plant[J]. Front. Environ. Sci. Eng., 2019, 13(3): 32-.
[10] Huang Huang, Jie Wu, Jian Ye, Tingjin Ye, Jia Deng, Yongmei Liang, Wei Liu. Occurrence, removal, and environmental risks of pharmaceuticals in wastewater treatment plants in south China[J]. Front. Environ. Sci. Eng., 2018, 12(6): 7-.
[11] Yuqin Lu, Xiao Bian, Hailong Wang, Xinhua Wang, Yueping Ren, Xiufen Li. Simultaneously recovering electricity and water from wastewater by osmotic microbial fuel cells: Performance and membrane fouling[J]. Front. Environ. Sci. Eng., 2018, 12(4): 5-.
[12] Akshay Jain, Zhen He. “NEW” resource recovery from wastewater using bioelectrochemical systems: Moving forward with functions[J]. Front. Environ. Sci. Eng., 2018, 12(4): 1-.
[13] Gang Guo, Yayi Wang, Tianwei Hao, Di Wu, Guang-Hao Chen. Enzymatic nitrous oxide emissions from wastewater treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 10-.
[14] Maocong Hu, Yin Liu, Zhenhua Yao, Liping Ma, Xianqin Wang. Catalytic reduction for water treatment[J]. Front. Environ. Sci. Eng., 2018, 12(1): 3-.
[15] Ming Zeng, Ping Li, Nan Wu, Xiaofang Li, Chang Wang. Preparation and characterization of a novel microorganism embedding material for simultaneous nitrification and denitrification[J]. Front. Environ. Sci. Eng., 2017, 11(6): 15-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed