Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (5) : 100    https://doi.org/10.1007/s11783-021-1391-9
RESEARCH ARTICLE
Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression
Yi Qian, Weichuan Qiao(), Yunhao Zhang
Department of Environmental Engineering, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
 Download: PDF(1801 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• OBS inhibited the growth of P. stutzeri and destroyed its structure.

• OBS was toxic to the aerobic denitrification process of P. stutzeri.

• OBS induced the production of ROS in P. stutzeri.

• OBS affected the expression of key genes involved in denitrification and SOD.

The toxicities of sodium perfluorononyloxy-benzenesulfonate (OBS) to animals and plants are similar to those of perfluorooctane sulfonate. However, the mechanism of its toxicity to aerobic denitrifying bacteria is still unclear. In the present study, the ecotoxicity of OBS on an aerobic denitrifying strain, Pseudomonas stutzeri, was evaluated. The results showed that a dosage of OBS clearly affected the growth and aerobic denitrification of P. stutzeri. When compared with an unamended control, the degradation efficiency of the total nitrogen decreased by 30.13% during exposure to 200 mg/L of OBS, and the complete degradation time of nitrate-nitrogen was delayed by 4 h. The lactate dehydrogenase and superoxide dismutase produced by the bacteria increased with the concentration of OBS, and reactive oxygen species were also detected by confocal laser scanning microscope imaging. Transmission electron microscope imaging revealed chromosome deformation of the cells and damage to cell content; moreover, outer membrane vesicles were secreted from the bacteria, which was the important detoxification mechanism of P. stutzeri to OBS. Expression of the genes involved in aerobic nitrification and oxidative stress were also changed under OBS stress, which further confirmed the toxicity of OBS to P. stutzeri. This study reveals the environmental exposure risk of OBS from the perspective of microorganisms.

Keywords Sodium perfluorononyloxy-benzenesulfonate      Aerobic denitrification      Pseudomonas stutzeri      Ecotoxicity      ROS      Persist organic pollutants      Toxicity      Denitrification      Microbiology     
Corresponding Author(s): Weichuan Qiao   
Issue Date: 08 January 2021
 Cite this article:   
Yi Qian,Weichuan Qiao,Yunhao Zhang. Toxic effect of sodium perfluorononyloxy-benzenesulfonate on Pseudomonas stutzeri in aerobic denitrification, cell structure and gene expression[J]. Front. Environ. Sci. Eng., 2021, 15(5): 100.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1391-9
https://academic.hep.com.cn/fese/EN/Y2021/V15/I5/100
Fig.1  Growth curve of P. stutzeri in the DM medium at different OBS concentrations.
Fig.2  TEM of the untreated cells (a–c) and the cells exposed to 1 mg/L (d–f) and 200 mg/L (g–i) of OBS. The red, black and blue arrows point to cavity destruction, chromosome deformation and vesicles, respectively.
Fig.3  Toxicity of OBS concentrations to the aerobic denitrification of P. stutzeri: (a) nitrate; (b) nitrite; (c) ammonia; (d) TN.
Fig.4  CLSM images of P. stutzeri exposed to OBS: (a) negative control; (b) exposure of 200 mg/L of OBS; (c) positive control.
Fig.5  Effects of different concentrations of OBS on key enzyme activity of P. stutzeri: (a) relative activities of SOD; (b) relative activities of LDH. All data were compared with the control (* p<0.05).
Fig.6  Aerobic denitrification pathway of P. stutzeri and the toxicity mechanisms of OBS to P. stutzeri.
Fig.7  Relative gene expression levels at 0.1 and 200 mg/L of OBS in P. stutzeri. All data were compared with the control (*p<0.05).
1 Y Bao, Y Qu, J Huang, G Cagnetta, G Yu, R Weber (2017). First assessment on degradability of sodium p-perfluorous nonenoxybenzene sulfonate (OBS), a high volume alternative to perfluorooctane sulfonate in fire-fighting foams and oil production agents in China. RSC Advances, 7(74): 46948–46957
https://doi.org/10.1039/C7RA09728J
2 T J Beveridge (1999). Structures of gram-negative cell walls and their derived membrane vesicles. Journal of Bacteriology, 181(16): 4725–4733
https://doi.org/10.1128/JB.181.16.4725-4733.1999
3 D Chen, Z Xiao, H Wang, K Yang (2018). Toxic effects of vanadium (V) on a combined autotrophic denitrification system using sulfur and hydrogen as electron donors. Bioresource Technology, 264: 319–326
https://doi.org/10.1016/j.biortech.2018.05.093
4 H Chen, J Yao, F Wang, M Cai, H Liu (2013). Toxicity of perfluorooctanoic acid to Pseudomonas putida in the aquatic environment. Journal of Hazardous Materials, 262: 726–731
https://doi.org/10.1016/j.jhazmat.2013.09.046
5 L Chen, M M P Tsui, J C W Lam, Q Wang, C Hu, O W H Wai, B Zhou, P K S Lam (2019). Contamination by perfluoroalkyl substances and microbial community structure in Pearl River Delta sediments. Environmental Pollution, 245: 218–225
https://doi.org/10.1016/j.envpol.2018.11.005
6 Q Chen, T Li, M Gui, S Liu, M Zheng, J Ni (2017). Effects of ZnO nanoparticles on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Bioresource Technology, 239: 21–27
https://doi.org/10.1016/j.biortech.2017.04.123
7 N Cortez, N Carrillo, C Pasternak, A Balzer, G Klug (1998). Molecular cloning and expression analysis of the Rhodobacter capsulatus sodB gene, encoding an iron superoxide dismutase. Journal of Bacteriology, 180(20): 5413–5420
https://doi.org/10.1128/JB.180.20.5413-5420.1998
8 N Durán, M Durán, M B De Jesus, A B Seabra, W J Favaro, G Nakazato (2016). Silver nanoparticles: A new view on mechanistic aspects on antimicrobial activity. Nanomedicine; Nanotechnology, Biology, and Medicine, 12(3): 789–799
https://doi.org/10.1016/j.nano.2015.11.016
9 T N Ellis, M J Kuehn (2010). Virulence and immunomodulatory roles of bacterial outer membrane vesicles. Microbiology and Molecular Biology Reviews, 74(1): 81–94
https://doi.org/10.1128/MMBR.00031-09
10 J P Giesy, K Kannan (2002). Peer reviewed: Perfluorochemical surfactants in the environment. Environmental Science & Technology, 36(7): 146A–152A
https://doi.org/10.1021/es022253t
11 S S Gill, N Tuteja (2010). Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiology and Biochemistry, 48(12): 909–930
https://doi.org/10.1016/j.plaphy.2010.08.016
12 M Gui, Q Chen, T Ma, M Zheng, J Ni (2017a). Effects of heavy metals on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Applied Microbiology and Biotechnology, 101(4): 1717–1727
https://doi.org/10.1007/s00253-016-7984-8
13 M Gui, Q Chen, J Ni (2017b). Effect of sulfamethoxazole on aerobic denitrification by strain Pseudomonas stutzeri PCN-1. Bioresource Technology, 235: 325–331
https://doi.org/10.1016/j.biortech.2017.03.131
14 K R Hartop, M J Sullivan, G Giannopoulos, A J Gates, P L Bond, Z Yuan, T A Clarke, G Rowley, D J Richardson (2017). The metabolic impact of extracellular nitrite on aerobic metabolism of Paracoccus denitrificans. Water Research, 113: 207–214
https://doi.org/10.1016/j.watres.2017.02.011
15 O M Ighodaro, O A Akinloye (2018). First line defence antioxidants-superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX): Their fundamental role in the entire antioxidant defence grid. Alexandria Journal of Medicine, 54(4): 287–293
https://doi.org/10.1016/j.ajme.2017.09.001
16 R Jia, C Han, J L Lei, B L Liu, B Huang, H H Huo, S T Yin (2015). Effects of nitrite exposure on haematological parameters, oxidative stress and apoptosis in juvenile turbot (Scophthalmus maximus). Aquatic Toxicology (Amsterdam, Netherlands), 169: 1–9
https://doi.org/10.1016/j.aquatox.2015.09.016
17 Y Ke, J Chen, X Hu, T Tong, J Huang, S Xie (2020). Emerging perfluoroalkyl substance impacts soil microbial community and ammonia oxidation. Environmental Pollution, 257: 113615
https://doi.org/10.1016/j.envpol.2019.113615
18 H Kobayashi, K Uematsu, H Hirayama, K Horikoshi (2000). Novel toluene elimination system in a toluene-tolerant microorganism. Journal of Bacteriology, 182(22): 6451–6455
https://doi.org/10.1128/JB.182.22.6451-6455.2000
19 C Li (2016). Contamination Characteristics of F-53B, OBS and Other Poly- and Per Fluoroalky Substances in Typical Areas. Master Dissertation. Qingdao: Qingdao Technological University (in Chinese)
20 T T Liao, Y L Shi, J W Jia, R W Jia, L Wang (2010). Sensitivity of morphological change of Vero cells exposed to lipophilic compounds and its mechanism. Journal of Hazardous Materials, 179(1–3): 1055–1064
https://doi.org/10.1016/j.jhazmat.2010.03.113
21 G Liu, S Zhang, K Yang, L Zhu, D Lin (2016). Toxicity of perfluorooctane sulfonate and perfluorooctanoic acid to Escherichia coli: Membrane disruption, oxidative stress, and DNA damage induced cell inactivation and/or death. Environmental Pollution, 214: 806–815
https://doi.org/10.1016/j.envpol.2016.04.089
22 A J Manning, M J Kuehn (2011). Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiology, 11(1): 258–272
https://doi.org/10.1186/1471-2180-11-258
23 A J McBroom, M J Kuehn (2007). Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Molecular Microbiology, 63(2): 545–558
https://doi.org/10.1111/j.1365-2958.2006.05522.x
24 H Q Ning, Y Q Li, Q W Tian, Z S Wang, H Z Mo (2019). The apoptosis of Staphylococcus aureus induced by glycinin basic peptide through ROS oxidative stress response. Lebensmittel-Wissenschaft+ Technologie, 99: 62–68
https://doi.org/10.1016/j.lwt.2018.09.028
25 H Özen , U Kamber, M Karaman, S Gul, E Atakisi, K Ozcan, O Atakisi (2014). Histopathologic, biochemical and genotoxic investigations on chronic sodium nitrite toxicity in mice. Experimental and Toxicologic Pathology, 66(8): 367–375
https://doi.org/10.1016/j.etp.2014.05.003
26 A Presentato, S Lampis, A Vantini, F Manea, F Dapra, S Zuccoli, G Vallini (2020). On the ability of perfluorohexane sulfonate (PFHxS) bioaccumulation by two Pseudomonas sp. strains isolated from PFAS-contaminated environmental matrices. Microorganisms, 8(1): 92
https://doi.org/10.3390/microorganisms8010092
27 Y Qian, Y Zhang, A A Zuh, W Qiao (2020). New application of rutin: Repair the toxicity of emerging perfluoroalkyl substance to Pseudomonas stutzeri. Ecotoxicology and Environmental Safety, 201: 110879
https://doi.org/10.1016/j.ecoenv.2020.110879
28 W Qiao, Z Xie, Y Zhang, X Liu, S Xie, J Huang, L Yu (2018). Perfluoroalkyl substances (PFASs) influence the structure and function of soil bacterial community: Greenhouse experiment. Science of the Total Environment, 642: 1118–1126
https://doi.org/10.1016/j.scitotenv.2018.06.113
29 W Qiao, Y Zhang, Z Xie, Y Luo, X Zhang, C Sang, S Xie, J Huang (2019). Toxicity of perfluorooctane sulfonate on Phanerochaete chrysosporium: Growth, pollutant degradation and transcriptomics. Ecotoxicology and Environmental Safety, 174: 66–74
https://doi.org/10.1016/j.ecoenv.2019.02.066
30 B Qu, H Zhao, J Zhou (2010). Toxic effects of perfluorooctane sulfonate (PFOS) on wheat (Triticum aestivum L.) plant. Chemosphere, 79(5): 555–560
https://doi.org/10.1016/j.chemosphere.2010.02.012
31 Y Ruan, M K Awasthi, L Cai, H Lu, X Xu, W Li (2020). Simultaneous aerobic denitrification and antibiotics degradation by strain Marinobacter hydrocarbonoclasticus RAD-2. Bioresource Technology, 313: 123609
https://doi.org/10.1016/j.biortech.2020.123609
32 T A Slotkin, E A Mackillop, R L Melnick, K A Thayer, F J Seidler (2008). Developmental neurotoxicity of perfluorinated chemicals modeled in vitro. Environmental Health Perspectives, 116(6): 716–722
https://doi.org/10.1289/ehp.11253
33 Y Sun, L Feng, A Li, X Zhang, J Yang, F Ma (2017). Ammonium assimilation: An important accessory during aerobic denitrification of Pseudomonas stutzeri T13. Bioresource Technology, 234: 264–272
https://doi.org/10.1016/j.biortech.2017.03.053
34 Y Tang, M Li, D Xu, J Huang, J Sun (2018). Application potential of aerobic denitrifiers coupled with a biostimulant for nitrogen removal from urban river sediment. Environmental Science and Pollution Research International, 25(6): 5980–5993
https://doi.org/10.1007/s11356-017-0903-4
35 L Xu , D M Krenitsky, A M Seacat, J L Butenhoff, M W Anders (2004). Biotransformation of N-ethyl-N-(2-hydroxyethyl)perfluorooctanesulfonamide by rat liver microsomes, cytosol, and slices and by expressed rat and human cytochromes P450. Chemical Research in Toxicology, 17(6): 767–775
https://doi.org/10.1021/tx034222x
36 J Yang, L Feng, S Pi, D Cui, F Ma, H P Zhao, A Li (2020a). A critical review of aerobic denitrification: Insights into the intracellular electron transfer. Science of the Total Environment, 731: 139080
37 T Yang, Y Xin, L Zhang, Z Gu, Y Li, Z Ding, G Shi (2020b). Characterization on the aerobic denitrification process of Bacillus strains. Biomass and Bioenergy, 140: 105677
https://doi.org/10.1016/j.biombioe.2020.105677
38 X Yang, C Ye, Y Liu, F J Zhao (2015). Accumulation and phytotoxicity of perfluorooctanoic acid in the model plant species Arabidopsis thaliana. Environmental Pollution, 206: 560–566
https://doi.org/10.1016/j.envpol.2015.07.050
39 M Zhang, A Li, Q Yao, Q Wu, H Zhu (2020). Nitrogen removal characteristics of a versatile heterotrophic nitrifying-aerobic denitrifying bacterium, Pseudomonas bauzanensis DN13–1, isolated from deep-sea sediment. Bioresource Technology, 305: 122626
https://doi.org/10.1016/j.biortech.2019.122626
40 X Zheng, Y Su, Y Chen, R Wan, K Liu, M Li, D Yin (2014). Zinc oxide nanoparticles cause inhibition of microbial denitrification by affecting transcriptional regulation and enzyme activity. Environmental Science & Technology, 48(23): 13800–13807
https://doi.org/10.1021/es504251v
41 S Zhou, Y Zhang, T Huang, Y Liu, K Fang, C Zhang (2019). Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun Reservoir. Science of the Total Environment, 651: 998–1010
https://doi.org/10.1016/j.scitotenv.2018.09.160
[1] FSE-20166-OF-QY_suppl_1 Download
[1] Wenjuan Zhang, Bo Han, Ramato Ashu Tufa, Chuyang Tang, Xunuo Liu, Ge Zhang, Jing Chang, Rui Zhang, Rong Mu, Caihong Liu, Dan Song, Junjing Li, Jun Ma, Yufeng Zhang. Tracing the impact of stack configuration on interface resistances in reverse electrodialysis by in situ electrochemical impedance spectroscopy[J]. Front. Environ. Sci. Eng., 2022, 16(4): 46-.
[2] Zhike Li, Jie Chi, Zhenyu Wu, Yiyan Zhang, Yiran Liu, Lanlan Huang, Yiren Lu, Minhaz Uddin, Wei Zhang, Xuejun Wang, Yan Lin, Yindong Tong. Characteristics of plankton Hg bioaccumulations based on a global data set and the implications for aquatic systems with aggravating nutrient imbalance[J]. Front. Environ. Sci. Eng., 2022, 16(3): 37-.
[3] Allan Gomez-Flores, Gukhwa Hwang, Sadia Ilyas, Hyunjung Kim. A CFD study of the transport and fate of airborne droplets in a ventilated office: The role of droplet−droplet interactions[J]. Front. Environ. Sci. Eng., 2022, 16(3): 31-.
[4] Shansi Wang, Siwei Li, Jia Xing, Jie Yang, Jiaxin Dong, Yu Qin, Shovan Kumar Sahu. Evaluation of the influence of El Niño–Southern Oscillation on air quality in southern China from long-term historical observations[J]. Front. Environ. Sci. Eng., 2022, 16(2): 26-.
[5] Hasti Daraei, Kimia Toolabian, Ian Thompson, Guanglei Qiu. Biotoxicity evaluation of zinc oxide nanoparticles on bacterial performance of activated sludge at COD, nitrogen, and phosphorus reduction[J]. Front. Environ. Sci. Eng., 2022, 16(2): 19-.
[6] Qinghui Sun, Juan Li, Chen Wang, Anqi Chen, Yanli You, Shupeng Yang, Huihui Liu, Guibin Jiang, Yongning Wu, Yanshen Li. Research progress on distribution, sources, identification, toxicity, and biodegradation of microplastics in the ocean, freshwater, and soil environment[J]. Front. Environ. Sci. Eng., 2022, 16(1): 1-.
[7] Noshan Bhattarai, Shuxiao Wang, Yuepeng Pan, Qingcheng Xu, Yanlin Zhang, Yunhua Chang, Yunting Fang. δ15N-stable isotope analysis of NHx: An overview on analytical measurements, source sampling and its source apportionment[J]. Front. Environ. Sci. Eng., 2021, 15(6): 126-.
[8] Mengjun Chen, Oladele A. Ogunseitan. Zero E-waste: Regulatory impediments and blockchain imperatives[J]. Front. Environ. Sci. Eng., 2021, 15(6): 114-.
[9] Boyi Cheng, Yi Wang, Yumei Hua, Kate V. Heal. The performance of nitrate-reducing Fe(II) oxidation processes under variable initial Fe/N ratios: The fate of nitrogen and iron species[J]. Front. Environ. Sci. Eng., 2021, 15(4): 73-.
[10] Sanjena Narayanasamydamodaran, Jian’e Zuo, Haiteng Ren, Nawnit Kumar. Scrap Iron Filings assisted nitrate and phosphate removal in low C/N waters using mixed microbial culture[J]. Front. Environ. Sci. Eng., 2021, 15(4): 66-.
[11] Yuxin Li, Jiayin Ling, Pengcheng Chen, Jinliang Chen, Ruizhi Dai, Jinsong Liao, Jiejing Yu, Yanbin Xu. Pseudomonas mendocina LYX: A novel aerobic bacterium with advantage of removing nitrate high effectively by assimilation and dissimilation simultaneously[J]. Front. Environ. Sci. Eng., 2021, 15(4): 57-.
[12] Jianwei Liu, Peng Yue, Nana Zang, Chen Lu, Xinyue Chen. Removal of odors and VOCs in municipal solid waste comprehensive treatment plants using a novel three-stage integrated biofilter: Performance and bioaerosol emissions[J]. Front. Environ. Sci. Eng., 2021, 15(3): 48-.
[13] Guanyu Jiang, Can Wang, Lu Song, Xing Wang, Yangyang Zhou, Chunnan Fei, He Liu. Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster[J]. Front. Environ. Sci. Eng., 2021, 15(3): 46-.
[14] Fan Lu, Tianyu Hu, Shunyan Wei, Liming Shao, Pinjing He. Bioaerosolization behavior along sewage sludge biostabilization[J]. Front. Environ. Sci. Eng., 2021, 15(3): 45-.
[15] Wenwen Xie, Yanpeng Li, Wenyan Bai, Junli Hou, Tianfeng Ma, Xuelin Zeng, Liyuan Zhang, Taicheng An. The source and transport of bioaerosols in the air: A review[J]. Front. Environ. Sci. Eng., 2021, 15(3): 44-.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed