Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2021, Vol. 15 Issue (3) : 48    https://doi.org/10.1007/s11783-021-1421-7
RESEARCH ARTICLE
Removal of odors and VOCs in municipal solid waste comprehensive treatment plants using a novel three-stage integrated biofilter: Performance and bioaerosol emissions
Jianwei Liu1,2(), Peng Yue1,2, Nana Zang1,2, Chen Lu1,2, Xinyue Chen1,2
1. Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
2. Department of Environmental Science and Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China
 Download: PDF(1268 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

• TSIBF was composed of ABRS, FRS and HBRS.

• THIBF can effectively remove various odors, VOCs and bioaerosols.

• Different reaction segments in TSIBF can remove different types of odors and VOCs.

• TSIBF can reduce the emission of bioaerosols through enhanced interception.

A novel three-stage integrated biofilter (TSIBF) composed of acidophilic bacteria reaction segment (ABRS), fungal reaction segment (FRS) and heterotrophic bacteria reaction segment (HBRS) was constructed for the treatment of odors and volatile organic compounds (VOCs)from municipal solid waste (MSW) comprehensive treatment plants. The performance, counts of predominant microorganisms, and bioaerosol emissions of a full-scale TSIBF system were studied. High and stable removal efficiencies of hydrogen sulfide, ammonia and VOCs could be achieved with the TSIBF system, and the emissions of culturable heterotrophic bacteria, fungi and acidophilic sulfur bacteria were relatively low. The removal efficiencies of different odors and VOCs, emissions of culturable microorganisms, and types of predominant microorganisms were different in the ABRS, FRS and HBRS due to the differences in reaction conditions and mass transfer in each segment. The emissions of bioaerosols from the TSIBF depended on the capture of microorganisms and their volatilization from the packing. The rational segmentation, filling of high-density packings and the accumulation of the predominant functional microorganisms in each segment enhanced the capture effect of the bioaerosols, thus reducing the emissions of microorganisms from the bioreactor.

Keywords Biofiltration      Multi-stage biofilter      Volatile organic compounds      Waste gas treatment      Bioaerosol emissions     
Corresponding Author(s): Jianwei Liu   
Issue Date: 14 May 2021
 Cite this article:   
Jianwei Liu,Peng Yue,Nana Zang, et al. Removal of odors and VOCs in municipal solid waste comprehensive treatment plants using a novel three-stage integrated biofilter: Performance and bioaerosol emissions[J]. Front. Environ. Sci. Eng., 2021, 15(3): 48.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-021-1421-7
https://academic.hep.com.cn/fese/EN/Y2021/V15/I3/48
Fig.1  The TSIBF diagram. 1. Sampling port, 2. Flowmeter, 3. Valve, 4. Pump of liquid circulation, 5. Heterotrophic bacteria reaction segment, 6. Fungal reaction segment, 7. Acidophilic bacteria reaction segment, 8. Nutrient solution tank.
Parameter ABRS FRS HBRS
Length × width (m) 6.0 × 5.0 6.0 × 5.0 6.0 × 5.0
Effective height (m) 1.0 1.0 1.0
Effective volume (m3) 30 30 30
Packing material PU PU CM
EBRT (s) 12 12 12
pH of circulating liquid solutions 2.0–3.0 5.0–6.0 7.0–8.0
Moisture content of packing material (%) 40–60 30–50 40–60
Tab.1  Specific process design parameters for the three-stage integrated biofilter
Reaction segment Composition
ABRS 2.00 g/L Na2S2O3·5H2O, 0.50 g/L beef extract, 2.50 g/L NH4Cl, 4.50 g/L KH2PO4,0.10 g/L Fe2SO4·7H2O, 0,10 g/L Mg2SO4·7H2O (pH= 2.0–3.0, adjusted by 1 mg/L H2SO4 or NaOH)
FRS 2.00 g/L NaNO3, 1.00 g/L K2HPO4, 0.50 g/L KCl, 0.19 g/L MgCl2. (pH= 5.0–6.0, adjusted by 1 mg/L H2SO4 or NaOH)
HBRS 2.00 g/L KH2PO4, 2.00 g/L K2HPO4, 0.40 g/L NH4Cl; 0.20 g/L MgCl2·6H2O, 0.01 g/L Fe2SO4·7H2O (pH= 7.0–8.0, adjusted by 1M H2SO4 or NaOH)
Tab.2  Composition of nutrient solution suitable for each reaction segments
Fig.2  (a) Inlet concentrations, outlet concentrations and REs for hydrogen sulfide; (b) Inlet concentrations, outlet concentrations and REs for ammonia and (c) Inlet concentrations, outlet concentrations and REs for TVOCs.
Pollutants Total removal efficiency (%) Removal efficiency of ABRS (%) Removal efficiency of FRS (%) Removal efficiency of HBRS (%) Average removal efficiency (%)
Ammonia 99.57±5.82 65.31±3.63 23.06±1.64 11.63±0.85 99.57
Hydrogen sulfide 98.96±6.17 74.87±3.92 9.76±0.81 14.39±1.03 98.96
Methylmercaptan 99.32±6.34 70.25±3.43 13.45±1.15 15.62±1.27 99.32
Dimethyl sulfide 99.05±6.51 71.08±3.78 11.22±0.96 16.75±1.33 99.05
Ethanethiol 98.75±6.22 76.22±3.73 13.15±1.04 9.38±0.93 98.75
Dimethyl disulfide 96.47±6.48 73.59±3.66 12.06±0.98 10.82±0.95 96.47
Methanol 99.92±6.78 6.75±0.52 14.99±1.05 78.18±4.26 99.92
Ethanol 99.84±6.61 7.87±0.63 17.74±1.33 74.23±5.05 99.84
Acetic acid 99.67±7.35 8.05±0.77 16.28±1.29 75.34±5.84 99.67
Acetone 99.21±7.14 10.14±0.95 13.05±1.41 76.02±5.59 99.21
Ethyl acetate 99.48±6.82 9.76±0.85 18.37±1.33 71.35±4.86 99.48
Butyl acetate 98.93±6.90 11.38±1.05 17.15±1.56 70.4±4.75 98.93
Benzene 99.12±5.87 4.81±0.25 78.26±5.05 16.05±1.21 99.12
Toluene 98.76±6.22 5.26±0.34 76.33±4.78 17.17±0.81 98.76
Ethyl benzene 98.05±5.17 5.84±0.31 81.58±5.44 10.63±0.69 96.25
Styrene 98.38±5.92 6.67±0.38 78.81±4.97 12.9±1.14 97.88
P-xylene 97.17±6.15 4.22±0.19 79.32±5.16 13.63±1.23 96.17
a-pinene 95.86±4.94 4.55±0.30 81.44±4.93 9.87±0.73 95.86
Cyclohexane 94.39±6.61 5.54±0.42 79.04±5.07 9.81±0.72 94.39
Tab.3  Removal characteristics of main odor and VOC substances
Reaction segment Time
(d)
Heterotrophic bacteria
(CFU/g packing)
Fungi
(CFU/g packing)
Acidophilic sulfur bacteria
(CFU/g packing)
ABRS 15 7.84 × 105 5.01 × 105 2.92 × 107
30 8.02 × 104 4.33 × 104 4.95 × 107
90 6.47 × 104 3.94 × 104 7.77 × 107
150 3.28 × 104 4.21 × 104 1.29 × 108
210 2.95 × 104 3.77 × 104 6.06 × 107
FRS 15 2.86 × 106 9.14 × 107 3.47 × 106
30 6.09 × 105 2.38 × 108 2.26 × 106
90 4.34 × 105 7.34 × 108 4.05 × 106
150 4.71 × 105 6.86 × 108 5.58 × 106
210 4.22 × 105 7.40 × 108 4.91 × 106
HBRS 15 8.44 × 107 2.34 × 105 5.49 × 103
30 6.17 × 108 3.15 × 105 4.78 × 103
90 7.88 × 108 2.78 × 105 3.55 × 103
150 5.79 × 108 3.02 × 105 5.73 × 103
210 6.45 × 108 2.96 × 105 4.99 × 103
Tab.4  Change in the concentrations of microorganisms in different segments of the TSIBF
Fig.3  (a) Inlet concentrations, outlet concentrations and REs of heterotrophic bacteria in the TSIBF; (b) Inlet concentrations, outlet concentrations and REs of fungi in the TSIBF; (c) Inlet concentrations, outlet concentrations and REs of acidophilic sulfur bacteria in the TSIBF.
Total RE (%) Microorganisms Inlet concentration (CFU/m3) Outlet concentration in ABRS (CFU/m3) Outlet concentration in FRS (CFU/m3) Outlet concentration in HBRS (CFU/m3)
78.78 Heterotrophic bacteria 3512±230 2170±148 1074±85 745±67
70.19 Fungi 1865±142 1453±136 1228±104 556±49
-34.29 Acidophilic sulfur bacteria 70±25 425±56 220±30 94±28
Tab.5  Segmented emissions of bioaerosol in the THIBF
1 S Agarwal, P Mandal, A Srivastava (2016). Quantification and characterization of size-segregated bioaerosols at municipal solid waste dumping site in Delhi. Procedia Environmental Sciences, 35: 400–407
https://doi.org/10.1016/j.proenv.2016.07.021
2 K Barbusinski, K Kalemba, D Kasperczyk, K Urbaniec, V Kozik (2017). Biological methods for odor treatment: A review. Journal of Cleaner Production, 152: 223–241
https://doi.org/10.1016/j.jclepro.2017.03.093
3 J M Estrada, N B Kraakman, R Muñoz, R Lebrero (2011). A comparative analysis of odour treatment technologies in wastewater treatment plants. Environmental Science & Technology, 45(3): 1100–1106
https://doi.org/10.1021/es103478j
4 M Ghanbarian, M Ghanbarian, M Ghanbarian, A H Mahvi, M Hosseini (2020). Determination of bacterial and fungal bioaerosols in municipal solid-waste processing facilities of Tehran. Journal of Environmental Health Science & Engineering, 18(2): 865–872
https://doi.org/10.1007/s40201-020-00510-y
5 A Gjaltema, L Tijhuis, M Van Loosdrecht, J Heijnen (1995). Detachment of biomass from suspended nongrowing spherical biofilms in airlift reactors. Biotechnology and Bioengineering, 46(3): 258–269
https://doi.org/10.1002/bit.260460309
6 M F Han, C Wang, N Y Yang, X R Hu, Y C Wang, E H Duan, H W Ren, H C Hsi, J G Deng (2020a). Performance enhancement of a biofilter with pH buffering and filter bed supporting material in removal of chlorobenzene. Chemosphere, 251: 126358
https://doi.org/10.1016/j.chemosphere.2020.126358
7 Y Han, Y Wang, F Chai, J Ma, L Li (2020b). Biofilters for the co-treatment of volatile organic compounds and odors in a domestic waste landfill site. Journal of Cleaner Production, 277: 124012
https://doi.org/10.1016/j.jclepro.2020.124012
8 I E Ibanga, L A Fletcher, C J Noakes, M F King, D Steinberg (2018). Pilot-scale biofiltration at a materials recovery facility: The impact on bioaerosol control. Waste Management (New York, N.Y.), 80: 154–167
https://doi.org/10.1016/j.wasman.2018.09.010
9 S Khatami, Y Deng, M Tien, P G Hatcher (2019). Lignin contribution to aliphatic constituents of humic acids through fungal degradation. Journal of Environmental Quality, 48(6): 1565–1570
https://doi.org/10.2134/jeq2019.01.0034
10 J Liu, X Kang, X Liu, P Yue, J, Sun C Lu (2020a). Simultaneous removal of bioaerosols, odors and volatile organic compounds from a wastewater treatment plant by a full-scale integrated reactor. Process Safety and Environmental Protection, 144: 2–14
https://doi.org/10.1016/j.psep.2020.07.003
11 J W Liu, P Yue, L H Huang, M F Zhao, X Y Kang, X L Liu (2020b). Styrene removal with an acidic biofilter with four packing materials: Performance and fungal bioaerosol emissions. Environmental Research, 191: 110154
https://doi.org/10.1016/j.envres.2020.110154
12 Q Liu, M Li, R Chen, Z Li, G Qian, T An, J Fu, G Sheng (2009). Biofiltration treatment of odors from municipal solid waste treatment plants. Waste Management (New York, N.Y.), 29(7): 2051–2058
https://doi.org/10.1016/j.wasman.2009.02.002
13 Y Liu, Y Zhang, Y Shi, F Shen, Y Yang, M Wang, G Zhang, T Deng, S Lai (2021). Characterization of fungal aerosol in a landfill and an incineration plants in Guangzhou, Southern China: The link to potential impacts. Science of the Total Environment, 764: 142908
https://doi.org/10.1016/j.scitotenv.2020.142908
14 M E López, E R Rene, Z Boger, M C Veiga, C Kennes (2017). Modelling the removal of volatile pollutants under transient conditions in a two-stage bioreactor using artificial neural networks. Journal of Hazardous Materials, 324: 100–109
https://doi.org/10.1016/j.jhazmat.2016.03.018
15 R W Melse, J P M Ploegaert, N W M Ogink (2012). Biotrickling filter for the treatment of exhaust air from a pig rearing building: Ammonia removal performance and its fluctuations. Biosystems Engineering, 113(3): 242–252
https://doi.org/10.1016/j.biosystemseng.2012.08.010
16 B T Mohammad, E R Rene, M C Veiga, C Kennes (2017). Performance of a thermophilic gas-phase biofilter treating high BTEX loads under steady-and transient-state operation. International Biodeterioration & Biodegradation, 119: 289–298
https://doi.org/10.1016/j.ibiod.2016.10.054
17 J K Mutuku, W C Hou, W H Chen (2020). An overview of experiments and numerical simulations on airflow and aerosols deposition in human airways and the role of bioaerosol motion in COVID-19 transmission. Aerosol and Air Quality Research, 20(6): 1172–1196
https://doi.org/10.4209/aaqr.2020.04.0185
18 C Nicolella, R Di Felice, M Rovatti (1996). An experimental model of biofilm detachment in liquid fluidized bed biological reactors. Biotechnology and Bioengineering, 51(6): 713–719
https://doi.org/10.1002/(SICI)1097-0290(19960920)51:6<713::AID-BIT10>3.0.CO;2-E
19 S P P Ottengraf, J H G Konings (1991). Emission of microorganisms from biofilters. Bioprocess Engineering, 7(1): 89–96
https://doi.org/10.1007/BF00383584
20 E R Rene, B T Mohammad, M C Veiga, C Kennes (2012). Biodegradation of BTEX in a fungal biofilter: Influence of operational parameters, effect of shock-loads and substrate stratification. Bioresource Technology, 116(4): 204–213
https://doi.org/10.1016/j.biortech.2011.12.006
21 B Rittmann (1989). Structure and Function of Biofilms. W G Characklis, P A Wilderer, eds. Hoboken: John Wiley & Sons
22 S Sun, T Jia, K Chen, Y Peng, L Zhang (2019). Simultaneous removal of hydrogen sulfide and volatile organic sulfur compounds in off-gas mixture from a wastewater treatment plant using a two-stage bio-trickling filter system. Frontiers of Environmental Science & Engineering, 13(4): 60
23 Y Sun, S Xue, L Li, W Ding, J Liu, Y Han (2018). Sulfur dioxide and o-xylene co-treatment in biofilter: Performance, bacterial populations and bioaerosols emissions. Journal of Environmental Sciences (China), 69: 41–51
https://doi.org/10.1016/j.jes.2017.03.039
24 L Tijhuis, M C M van Loosdrecht, J J Heijnen (1995). Dynamics of biofilm detachment in biofilm airlift suspension reactors. Biotechnology and Bioengineering, 45(6): 481–487
https://doi.org/10.1002/bit.260450604
25 V Torretta, M Raboni, S Copelli, P Caruson (2015). Effectiveness of a multi-stage biofilter approach at pilot scale to remove odor and VOCs. International Journal of Sustainable Development and Planning, 10(3): 373–384
https://doi.org/10.2495/SDP-V10-N3-373-384
26 C Van der Heyden, E I Volcke, E Brusselman, P Demeyer (2019). Comparative 1-year performance study of two full-scale biotrickling filters for ammonia removal including nitrous oxide emission monitoring. Biosystems Engineering, 188: 178–189
https://doi.org/10.1016/j.biosystemseng.2019.10.014
27 T Vanek, M Halecky, J Paca, L Zapotocky, T Gelbicova, R Vadkertiova, E Kozliak, K Jones (2015). A two-stage combined trickle bed reactor/biofilter for treatment of styrene/acetone vapor mixtures. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 50(11): 1148–1159
https://doi.org/10.1080/10934529.2015.1047672
28 R Wang, J Q Lin, X M Liu, X Pang, C J Zhang, C L Yang, X Y Gao, C M Lin, Y Q Li, Y Li, J Q Lin, L X Chen (2019). Sulfur oxidation in the acidophilic autotrophic Acidithiobacillus spp. Frontiers in Microbiology, 9: 3290
https://doi.org/10.3389/fmicb.2018.03290
29 Z Wang, J Lv, F Gu, J Yang, J Guo (2020). Environmental and economic performance of an integrated municipal solid waste treatment: A Chinese case study. Science of the Total Environment, 709: 136096
https://doi.org/10.1016/j.scitotenv.2019.136096
30 C F H Wikuats, E H Duarte, K V M C Prates, L L L Janiaski, B de Oliveira Gabriel, A da Cunha Molina, L D Martins (2020). Assessment of airborne particles and bioaerosols concentrations in a waste recycling environment in Brazil. Scientific Reports, 10(1): 14812
https://doi.org/10.1038/s41598-020-71787-0
31 K Yang, L Li, S Xue, Y Wang, J, Liu T Yang (2019). Influence factors and health risk assessment of bioaerosols emitted from an industrial-scale thermophilic biofilter for off gas treatment. Process Safety and Environmental Protection, 129: 55–62
https://doi.org/10.1016/j.psep.2019.06.016
32 Y Zhan, M Yang, S Zhang, D Zhao, J Duan, W Wang, L Yan (2019). Iron and sulfur oxidation pathways of Acidithiobacillus ferrooxidans. World Journal of Microbiology & Biotechnology, 35(4): 60
https://doi.org/10.1007/s11274-019-2632-y
33 Y Zhang, J Liu, Y Qin, Z Yang, J Cao, Y Xing, J Li (2019). Performance and microbial community evolution of toluene degradation using a fungi-based bio-trickling filter. Journal of Hazardous Materials, 365: 642–649
https://doi.org/10.1016/j.jhazmat.2018.11.062
[1] Kun Zhang, Jialuo Xu, Qing Huang, Lei Zhou, Qingyan Fu, Yusen Duan, Guangli Xiu. Precursors and potential sources of ground-level ozone in suburban Shanghai[J]. Front. Environ. Sci. Eng., 2020, 14(6): 92-.
[2] Kun Wan, Wenfang Lin, Shuai Zhu, Shenghua Zhang, Xin Yu. Biofiltration and disinfection codetermine the bacterial antibiotic resistome in drinking water: A review and meta-analysis[J]. Front. Environ. Sci. Eng., 2020, 14(1): 10-.
[3] Wenjing Lu, Yawar Abbas, Muhammad Farooq Mustafa, Chao Pan, Hongtao Wang. A review on application of dielectric barrier discharge plasma technology on the abatement of volatile organic compounds[J]. Front. Environ. Sci. Eng., 2019, 13(2): 30-.
[4] Kajetan Kalus, Sebastian Opaliński, Devin Maurer, Somchai Rice, Jacek A. Koziel, Mariusz Korczyński, Zbigniew Dobrzański, Roman Kołacz, Beata Gutarowska. Odour reducing microbial-mineral additive for poultry manure treatment[J]. Front. Environ. Sci. Eng., 2017, 11(3): 7-.
[5] Pu ZHAO,Lizhong ZHU. Optimized porous clay heterostructure for removal of acetaldehyde and toluene from indoor air[J]. Front. Environ. Sci. Eng., 2016, 10(2): 219-228.
[6] Hengyi DUAN,Xiaotu LIU,Meilin YAN,Yatao WU,Zhaorong LIU. Characteristics of carbonyls and volatile organic compounds (VOCs) in residences in Beijing, China[J]. Front. Environ. Sci. Eng., 2016, 10(1): 73-84.
[7] Xinwei LI,Hanchang SHI,Kuixiao LI,Liang ZHANG. Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1076-1083.
[8] Jinying XI,Insun KANG,Hongying HU,Xian ZHANG. A biofilter model for simultaneous simulation of toluene removal and bed pressure drop under varied inlet loadings[J]. Front. Environ. Sci. Eng., 2015, 9(3): 554-562.
[9] Wei WEI, Shuxiao WANG, Jiming HAO, Shuiyuan CHENG. Trends of chemical speciation profiles of anthropogenic volatile organic compounds emissions in China, 2005–2020[J]. Front Envir Sci Eng, 2014, 8(1): 27-41.
[10] Junhua LI, Hong HE, Chun HU, Jincai ZHAO. The abatement of major pollutants in air and water by environmental catalysis[J]. Front Envir Sci Eng, 2013, 7(3): 302-325.
[11] Can WANG, Jinying XI, Hongying HU, Insun KANG. Effects of design parameters on performance and cost analysis of combined ultraviolet-biofilter systems treating gaseous chlorobenzene based on mathematical modeling[J]. Front Envir Sci Eng, 2012, 6(4): 588-594.
[12] Yongtao LI, Christina L. MCCARTY, Ed J. GEORGE. Determination of selected semi-volatile organic compounds in water using automated online solid-phase extraction with large-volume injection/gas chromatography/mass spectrometry[J]. Front Envir Sci Eng Chin, 2011, 5(3): 417-425.
[13] Dan WU, Chunyan ZHANG, Li HAO, Changjun GENG, Xie QUAN, . Removal of multicomponent VOCs in off-gases from an oil refining wastewater treatment plant by a compost-based biofilter system[J]. Front.Environ.Sci.Eng., 2009, 3(4): 483-491.
[14] LU Bin, JI Min, YU Xin, FENG Tao, YAO Shuiliang. Benzene conversion by manganese dioxide assisted silent discharge plasma[J]. Front.Environ.Sci.Eng., 2007, 1(4): 477-481.
[15] LU Sihua, LIU Ying, SHAO Min, HUANG Shan. Chemical speciation and anthropogenic sources of ambient volatile organic compounds (VOCs) during summer in Beijing, 2004[J]. Front.Environ.Sci.Eng., 2007, 1(2): 147-152.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed