Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2015, Vol. 9 Issue (6) : 1117-1129    https://doi.org/10.1007/s11783-015-0812-z
RESEARCH ARTICLE
Simultaneous CO2 capture and H2 generation using Fe2O3/Al2O3 and Fe2O3/CuO/Al2O3 as oxygen carriers in single packed bed reactor via chemical looping process
Jie ZHU1,Wei WANG1,*(),Xiuning HUA1,Zhou XIA1,Zhou DENG2
1. School of Environment, Tsinghua University, Beijing 100084, China
2. Jian Kun New Energy Technology Co., Ltd., Beijing 100085, China
 Download: PDF(1228 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The chemical looping concept provided a novel way to achieve carbon separation during the production of energy or substances. In this work, hydrogen generation with inherent CO2 capture in single packed bed reactor via this concept was discussed. Two oxygen carriers, Fe2O3 60 wt.% and Fe2O3 55 wt.%/CuO 5 wt.% supported by Al2O3, were made by ball milling method. First, according to the characteristics of the reduction breakthrough curve, a strict fuel supply strategy was selected to achieve simultaneous CO2 capture and H2 production. Then, in the long term tests using CO as fuel, it was proved that CuO addition improved hydrogen generation with the maximum intensity of 3700 μmol H2·g−1 Fe2O3 compared with Fe-Al of 2300 μmol H2·g−1 Fe2O3. The overall CO2 capture efficiency remained 98%–98.8% over 100 cycles. Moreover, the reactivity of deactivated materials was recovered nearly like that of fresh ones by sintering treatment. Finally, two kinds of complex gases consist of CO, H2, CH4 and CO2 were utilized as fuels to test the feasibility. The results showed all components could be completely converted by Fe-Cu-Al in the reduction stage. The intensity of hydrogen production and the overall CO2 capture efficiency were in the range of 2000–2400 μmol H2·g−1 Fe2O3 and 89%–95%, respectively.

Keywords CO2 capture      chemical looping hydrogen generation      iron based oxygen carriers      single packed bed reactor      long-term test      complex gases fuel     
Corresponding Author(s): Wei WANG   
Online First Date: 24 August 2015    Issue Date: 23 November 2015
 Cite this article:   
Jie ZHU,Wei WANG,Xiuning HUA, et al. Simultaneous CO2 capture and H2 generation using Fe2O3/Al2O3 and Fe2O3/CuO/Al2O3 as oxygen carriers in single packed bed reactor via chemical looping process[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1117-1129.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0812-z
https://academic.hep.com.cn/fese/EN/Y2015/V9/I6/1117
Fig.1  Outlet gases concentration during Fe2O3 reducing period
Fig.2  Concentration profiles of effluent gases during the three stages in a typical redox cycle: (a) reduction stage; (b) hydrogen stage; (c) oxidation stage
Fig.3  Long-term performance of Fe60Al40 and Fe55Cu5Al40 in the reduction stage: (a) solid conversion; (b) fuel conversion
Fig.4  Long-term performance of Fe60Al40 and Fe55Cu5Al40 in the hydrogen generation stage: (a) hydrogen production intensity ; (b) hydrogen production efficiency; (c) hydrogen purity of Fe60Al40; (d) hydrogen purity of Fe55Cu5Al40
Fig.5  Reduction and hydrogen production reactivity of regenerated oxygen carriers in 10 cycles: (a.1)−(a.4) performances of regenerated Fe60Al40; (b.1)−(b.4) performances of regenerated Fe55Cu5Al40
Fig.6  Fuel conversion when using simulated biomass pyrolysis gas as fuels (Ffuel = 300 mL·min−1): (a) fuel conversion in Fe60Al40; (b) fuel conversion in Fe55Cu5Al40; (c) CH4 conversion in this two oxygen carriers
Fig.7  Conversion performance of complex gases in Fe55Cu5Al40 in the reduction stage with optimized operation conditions: (a) simulated biomass pyrolysis gas (Ffuel = 125 mL·min−1); (b) simulated coke-oven gas (Ffuel = 155 mL·min−1)
parameters simulated biomass pyrolysis gas simulated coke-oven gas
solid conversion /% 28.5±1.3 31.2±1.6
comprehensive fuel conversion /% 96.1±0.3 92.1±0.7
intensity of hydrogen production /(μmol·g−1 Fe2O3) 2070.5±133.9 2398.3±137.5
efficiency of hydrogen production /% 87.9±3.9 87.9±3.8
purity of hydrogen /% 99.2±0.2 96.1±0.2
overall CO2 capture efficiency /% 94.8±0.5 88.9±0.7
Tab.1  System efficiencies of complex gases fueled chemical looping process
1 Richter  H J, Knoche  K F. Reversibility of combustion processes. In: Gaggioli  R, ed. Efficiency and Costing, ACS Symposium Series. Washington DC: American Chemical Society, 1983, 71–85
2 Hossain  M M, de Lasa  H I. Chemical-looping combustion (CLC) for inherent CO2 separations—A review. Chemical Engineering Science, 2008, 63(18): 4433–4451
https://doi.org/10.1016/j.ces.2008.05.028
3 Fan  L S, Zeng  L, Wang  W, Luo  S. Chemical looping processes for CO2 capture and carbonaceous fuel conversion-prospect and opportunity. Energy & Environmental Science, 2012, 5(6): 7254–7280
https://doi.org/10.1039/c2ee03198a
4 Gupta  P, Velazquez-Vargas  L G, Fan  L S. Syngas Redox (SGR) process to produce hydrogen from coal derived syngas. Energy & Fuels, 2007, 21(5): 2900–2908
https://doi.org/10.1021/ef060512k
5 Yu  L, Tu  C, Luo  Y M. Fabrication, characterization and evaluation of mesoporous activated carbons from agricultural waste: Jerusalem artichoke stalk as an example. Frontiers of Environmental Science & Engineering, 2015, 9(2): 206–215
6 Zhao  Y, Lu  W J, Chen  J J, Zhang  X F, Wang  H T. Research progress on hydrothermal dissolution and hydrolysis of lignocellulose and lignocellulosic waste. Frontiers of Environmental Science & Engineering, 2014, 8(2): 151–161
7 Li  F, Zeng  L, Ramkumar  S, Sridhar  D, Iyer  S M, Fan  L S. Chemical looping gasification using gaseous fuels. In: Fan  L S, ed. Chemical Looping Systems for Fossil Energy Conversions, 1st ed. New Jersey: John Wiley & Sons, Inc., 2010, 241–251
8 Rydén  M, Arjmand  M. Continuous hydrogen production via the steam–iron reaction by chemical looping in a circulating fluidized-bed reactor. International Journal of Hydrogen Energy, 2012, 37(6): 4843–4854
https://doi.org/10.1016/j.ijhydene.2011.12.037
9 Sridhar  D, Tong  A, Kim  H, Zeng  L, Li  F, Fan  L S. Syngas chemical looping process: design and construction of a 25kWth subpilot unit. Energy & Fuels, 2012, 26(4): 2292–2302
https://doi.org/10.1021/ef202039y
10 Tong  A, Sridhar  D, Sun  Z C, Kim  H R, Zeng  L, Wang  F, Wang  D W, Kathe  M V, Luo  S W, Sun  Y H, Fan  L S. Continuous high purity hydrogen generation from a syngas chemical looping 25kWth sub-pilot unit with 100% carbon capture. Fuel, 2013, 103: 495–505
https://doi.org/10.1016/j.fuel.2012.06.088
11 Hong  S Y, Kang  K S, Park  C S, Kim  S D, Bae  J W, Nam  J W, Lee  Y, Lee  D H. Solid mass flux in a chemical-looping process for hydrogen production in a multistage circulating moving bed reactor. International Journal of Hydrogen Energy, 2013, 38(14): 6052–6058
https://doi.org/10.1016/j.ijhydene.2012.12.041
12 Cho  W C, Lee  D Y, Seo  M W, Kim  S D, Kang  K S, Bae  K K, Kim  C H, Jeong  S U, Park  C S. Continuous operation characteristics of chemical looping hydrogen production system. Applied Energy, 2014, 113: 1667–1674
https://doi.org/10.1016/j.apenergy.2013.08.078
13 Chen  S Y, Xiang  W G, Xue  Z P, Sun  X Y. Experimental investigation of chemical looping hydrogen generation using iron oxides in a batch fluidized bed. Proceedings of the Combustion Institute, 2011, 33(2): 2691–2699
https://doi.org/10.1016/j.proci.2010.08.010
14 Chen  S Y, Shi  Q L, Xue  Z P, Sun  X Y, Xiang  W G. Experimental investigation of chemical-looping hydrogen generation using Al2O3 or TiO2-supported iron oxides in a batch fluidized bed. International Journal of Hydrogen Energy, 2011, 36(15): 8915–8926
https://doi.org/10.1016/j.ijhydene.2011.04.204
15 Xiang  W G, Chen  S Y, Xue  Z P, Sun  X Y. Investigation of coal gasification hydrogen and electricity co-production plant with three-reactors chemical looping process. International Journal of Hydrogen Energy, 2010, 35(16): 8580–8591
https://doi.org/10.1016/j.ijhydene.2010.04.167
16 Xue  Z P, Chen  S Y, Wang  D, Xiang  W G. Design and fluid dynamic analysis of a three-fluidized-bed reactor system for chemical-looping hydrogen generation. Industrial & Engineering Chemistry Research, 2012, 51(11): 4267–4278
https://doi.org/10.1021/ie201052r
17 Noorman  S, Annaland  M V, Kuipers  H. Packed bed reactor technology for chemical-looping combustion. Industrial & Engineering Chemistry Research, 2007, 46(12): 4212–4220
https://doi.org/10.1021/ie061178i
18 Noorman  S, Gallucci  F, Annaland  M V, Kuipers  J A M. Experimental investigation of chemical-looping combustion in packed beds: a parametric study. Industrial & Engineering Chemistry Research, 2011, 50(4): 1968–1980
https://doi.org/10.1021/ie1019112
19 Noorman  S, Annaland  M V, Kuipers  J A M. Experimental validation of packed bed chemical-looping combustion. Chemical Engineering Science, 2010, 65(1): 92–97
https://doi.org/10.1016/j.ces.2009.02.004
20 Noorman  S, Gallucci  F, Annaland  M V, Kuipers  H J A M. Experimental investigation of a CuO/Al2O3 oxygen carrier for chemical-looping combustion. Industrial & Engineering Chemistry Research, 2010, 49(20): 9720–9728
https://doi.org/10.1021/ie100869t
21 Noorman  S, Gallucci  F, Annaland  M V, Kuipers  J A M. A theoretical investigation of CLC in packed beds. Part 1: Particle model. Chemical Engineering Journal, 2011, 167(1): 297–307
https://doi.org/10.1016/j.cej.2010.12.068
22 Noorman  S, Gallucci  F, Annaland  M V, Kuipers  J A M. A theoretical investigation of CLC in packed beds. Part 2: Reactor model. Chemical Engineering Journal, 2011, 167(1): 369–376
https://doi.org/10.1016/j.cej.2011.01.012
23 Bohn  C D, Müller  C R, Cleeton  J P, Hayhurst  A N, Davidson  J F, Scott  S A, Dennis  J S. Production of very pure hydrogen with simultaneous capture of carbon dioxide using the redox reactions of iron oxides in packed beds. Industrial & Engineering Chemistry Research, 2008, 47(20): 7623–7630
https://doi.org/10.1021/ie800335j
24 Solunke  R D, Veser  G. Hydrogen production via chemical looping steam reforming in a periodically operated fixed-bed reactor. Industrial & Engineering Chemistry Research, 2010, 49(21): 11037–11044
https://doi.org/10.1021/ie100432j
25 Müller  C R, Bohn  C D, Song  Q, Scott  S A, Dennis  J S. The production of separate streams of pure hydrogen and carbon dioxide from coal via an iron-oxide redox cycle. Chemical Engineering Journal, 2011, 166(3): 1052–1060
https://doi.org/10.1016/j.cej.2010.11.067
26 Kierzkowska  A M, Bohn  C D, Scott  S A, Cleeton  J P, Dennis  J S, Müller  C R. Development of iron oxide carriers for chemical looping combustion using sol-gel. Industrial & Engineering Chemistry Research, 2010, 49(11): 5383–5391
https://doi.org/10.1021/ie100046f
27 Johansson  M, Mattisson  T, Lyngfelt  A. Creating a synergy effect by using mixed oxides of iron- and nickel oxides in the combustion of methane in a chemical-looping combustion reactor. Energy & Fuels, 2006, 20(6): 2399–2407
https://doi.org/10.1021/ef060068l
28 Ryu  J C, Lee  D H, Kang  K S, Park  C S, Kim  J W, Kim  Y H. Effect of additives on redox behavior of iron oxide for chemical hydrogen storage. Journal of Industrial and Engineering Chemistry, 2008, 14(2): 252–260
https://doi.org/10.1016/j.jiec.2007.10.003
29 Li  M. Dual-stage technology research of woody biomass pyrolysis and gasification for hydrogen production. Dissertation for the Doctoral Degree. Beijing: Tsinghua University, 2008 (in Chinese)
30 Wang  S Z, Wang  G X, Jiang  F, Luo  M, Li  H Y. Chemical looping combustion of coke oven gas by using Fe2O3/CuO with MgAl2O4 as oxygen carrier. Energy & Environmental Science, 2010, 3(9): 1353–1360
https://doi.org/10.1039/b926193a
[1] Supplementary Material Download
[1] Jiangkun XIE, Naiqiang YAN, Fei LIU, Zan QU, Shijian YANG, Ping LIU. CO2 adsorption performance of ZIF-7 and its endurance in flue gas components[J]. Front Envir Sci Eng, 2014, 8(2): 162-168.
[2] Zhenhe CHEN, Shubo DENG, Haoran WEI, Bin WANG, Jun HUANG, Gang YU. Activated carbons and amine-modified materials for carbon dioxide capture –– a review[J]. Front Envir Sci Eng, 2013, 7(3): 326-340.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed