Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (3) : 46    https://doi.org/10.1007/s11783-021-1386-6
RESEARCH ARTICLE
Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster
Guanyu Jiang1,2, Can Wang1,2(), Lu Song1,2, Xing Wang3, Yangyang Zhou3, Chunnan Fei4, He Liu4
1. School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
2. Tianjin Key Laboratory of Indoor Air Environmental Quality Control, Tianjin 300350, China
3. Tianjin Haihe Hospital, Tianjin 300350, China
4. Tianjin Centers for Disease Control and Prevention, Tianjin 300350, China
 Download: PDF(1990 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• Aerosol transmission is an indispensable route of COVID-19 spread.

• Different outbreak sites have different epidemiologic feature.

• SRAS-CoV-2 can exist for a long time in aerosol.

• SRAS-CoV-2 RNA can be detected in aerosol in diverse places.

• Some environmental factors can impact SARS-CoV-2 transportation in aerosol.

Patients with COVID-19 have revealed a massive outbreak around the world, leading to widespread concerns in global scope. Figuring out the transmission route of COVID-19 is necessary to control further spread. We analyzed the data of 43 patients in Baodi Department Store (China) to supplement the transmission route and epidemiological characteristics of COVID-19 in a cluster outbreak. Incubation median was estimated to endure 5.95 days (2–13 days). Almost 76.3% of patients sought medical attention immediately upon illness onset. The median period of illness onset to hospitalization and confirmation were 3.96 days (0–14) and 5.58 days (1–21), respectively. Patients with different cluster case could demonstrate unique epidemiological characteristics due to the particularity of outbreak sites. SRAS-CoV-2 can be released into the surrounding air through patient’s respiratory tract activities, and can exist for a long time for long-distance transportation. SRAS-CoV-2 RNA can be detected in aerosol in different sites, including isolation ward, general ward, outdoor, toilet, hallway, and crowded public area. Environmental factors influencing were analyzed and indicated that the SARS-CoV-2 transportation in aerosol was dependent on temperature, air humidity, ventilation rate and inactivating chemicals (ozone) content. As for the infection route of case numbers 2 to 6, 10, 13, 16, 17, 18, 20 and 23, we believe that aerosol transmission played a significant role in analyzing their exposure history and environmental conditions in Baodi Department Store. Aerosol transmission could occur in some cluster cases when the environmental factors are suitable, and it is an indispensable route of COVID-19 spread.

Keywords SARS-CoV-2      COVID-19      Environmental factor      Aerosol transmission      Epidemiologic characteristic     
Corresponding Author(s): Can Wang   
Issue Date: 25 December 2020
 Cite this article:   
Guanyu Jiang,Can Wang,Lu Song, et al. Aerosol transmission, an indispensable route of COVID-19 spread: case study of a department-store cluster[J]. Front. Environ. Sci. Eng., 2021, 15(3): 46.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1386-6
https://academic.hep.com.cn/fese/EN/Y2021/V15/I3/46
Fig.1  Functional areas division and patients’ exposure places in Baodi Department Store.
Characteristic Total
(N = 43)
Salespersons (N = 6) Customers (N = 20) Close contacts (N = 17)
Median age (range) — yr 50(10–90) 42(34–52) 50(26–69) 51(10–90)
Age group — No./total No. (%)<15 yr 1/43(2.3) 0/6(0) 0/20(0) 1/17(5.9)
Age group — No./total No. (%) 15–44 yr 16/43(37.2) 4/6(66.7) 6/20(30) 6/17(35.3)
Age group — No./total No. (%) 45–64 yr 17/43(39.5) 2/6(33.3) 11/20(55) 4/17(23.5)
Age group — No./total No. (%)≥65 yr 9/43(20.9) 0/6(0) 3/20(15) 6/17(35.3)
Female sex — No./total No. (%) 28/43(65.1) 0/6(0) 16/20(80) 6/17(35.3)
Clinical outcome — No./total No. (%) Severe type 3/43(7.0) 2/6(33.3) 0/20(0) 1/17(5.9)
Clinical outcome — No./total No. (%) Common type 20/43(46.5) 2/6(33.3) 10/20(50) 8/17(47.1)
Clinical outcome — No./total No. (%) Slight type 20/43(46.5) 2/6(33.3) 10/20(50) 8/17(47.1)
Tab.1  (a) Characteristics of patients with COIVD-19 in Baodi Department Store
Exposure to Baodi Department Store Total
(N = 26)
Salespersons
(N = 6)
Customers
(N = 20)
Costume and shoes area— No./total No. (%) 13/26(50) 4/6(66.7) 9/20(45)
Home appliance area — No./total No. (%) 1/26(3.8) 1/6(1.67) 0/20(0)
Jewelry area — No./total No. (%) 3/26(11.5) 1/6(1.67) 2/20(10)
Headwear area — No./total No. (%) 1/26(3.8) 0/6(0) 1/20(5)
Unknown area — No./total No. (%) 10/26(38.5) 0/6(0) 10/20(50)
  (b) Patients’ exposure in Baodi Department Store
Fig.2  The key dates relating to the epidemic identification of COVID-19.
Fig.3  Key periods distribution of epidemic development: (a) Incubation period; (b) Onset to the first medicine therapy; (c) Onset to hospitalization; (d) Onset to confirmation.
Fig.4  The transmission of exhaled virus between infected and susceptible population.
Fig.5  The transmission chain in salespersons, customers and their close contacts
Sites Environmental description Positivity/Total rate of positivity References
Isolation ward Patients in isolation underwent tracheal intubation the day before the samples 1/20 – 5% Jiang et al., 2020b
Intensive care unit Indoor air near the air outlet 5/14 – 35.7% Guo et al., 2020
Indoor air near the patients 8/18 – 44.4%
Indoor air near the doctors’ office area 1/8 – 12.5%
General ward Indoor air under the air inlet 2/13 – 15.4%
An industrial site of Bergamo Province PM10 samples 5/34 – 14.7% Setti et al., 2020
Isolation ward Isolation of asymptomatic or mildly ill 80/107 – 74.8% Santarpia et al., 2020
Personal care unit For individuals requiring hospital care 34/40 – 85.0%
Hallway Air Samples Sampling at the same time as the ward sample collection -/- – 66.7%
Personal Air Samples low volume personal air samples around patients 7/7 – 100%
Isolation ward Sampling at three isolation wards;
Samples from each room were pooled prior to analysis
2/3 – 66.7% Chia et al., 2020
Tab.2  Positive SARS-CoV-2 RNA in aerosol at several sites
1 M Bassetti, A Vena, D R Giacobbe (2020). The novel Chinese coronavirus (2019-nCoV) infections: Challenges for fighting the storm. European Journal of Clinical Investigation, 50(3): e13209
https://doi.org/10.1111/eci.13209
2 A S Bhagavathula, J Rahmani, W A Aldhaleei, P Kumar, A Rovetta (2020). Global, regional and national incidence and case-fatality rates of novel coronavirus (COVID-19) across 154 countries and territories: A systematic assessment of cases reported from January to March 16, 2020. New York: medRxiv preprint doi:10.1101/2020.03.26.20044743
3 Q Bukhari, Y Jameel (2020). Will coronavirus pandemic diminish by summer? Rochester,: Social Science Research Network eLibrery preprint doi:10.2139/ssrn.3556998
4 G Buonanno, L Stabile, L Morawska (2020). Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environment International, 141: 105794
https://doi.org/10.1016/j.envint.2020.105794
5 J F W Chan, S F Yuan, K H Kok, K K W To, H Chu, J Yang, F F Xing, J L Liu, C C Y Yip, R W S Poon, H W Tsoi, S K F Lo, K H Chan, V K M Poon, W M Chan, J D Ip, J P Cai, V C C Cheng, H L Chen, C K M Hui, K Y Yuen (2020). A familial cluster of pneumonia associated with the 2019 novel coronavirus indicating person-to-person transmission: A study of a family cluster. Lancet, 395(10223): 514–523
https://doi.org/10.1016/S0140-6736(20)30154-9
6 N S Chen, M Zhou, X Dong, J M Qu, F Y Gong, Y Han, Y Qiu, J L Wang, Y Liu, Y Wei, J A Xia, T Yu, X X Zhang, L Zhang (2020). Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet, 395(10223): 507–513
https://doi.org/10.1016/S0140-6736(20)30211-7
7 P Y Chia, K K Coleman, Y K Tan, S W X Ong, M Gum, S K Lau, X F Lim, A S Lim, S Sutjipto, P H Lee, T T Son, B E Young, D K Milton, G C Gray, S Schuster, T Barkham, P P De, S Vasoo, M Chan, B S P Ang, B H Tan, Y S Leo, O T Ng, M S Y Wong, K Marimuthu (2020). Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients. Nature Communications, 11(1): 2800
https://doi.org/10.1038/s41467-020-16670-2
8 P Fabian, J J McDevitt, W H DeHaan, R O P Fung, B J Cowling, K H Chan, G M Leung, D K Milton (2008). Influenza virus in human exhaled breath: an observational study. PLoS One, 3(7): e2691
https://doi.org/10.1371/journal.pone.0002691
9 J Gralton, E Tovey, M L McLaws, W D Rawlinson (2011). The role of particle size in aerosolised pathogen transmission: A review. Journal of Infection, 62(1): 1–13
https://doi.org/10.1016/j.jinf.2010.11.010
10 J Gralton, E R Tovey, M L Mclaws, W D Rawlinson (2013). Respiratory virus RNA is detectable in airborne and droplet particles. Journal of Medical Virology, 85(12): 2151–2159
https://doi.org/10.1002/jmv.23698
11 Z D Guo, Z Y Wang, S F Zhang, X Li, L Li, C Li, Y Cui, R B Fu, Y Z Dong, X Y Chi, M Y Zhang, K Liu, C Cao, B Liu, K Zhang, Y W Gao, B Lu, W Chen (2020). Aerosol and surface distribution of severe acute respiratory syndrome coronavirus 2 in hospital wards, Wuhan, China, 2020. Emerging Infectious Diseases, 26(7): 1583–1591
https://doi.org/10.3201/eid2607.200885
12 C L Huang, Y M Wang, X W Li, L L Ren, J P Zhao, Y Hu, L Zhang, G H Fan, J Y Xu, X Y Gu, Z S Cheng, T Yu, J A Xia, Y Wei, W J Wu, X L Xie, W Yin, H Li, M Liu, Y Xiao, H Gao, L Guo, J G Xie, G F Wang, R M Jiang, Z C Gao, Q Jin, J W Wang, B Cao (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223): 497–506
https://doi.org/10.1016/S0140-6736(20)30183-5
13 J K Jiang, Vincent Fu Y, L Liu, M Kulmala (2020a). Transmission via aerosols: Plausible differences among emerging coronaviruses. Aerosol Science and Technology, 54(8): 865–868
https://doi.org/10.1080/02786826.2020.1769020
14 Y F Jiang, H F Wang, Y K Chen, J X He, L G Chen, Y Liu, X Y Hu, A Li, S W Liu, P Zhang, H Y Zou, S C Hua (2020b). Clinical data on hospital environmental hygiene monitoring and medical staffs protection during the coronavirus disease 2019 outbreak. New York: medRxiv preprint doi:10.1101/2020.02.25.20028043
15 G Kampf, D Todt, S Pfaender, E Steinmann (2020). Persistence of coronaviruses on inanimate surfaces and their inactivation with biocidal agents. Journal of Hospital Infection, 104(3): 246–251
https://doi.org/10.1016/j.jhin.2020.01.022
16 H Lau, T Khosrawipour, P Kocbach, H Ichii, J Bania, V Khosrawipour (2020). Evaluating the massive underreporting and undertesting of COVID-19 cases in multiple global epicenters. Pulmonology, doi:10.1016/j.pulmoe.2020.05.015
17 N H L Leung, D K W Chu, E Y C Shiu, K H Chan, J J McDevitt, B J P Hau, H L Yen, Y G Li, D K M Ip, J S M Peiris, W H Seto, G M Leung, D K Milton, B J Cowling (2020). Respiratory virus shedding in exhaled breath and efficacy of face masks. Nature Medicine, 26(5): 676–680
https://doi.org/10.1038/s41591-020-0843-2
18 Q Li, X H Guan, P Wu, X Y Wang, L Zhou, Y Q Tong, R Q Ren, K S M Leung, E H Y Lau, J Y Wong, X S Xing, N J Xiang, Y Wu, C Li, Q Chen, D Li, T Liu, J Zhao, M Liu, W X Tu, C D Chen, L M Jin, R Yang, Q Wang, S H Zhou, R Wang, H Liu, Y B Luo, Y Liu, G Shao, H Li, Z F Tao, Y Yang, Z Q Deng, B X Liu, Z T Ma, Y P Zhang, G Q Shi, T T Y Lam, J T Wu, G F Gao, B J Cowling, B Yang, G M Leung, Z J Feng (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. The New England Journal of Medicine, 382(13): 1199–1207 doi:10.1056/NEJMoa2001316
19 Q H Liu, Z C Liu, J K Zhu, Y H Zhu, D Q Li, Z F Gao, L L Zhou, Y B Tang, X Zhang, J Y Yang, Q Wang (2020a). Assessing the Global Tendency of COVID-19 Outbreak. New York: medRxiv preprint doi.org/10.1101/2020.03.18.20038224
20 Y Liu, Z Ning, Y Chen, M Guo, Y L Liu, N K Gali, L Sun, Y S Duan, J Cai, D Westerdahl, X J Liu, K Xu, K F Ho, H D Kan, Q Y Fu, K Lan (2020b). Aerodynamic analysis of SARS-CoV-2 in two Wuhan hospitals. Nature, 582: 557–560
https://doi.org/10.1038/s41586-020-2271-3
21 Y L Ma, Y D Zhao, J T Liu, X T He, B Wang, S H Fu, J Yan, J P Niu, B Luo (2020). Effects of temperature variation and humidity on the mortality of COVID-19 in Wuhan. New York: medRxiv preprint doi:10.1101/2020.03.15.20036426
22 T M McMichael, D W Currie, S Clark, S Pogosjans, M Kay, N G Schwartz, J Lewis, A Baer, V Kawakami, M D Lukoff, J Ferro, C Brostrom-Smith, T D Rea, M R Sayre, F X Riedo, D Russell, B Hiatt, P Montgomery, A K Rao, E J Chow, F Tobolowsky, M J Hughes, A C Bardossy, L P Oakley, J R Jacobs, N D Stone, S C Reddy, J A Jernigan, M A Honein, T A Clark, J S Duchin (2020). Epidemiology of Covid-19 in a long-term care facility in King County, Washington. The New England Journal of Medicine, 382(21): 2005–2011 doi:10.1056/NEJMoa2005412
23 D K Milton, M P Fabian, B J Cowling, M L Grantham, J J McDevitt (2013). Influenza virus aerosols in human exhaled breath: particle size, culturability, and effect of surgical masks. PLoS Pathogens, 9(3): e1003205
https://doi.org/10.1371/journal.ppat.1003205
24 T A Myatt, S L Johnston, Z F Zuo, M Wand, T Kebadze, S Rudnick, D K Milton (2004). Detection of airborne rhinovirus and its relation to outdoor air supply in office environments. American Journal of Respiratory and Critical Care Medicine, 169(11): 1187–1190
https://doi.org/10.1164/rccm.200306-760OC
25 X F Pan, D X Chen, Y Xia, X W Wu, T S Li, X T Ou, L Y Zhou, J Liu (2020). Asymptomatic cases in a family cluster with SARS-CoV-2 infection. Lancet. Infectious Diseases, 20(4): 410–411
https://doi.org/10.1016/S1473-3099(20)30114-6
26 L T Phan, T V Nguyen, Q C Luong, T V Nguyen, H T Nguyen, H Q Le, T T Nguyen, T M Cao, Q D Pham (2020). Importation and human-to-human transmission of a novel coronavirus in Vietnam. New England Journal of Medicine, 382(9): 872–874
https://doi.org/10.1056/NEJMc2001272
27 B Rockx, T Kuiken, S Herfst, T Bestebroer, M M Lamers, B B Oude Munnink, D de Meulder, G van Amerongen, J van den Brand, N M A Okba, D Schipper, P van Run, L Leijten, R Sikkema, E Verschoor, B Verstrepen, W Bogers, J Langermans, C Drosten, M Fentener van Vlissingen, R Fouchier, R de Swart, M Koopmans, B L Haagmans (2020). Comparative pathogenesis of COVID-19, MERS, and SARS in a nonhuman primate model. Science, 368(6494): 1012–1015
https://doi.org/10.1126/science.abb7314
28 C Rothe, M Schunk, P Sothmann, G Bretzel, G Froeschl, C Wallrauch, T Zimmer, V Thiel, C Janke, W Guggemos, M Seilmaier, C Drosten, P Vollmar, K Zwirglmaier, S Zange, R Wölfel, M Hoelscher (2020). Transmission of 2019-nCoV infection from an asymptomatic contact in Germany. The New England Journal of Medicine, 382(10): 970–971
29 C J Roy, D K Milton (2004). Airborne transmission of communicable infection: The elusive pathway. New England Journal of Medicine, 350(17): 1710–1712
https://doi.org/10.1056/NEJMp048051
30 J L Santarpia, D N Rivera, V L Herrera, M J Morwitzer, H M Creager, G W Santarpia, K K Crown, D M Brett-Major, E R Schnaubelt, M J Broadhurst, J V Lawler, S P Reid, J J Lowe (2020). Aerosol and surface contamination of SARS-CoV-2 observed in quarantine and isolation care. Scientific Reports, 10(1): 12732
https://doi.org/10.1038/s41598-020-69286-3
31 L Setti, F Passarini, G De Gennaro, P Barbieri, M G Perrone, M Borelli, J Palmisani, A Di Gilio, V Torboli, F Fontana, L Clemente, A Pallavicini, M Ruscio, P Piscitelli, A Miani (2020). SARS-Cov-2RNA found on particulate matter of Bergamo in Northern Italy: First evidence. Environmental Research, 188: 109754
https://doi.org/10.1016/j.envres.2020.109754
32 J D Siegel, E Rhinehart, M Jackson, L Chiarello (2007). Guideline for isolation precautions: preventing transmission of infectious agents in healthcare settings. American Journal of Infection Control, 35(10): S65–S164
https://doi.org/10.1016/j.ajic.2007.10.007
33 H Sooryanarain, S Elankumaran (2015). Environmental role in influenza virus outbreaks. Annual Review of Animal Biosciences, 3(1): 347–373
https://doi.org/10.1146/annurev-animal-022114-111017
34 R Tellier, Y G Li, B J Cowling, J W Tang (2019). Recognition of aerosol transmission of infectious agents: A commentary. BMC Infectious Diseases, 19: 101
https://doi.org/10.1186/s12879-019-3707-y
35 W E Wang, J M Tang, F Q Wei (2020). Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. Journal of Medical Virology, 92(4): 441–447
https://doi.org/10.1002/jmv.25689
36 World Health Organization (‎2014)‎. Infection prevention and control of epidemic- and pandemic-prone acute respiratory infections in health care. Geneva: World Health Organization
37 B Xu, B Gutierrez, S Mekaru, K Sewalk, L Goodwin, A Loskill, E L Cohn, Y Hswen, S C Hill, M M Cobo, A E Zarebski, S Li, C Wu, E Hulland, J D Morgan, L Wang, K O’Brien, S V Scarpino, J S Brownstein, O G Pybus, D M Pigott, M U G Kraemer (2020a). Epidemiological data from the COVID-19 outbreak, real-time case information. Scientific Data, 7(1): 106
https://doi.org/10.1038/s41597-020-0448-0
38 R Xu, H Rahmandad, M Gupta, C DiGennaro, N Ghaffarzadegan, H Amini, M S Jalali (2020b). The modest impact of weather and air pollution on COVID-19 transmission. New York: medRxiv preprint doi:10.1101/2020.05.05.20092627
39 M S Yao, L Zhang, J X Ma, L Zhou (2020). On airborne transmission and control of SARS-Cov-2. Science of the Total Environment, 731: 139178
https://doi.org/10.1016/j.scitotenv.2020.139178
40 X L Zhang, Z Ji, Y Yue, H Liu, J Wang (2020). Infection risk assessment of COVID-19 through aerosol transmission: a case study of South China Seafood Market. Environmental Science & Technology, doi:10.1021/acs.est.0c02895
41 N Zhu, D Y Zhang, W L Wang, X W Li, B Y Yang, J D Song, X Zhao, B Y Huang, W F Shi, R J Lu, P H Niu, F X Zhan, X J Ma, D Y Wang, W B Xu, G Z Wu, G F Gao, W J Tan (2020). A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine, 382(8): 727–733 doi:10.1056/NEJMoa2001017
[1] Min Shang, Yadong Kong, Zhijuan Yang, Rong Cheng, Xiang Zheng, Yi Liu, Tongping Chen. Removal of virus aerosols by the combination of filtration and UV-C irradiation[J]. Front. Environ. Sci. Eng., 2023, 17(3): 27-.
[2] Yangyang Liang, Qingbin Song, Naiqi Wu, Jinhui Li, Yuan Zhong, Wenlei Zeng. Repercussions of COVID-19 pandemic on solid waste generation and management strategies[J]. Front. Environ. Sci. Eng., 2021, 15(6): 115-.
[3] Rong Ye, Sai Xu, Qian Wang, Xindi Fu, Huixiang Dai, Wenjing Lu. Fungal diversity and its mechanism of community shaping in the milieu of sanitary landfill[J]. Front. Environ. Sci. Eng., 2021, 15(4): 77-.
[4] Zhili HE, Joy D. VAN NOSTRAND, Ye DENG, Jizhong ZHOU. Development and applications of functional gene microarrays in the analysis of the functional diversity, composition, and structure of microbial communities[J]. Front Envir Sci Eng Chin, 2011, 5(1): 1-20.
[5] GENG Jinju, WANG Qiang, WANG Xiaorong, NIU Xiaojun. Effects of environmental factors on the production and release of matrix-bound phosphine from lake sediments[J]. Front.Environ.Sci.Eng., 2007, 1(1): 120-124.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed