Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2016, Vol. 10 Issue (2) : 399-411    https://doi.org/10.1007/s11783-015-0819-5
RESEARCH ARTICLE
Leaching toxicity characteristics of municipal solid waste incineration bottom ash
Khamphe PHOUNGTHONG1,Yi XIA1,Hua ZHANG1,*(),Liming SHAO2,3,Pinjing HE2,3
1. State Key Laboratory of Pollution Control & Resource Reuse, Tongji University, Shanghai 200092, China
2. Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China
3. Centre for the Technology Research and Training on Household Waste in Small Towns & Rural Area, Ministry of Housing and Urban–Rural Development of PR China (MOHURD), Shanghai 200092, China
 Download: PDF(1052 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

The continuously increasing production of municipal solid waste incineration bottom ash (MSWIBA) has promoted its utilization as construction material and raised environmental concern. The physico-chemical properties and leaching behavior of MSWIBA were studied, and ecotoxicological testing using a luminescent bacterium bioassay was performed to assess the ecological pollution risks associated with its leached constituents. The MSWIBA was leached by two types of leachants, H2SO4/HNO3 and HAc solution, at different liquid to solid ratios and contact times. The concentrations of heavy metals and anions in the leachates were analyzed. Multivariate statistical analyses, including principle component analysis, Pearson's correlation analysis and hierarchical cluster analysis, were used to evaluate the contributions of the constituents to the toxicity (EC50) of the MSWIBA leachate. The statistical analyses of the ecotoxicological results showed that the Ba, Cr, Cu, Pb, F and total organic carbon (TOC) concentrations were closely correlated with the EC50 value, and these substances were the main contributors to the ecotoxicity of the MSWIBA leachate. In addition, the cluster of these variables indicated similar leaching behaviors. Overall, the research demonstrated that the ecotoxicological risks resulting from MSWIBA leaching could be assessed before its utilization, which provides crucial information for the adaptation of MSWIBA as alternative materials.

Keywords Municipal solid waste incineration      bottom ash      alternative material      leaching tests      toxicity      Vibrio qinghaiensis (Q67)     
Corresponding Author(s): Hua ZHANG   
Online First Date: 09 October 2015    Issue Date: 01 February 2016
 Cite this article:   
Khamphe PHOUNGTHONG,Yi XIA,Hua ZHANG, et al. Leaching toxicity characteristics of municipal solid waste incineration bottom ash[J]. Front. Environ. Sci. Eng., 2016, 10(2): 399-411.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-015-0819-5
https://academic.hep.com.cn/fese/EN/Y2016/V10/I2/399
Fig.1  Particle size distribution of the MSWIBA samples
properties MSWIBA1 MSWIBA2
loss on ignition (wt.%, at 600°C) 3.31 1.14
density (g·cm−3) 2.12 1.83
chemical composition (wt.%) analyzed by XRF
SiO2 43.10 40.09
Al2O3 5.69 7.48
Fe2O3 8.23 8.67
CaO 24.74 27.38
MgO 2.83 2.99
K2O 1.61 1.52
TiO2 0.77 1.00
SO3 2.59 1.68
Cr2O3 0.12 0.07
Cl 1.04 0.78
P2O5 5.01 3.38
Na2O 4.27 4.96
elemental content (mg·kg−1) analyzed by ICP-OES
As 57.1 85.4
B ND ND
Ba 1240 2090
Be 1.78 2.68
Bi ND ND
Cd 4.91 7.52
Co ND 12.4
Cr 330 676
Cu 1670 1710
Mn 705 1080
Ni 131 2107
Pb 482 609
Se 1.60 3.13
Sr 219 366
V 44.7 54.0
Zn 2100 2370
Tab.1  Physical and chemical characteristics of the MSWIBA samples
Fig.2  XRD patterns of the MSWIBA samples
Fig.3  Leaching concentrations of heavy metals as a function of L/S ratios. (a) Ba, (b) Cd, (c) Cr, (d) Cu, (e) Pb and (f) Zn
Fig.4  Leaching concentrations of heavy metals as a function of contact times. (a) Ba, (b) Cd, (c) Cr, (d) Cu, (e) Pb and (f) Zn
Fig.5  EC50 of the MSWIBA leachates as a function of (a) L/S ratio and (b) contact time
Fig.6  PCA and HCA results. (a) PCA score scatter plot (bi-plot) with inter-relationships between the MSWIBA samples and the constituents. (b) HCA analysis represented by dendrograms of the constituents in the MSWIBA leachate samples.
As Ba Cd Cr Cu Fe Ni Pb Se Zn F Cl NO 2 NO 3 SO 4 2 TOC EC50
As 0.046 0.515** −0.240 −0.270 0.625** 0.809** −0.303 0.662** 0.286 −0.538** 0.636** −0.681** 0.625** 0.631** −0.111 0.023
Ba 0.372* 0.887** 0.805** 0.278 0.088 0.614** 0.218 0.283 0.741** 0.444* 0.139 −0.417* −0.345 0.821** 0.847**
Cd 0.105 0.093 0.741** 0.634** 0.418* 0.712** 0.104 −0.076 0.598** −0.299 0.412* 0.432* 0.374* −0.334
Cr 0.906** −0.063 −0.220 0.612** −0.015 0.209 0.899** 0.120 0.288 −0.678** −0.645** 0.795** 0.811**
Cu −0.062 −0.175 0.573** −0.010 0.207 0.868** 0.113 0.352* −0.584** −0.534** 0.779** 0.833**
Fe 0.726** 0.207 0.818** 0.031 −0.299 0.547** −0.334 0.493** 0.570** 0.243 −0.204
Ni −0.078 0.709** 0.212 −0.465** 0.737** −0.644** 0.646** 0.708** 0.040 −0.109
Pb 0.156 0.107 0.607** 0.049 0.241 −0.402* −0.360* 0.836** 0.601**
Se 0.064 −0.286 0.452** −0.426* 0.477** 0.498** 0.211 −0.214
Zn 0.038 0.365* −0.477** 0.071 0.025 0.315 −0.128
F −0.133 0.583** −0.727** −0.692** 0.687** 0.750**
Cl −0.559** 0.294 0.379* 0.292 −0.284
NO 2 −0.454** −0.426* 0.071 −0.229
NO 3 0.940** −0.434* 0.345
SO 4 2 −0.375* 0.253
TOC 0.823**
EC50
Tab.2  Pearson correlation coefficients between the constituents and EC50 (n = 32)
1 Chang  M B, Chung  Y T. Dioxin contents in fly ashes of MSW incineration in Taiwan. Chemosphere, 1998, 36(9): 1959–1968
https://doi.org/10.1016/S0045-6535(97)10080-7
2 Wan  X, Wang  W, Ye  T M, Guo  Y W, Gao  X B. A study on the chemical and mineralogical characterization of MSWI fly ash using a sequential extraction procedure. Journal of Hazardous Materials, 2006, 134(1−3): 197–201
https://doi.org/10.1016/j.jhazmat.2005.10.048
3 National Bureau of Statistics of China. China Statistical Yearbook. Beijing: China Statistical Press, 2014 (in Chinese)
4 Yu  J, Sun  L, Xiang  J, Jin  L, Hu  S, Su  S, Qiu  J. Physical and chemical characterization of ashes from a municipal solid waste incinerator in China. Waste Management & Research, 2013, 31(7): 663–673
https://doi.org/10.1177/0734242X13485793
5 Zhang  H, He  P J, Shao  L M. Fate of heavy metals during municipal solid waste incineration in Shanghai. Journal of Hazardous Materials, 2008, 156(1−3): 365–373
https://doi.org/10.1016/j.jhazmat.2007.12.025
6 Belevi  H, Langmeier  M. Factors determining the element behavior in municipal solid waste incinerators. 2. Laboratory experiments. Environmental Science & Technology, 2000, 34(12): 2507–2512
https://doi.org/10.1021/es991079e
7 Chen  P W, Liu  Z S, Wun  M J, Ran  C L. Evaluating the mutagenicity of leachates obtained from the bottom ash of a municipal solid waste incinerator by using a Salmonella reverse mutation assay. Chemosphere, 2015, 124: 70–76
https://doi.org/10.1016/j.chemosphere.2014.11.013
8 Dijkstra  J J, van der Sloot  H A, Comans  R N J. The leaching of major and trace elements from MSWI bottom ash as a function of pH and time. Applied Geochemistry, 2006, 21(2): 335–351
https://doi.org/10.1016/j.apgeochem.2005.11.003
9 Shim  Y S, Rhee  S W, Lee  W K. Comparison of leaching characteristics of heavy metals from bottom and fly ashes in Korea and Japan. Waste Management (New York, N.Y.), 2005, 25(5): 473–480
https://doi.org/10.1016/j.wasman.2005.03.002
10 Feng  S, Wang  X, Wei  G, Peng  P, Yang  Y, Cao  Z. Leachates of municipal solid waste incineration bottom ash from Macao: Heavy metal concentrations and genotoxicity. Chemosphere, 2007, 67(6): 1133–1137
https://doi.org/10.1016/j.chemosphere.2006.11.030
11 Arickx  S, Van Gerven  T, Boydens  E, L’hoëst  P, Blanpain  B, Vandecasteele  C. Speciation of Cu in MSWI bottom ash and its relation to Cu leaching. Applied Geochemistry, 2008, 2(12): 3642–3650
https://doi.org/10.1016/j.apgeochem.2008.09.006
12 Radetski  C M, Ferrari  B, Cotelle  S, Masfaraud  J F, Ferard  J F. Evaluation of the genotoxic, mutagenic and oxidant stress potentials of municipal solid waste incinerator bottom ash leachates. Science of the Total Environment, 2004, 333(1−3): 209–216
https://doi.org/10.1016/j.scitotenv.2004.05.015
13 Fan  H J, Shu  H Y, Yang  H S, Chen  W C. Characteristics of landfill leachates in central Taiwan. Science of the Total Environment, 2006, 361(1−3): 25–37
https://doi.org/10.1016/j.scitotenv.2005.09.033
14 Barreto-Rodrigues  M, Silva  F T, Paiva  T C B. Characterization of wastewater from the Brazilian TNT industry. Journal of Hazardous Materials, 2009, 164(1): 385–388
https://doi.org/10.1016/j.jhazmat.2008.07.152
15 Sponza  D T, Oztekin  R. Destruction of some more and less hydrophobic PAHs and their toxicities in a petrochemical industry wastewater with sonication in Turkey. Bioresource Technology, 2010, 101(22): 8639–8648
https://doi.org/10.1016/j.biortech.2010.06.124
16 Zhang  X X, Sun  S L, Zhang  Y, Wu  B, Zhang  Z Y, Liu  B, Yang  L Y, Cheng  S P. Toxicity of purified terephthalic acid manufacturing wastewater on reproductive system of male mice (Mus musculus). Journal of Hazardous Materials, 2010, 176(1−3): 300–305
https://doi.org/10.1016/j.jhazmat.2009.11.028
17 Farre  M, Barcelo  D. Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis. Trends in Analytical Chemistry, 2003, 22(5): 299–310
https://doi.org/10.1016/S0165-9936(03)00504-1
18 Körner  S, Das  S K, Veenstra  S, Vermaat  J E. The effect of pH variation at the ammonium/ammonia equilibrium in wastewater and its toxicity to Lemna gibba. Aquatic Botany, 2001, 71(1): 71–78
https://doi.org/10.1016/S0304-3770(01)00158-9
19 Lah  B, Vidic  T, Glasencnik  E, Cepeljnik  T, Gorjanc  G, Marinsek-Logar  R. Genotoxicity evaluation of water soil leachates by Ames test, comet assay, and preliminary Tradescantia micronucleus assay. Environmental Monitoring and Assessment, 2008, 139(1−3): 107–118
https://doi.org/10.1007/s10661-007-9819-7
20 Huerta  B B, Ferrer  M P, Ribe  V, Larsson  M, Engwall  M, Wojciechowska  E, Waara  S. Hazard assessment of sediments from a wetland system for treatment of landfill leachate using bioassays. Ecotoxicology and Environmental Safety, 2013, 97: 255–262
https://doi.org/10.1016/j.ecoenv.2013.08.010
21 Stiernstrom  S, Enell  A, Wik  O, Borg  H, Breitholtz  M. An ecotoxicological evaluation of aged bottom ash for use in constructions. Waste Management (New York, N.Y.), 2014, 34(1): 86–92
https://doi.org/10.1016/j.wasman.2013.10.003
22 Thomulka  K W, McGee  D J, Lange  J H. Use of the bioluminescent bacterium Photobacterium phosphoreum to detect potentially biohazardous materials in water. Bulletin of Environmental Contamination and Toxicology, 1993, 51(4): 538–544
https://doi.org/10.1007/BF00192169
23 Al-Mutairi  N Z. Coagulant toxicity and effectiveness in a slaughterhouse wastewater treatment plant. Ecotoxicology and Environmental Safety, 2006, 65(1): 74–83
https://doi.org/10.1016/j.ecoenv.2005.05.013
24 Ren  S. Assessing wastewater toxicity to activated sludge: recent research and developments. Environment International, 2004, 30(8): 1151–1164
https://doi.org/10.1016/j.envint.2004.06.003
25 Ye  Z, Zhao  Q, Zhang  M, Gao  Y. Acute toxicity evaluation of explosive wastewater by bacterial bioluminescence assays using a freshwater luminescent bacterium, Vibrio qinghaiensis sp. Nov. Journal of Hazardous Materials, 2011, 186(2−3): 1351–1354
https://doi.org/10.1016/j.jhazmat.2010.12.013
26 Zhu  W, Wang  J, Chen  X, Zhaxi  C, Yang  Y, Song  Y. A new species of luminous bacteria Vibrio qinghaiensis sp. Nov. Oceanologia et Limnologia Sinica, 1994, 25: 273–280 (in Chinese)
27 Ma  M, Tong  Z, Wang  Z, Zhu  W. Acute toxicity bioassay using the freshwater luminescent bacterium Vibrio qinghaiensis sp. Nov.-Q67. Bulletin of Environmental Contamination and Toxicology, 1999, 62(3): 247–253
https://doi.org/10.1007/s001289900866
28 Zhang  H, He  P J, Shao  L M, Li  X J. Leaching behavior of heavy metals from municipal solid waste incineration bottom ash and its geochemical modeling. Journal of Material Cycles and Waste Management, 2008, 10(1): 7–13
https://doi.org/10.1007/s10163-007-0191-z
29 ASTM International. Standard Test Method for Assessing the Microbial Detoxification of Chemically Contaminated Water and Soil Using a Toxicity Test with a Luminescent Marine Bacterium. ASTM D56−96, Pennsylvania, United States, 2009
30 Fernández-Alba  A R, Hernando Guil  M D, López  G D, Chisti  Y. Comparative evaluation of the effects of pesticides in acute toxicity luminescence bioassays. Analytica Chimica Acta, 2002, 451(2): 195–202
https://doi.org/10.1016/S0003-2670(01)01422-2
31 Quevauviller  P, Thomas  O, van der Beken  A. Wastewater Quality Monitoring and Treatment. John Wiley & Sons, Ltd, England, 2006
32 Zheng  W, Phoungthong  K, Lü  F, Shao  L M, He  P J. Evaluation of a classification method for biodegradable solid wastes using anaerobic degradation parameters. Waste Management (New York, N.Y.), 2013, 33(12): 2632–2640
https://doi.org/10.1016/j.wasman.2013.08.015
33 European Committee for Standardization. Unbound Mixtures-Specifications. CEN EN 13285, 2004
34 Chinese Standard. Standard for pollution control on the municipal solid waste incineration. GB 18485, 2014 (in Chinese)
35 Li  X G, Lv  Y, Ma  B G, Chen  Q B, Yin  X B, Jian  S W. Utilization of municipal solid waste incineration bottom ash in blended cement. Journal of Cleaner Production, 2012, 32: 96–100
https://doi.org/10.1016/j.jclepro.2012.03.038
36 Rendek  E, Ducom  G, Germain  P. Influence of waste input and combustion technology on MSWI bottom ash quality. Waste Management (New York, N.Y.), 2007, 27(10): 1403–1407
https://doi.org/10.1016/j.wasman.2007.03.016
37 Chang  C Y, Wang  C F, Mui  D T, Cheng  M T, Chiang  H L. Characteristics of elements in waste ashes from a solid waste incinerator in Taiwan. Journal of Hazardous Materials, 2009, 165(1−3): 1351–1354
https://doi.org/10.1016/j.jhazmat.2008.10.059
38 Rocca  S, van Zomeren  A, Costa  G, Dijkstra  J J, Comans  R N J, Lombardi  F. Characterisation of major component leaching and buffering capacity of RDF incineration and gasification bottom ash in relation to reuse or disposal scenarios. Waste Management (New York, N.Y.), 2012, 32(4): 759–768
https://doi.org/10.1016/j.wasman.2011.11.018
39 Ni  M, Du  Y, Lu  S, Peng  Z, Li  X, Yan  J, Cen  K. Study of ashes from a medical waste incinerator in China: physical and chemical characteristics on fly ash, ash deposits and bottom ash. Environmental Progress & Sustainable Energy, 2013, 32(3): 496–504
https://doi.org/10.1002/ep.11649
40 Li  M, Xiang  J, Hu  S, Sun  L S, Su  S, Li  P S, Sun  X X. Characterization of solid residues from municipal solid waste incinerator. Fuel, 2004, 83(10): 1397–1405
https://doi.org/10.1016/j.fuel.2004.01.005
41 Haykiri-Acma  H, Yaman  S, Ozbek  N, Kucukbayrak  S. Mobilization of some trace elements from ashes of Turkish lignites in rain water. Fuel, 2011, 90(11): 3447–3455
https://doi.org/10.1016/j.fuel.2011.06.069
42 Saikia  N, Kato  S, Kojima  T. Compositions and leaching behaviours of combustion residues. Fuel, 2006, 85(2): 264–271
https://doi.org/10.1016/j.fuel.2005.03.035
43 Chang  E E, Chiang  P C, Lu  P H, Ko  Y W. Comparisons of metal leachability for various wastes by extraction and leaching methods. Chemosphere, 2001, 45(1): 91–99
https://doi.org/10.1016/S0045-6535(01)00002-9
44 Chiang  K Y, Tsai  C C, Wang  K S. Comparison of leaching characteristics of heavy metals in APC residue from an MSW incinerator using various extraction methods. Waste Management (New York, N.Y.), 2009, 29(1): 277–284
https://doi.org/10.1016/j.wasman.2008.04.006
45 US Environmental Protection Agency (US EPA). RCRA training modules, Introduction to hazardous waste identification. Washington, DC., USA, 2003
46 Ministry of Environmental Protection of the People’s Republic of China (MEP). Identification standards for hazardous wastes-Identification for extraction toxicity. GB 5085.3−2007. Beijing, China, 2007 (in Chinese)
47 Skodras  G, Grammelis  P, Prokopidou  M, Kakaras  E, Sakellaropoulos  G. Chemical, leaching and toxicity characteristics of CFB combustion residues. Fuel, 2009, 88(7): 1201–1209
https://doi.org/10.1016/j.fuel.2007.06.009
48 Barbosa  R, Dias  D, Lapa  N, Lopes  H, Mendes  B. Chemical and ecotoxicological properties of size fractionated biomass ashes. Fuel Processing Technology, 2013, 109: 124–132
https://doi.org/10.1016/j.fuproc.2012.09.048
49 Ore  S, Todorovic  J, Ecke  H, Grennberg  K, Lidelöw  S, Lagerkvist  A. Toxicity of leachate from bottom ash in a road construction. Waste Management (New York, N.Y.), 2007, 27(11): 1626–1637
https://doi.org/10.1016/j.wasman.2006.11.008
[1] Mengjun Chen, Oladele A. Ogunseitan. Zero E-waste: Regulatory impediments and blockchain imperatives[J]. Front. Environ. Sci. Eng., 2021, 15(6): 114-.
[2] Yi Qian, Weichuan Qiao, Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100-.
[3] Mariana Valdez-Castillo, Sonia Arriaga. Response of bioaerosol cells to photocatalytic inactivation with ZnO and TiO2 impregnated onto Perlite and Poraver carriers[J]. Front. Environ. Sci. Eng., 2021, 15(3): 43-.
[4] Barsha Roy, Khushboo Kadam, Suresh Palamadai Krishnan, Chandrasekaran Natarajan, Amitava Mukherjee. Assessing combined toxic effects of tetracycline and P25 titanium dioxide nanoparticles using Allium cepa bioassay[J]. Front. Environ. Sci. Eng., 2021, 15(1): 6-.
[5] Xuewen Yi, Zhanqi Gao, Lanhua Liu, Qian Zhu, Guanjiu Hu, Xiaohong Zhou. Acute toxicity assessment of drinking water source with luminescent bacteria: Impact of environmental conditions and a case study in Luoma Lake, East China[J]. Front. Environ. Sci. Eng., 2020, 14(6): 109-.
[6] Xuesong Liu, Jianmin Wang. Algae (Raphidocelis subcapitata) mitigate combined toxicity of microplastic and lead on Ceriodaphnia dubia[J]. Front. Environ. Sci. Eng., 2020, 14(6): 97-.
[7] Shengkun Dong, Chenyue Yin, Xiaohong Chen. Toxicity-oriented water quality engineering[J]. Front. Environ. Sci. Eng., 2020, 14(5): 80-.
[8] Ting Zhang, Heze Liu, Yiyuan Zhang, Wenjun Sun, Xiuwei Ao. Comparative genotoxicity of water processed by three drinking water treatment plants with different water treatment procedures[J]. Front. Environ. Sci. Eng., 2020, 14(3): 39-.
[9] Qian-Yuan Wu, Yi-Jun Yan, Yao Lu, Ye Du, Zi-Fan Liang, Hong-Ying Hu. Identification of important precursors and theoretical toxicity evaluation of byproducts driving cytotoxicity and genotoxicity in chlorination[J]. Front. Environ. Sci. Eng., 2020, 14(2): 25-.
[10] Ravikumar KVG, Debayan Ghosh, Mrudula Pulimi, Chandrasekaran Natarajan, Amitava Mukherjee. In situ formation of bimetallic FeNi nanoparticles on sand through green technology: Application for tetracycline removal[J]. Front. Environ. Sci. Eng., 2020, 14(1): 16-.
[11] Siyu Chen, Lee Blaney, Ping Chen, Shanshan Deng, Mamatha Hopanna, Yixiang Bao, Gang Yu. Ozonation of the 5-fluorouracil anticancer drug and its prodrug capecitabine: Reaction kinetics, oxidation mechanisms, and residual toxicity[J]. Front. Environ. Sci. Eng., 2019, 13(4): 59-.
[12] Xin Xing, Yin Yu, Hongbo Xi, Guangqing Song, Yajiao Wang, Jiane Zuo, Yuexi Zhou. Reduction of wastewater toxicity and change of microbial community in a hydrolysis acidification reactor pre-treating trimethylolpropane wastewater[J]. Front. Environ. Sci. Eng., 2018, 12(6): 12-.
[13] Daoud Ali, Huma Ali, Saud Alifiri, Saad Alkahtani, Abdullah A Alkahtane, Shaik Althaf Huasain. Detection of oxidative stress and DNA damage in freshwater snail Lymnea leuteola exposed to profenofos[J]. Front. Environ. Sci. Eng., 2018, 12(5): 1-.
[14] Siyi Lu, Naiyu Wang, Can Wang. Oxidation and biotoxicity assessment of microcystin-LR using different AOPs based on UV, O3 and H2O2[J]. Front. Environ. Sci. Eng., 2018, 12(3): 12-.
[15] Naiyu Wang, Kai Wang, Can Wang. Comparison of different algicides on growth of Microcystis aeruginosa and microcystin release, as well as its removal pathway in riverways[J]. Front. Environ. Sci. Eng., 2017, 11(6): 3-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed