Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2017, Vol. 11 Issue (5) : 7    https://doi.org/10.1007/s11783-017-0994-7
RESEARCH ARTICLE |
Comparison on End-of-Life strategies of WEEE in China based on LCA
Bin Lu1, Xiaolong Song2, Jianxin Yang1(), Dong Yang3
1. State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
2. Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai 201209, China
3. SDAS Key Laboratory of Scientific Decision-Making, Institute of Science and Technology for Development of Shandong, Shandong Province Academy of Sciences, Jinan 250014, China
 Download: PDF(490 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Unit and Components Reuse are compared with materials recovery based LCA.

The obsolete refrigerator and Power Supply of computer are taken as the examples.

End-of-Life hierarchy is reasonable for the obsolete power supply of computer.

Reuse is not necessarily suitable for obsolete refrigerators.

The secondary lifespan of reused products/components is the key factor.

As the Electrical and Electronic Equipment (EEE) are upgraded more frequently in China, a large quantity of Waste Electrical and Electronic Equipment (WEEE) was and will be generated. It becomes an urgent issue to develop and adopt an effective End-of-Life (EoL) strategy for EEE in order to balance the resource recovery and environmental impacts. In an EoL strategy hierarchy for EEE, reuse strategy is usually deemed to be prior to materials recovery and other strategies. But in practice, the advantages and disadvantages of different strategies are always context-dependent. Therefore, main EoL strategies for EEE in China need to be evaluated in environment and resources aspects from the life cycle perspective. In this study, the obsolete refrigerator and Power Supply Unit (PSU) of desktop PC are both taken as the target products. Life Cycle Assessment (LCA) is applied to assess the environmental impacts of different EoL scenarios in China: Unit Reuse Scenario (URS), Component Reuse Scenario (CRS) and Materials Recovery Scenario (MRS). The LCA results show that the EoL strategies hierarchy is reasonable for the part of computer, but not necessarily suitable for obsolete refrigerators. When the policy makers promote or demote one EoL strategy especially reuse, it is necessary to take subsequent impacts into consideration.

Keywords End-of-Life      Waste electrical and electronic equipment      Life cycle assessment      Reuse     
Corresponding Authors: Jianxin Yang   
Issue Date: 31 October 2017
 Cite this article:   
Bin Lu,Xiaolong Song,Jianxin Yang, et al. Comparison on End-of-Life strategies of WEEE in China based on LCA[J]. Front. Environ. Sci. Eng., 2017, 11(5): 7.
 URL:  
http://academic.hep.com.cn/fese/EN/10.1007/s11783-017-0994-7
http://academic.hep.com.cn/fese/EN/Y2017/V11/I5/7
Fig.1  System boundary of the LCA study
Raw materials /ScenariosMR_PSU (kg)CR_PSU (kg)UR_PSU (kg)
Main fuelsCoal156.0367.16-231.08
Crude oil19.8013.70-31.30
Natural gas0.350.18-0.54
Main metalsIron ore2.882.46-2.20
Copper ore2.540.92-32.02
Tab.1  Life cycle inventory- Important Raw Materials- Fuels and metals
Fig.2  LCIA Results of 3 EoL Scenarios of PSU
Fig.3  LCIA damage categories results of PSU
Fig.4  LCIA results of Functional Unit A (a) and Functional Unit B (b)
ScenariosMR_PSU (kg)CR_PSU (kg)UR_PSU (kg)
Basic scenario19.8013.70-31.30
Long-distance scenario (2500 km)---30.80
Short-distance scenario (200 km)19.3013.20-
Tab.2  Sensitivity analysis—Consumption of crude oil
Fig.5  System boundary of LCA on obsolete refrigerator
Fig.6  LCIA impact (a) and damage (b) categories of MRS and URS (2nd lifespan is 2 years)
Fig.7  LCIA impact (a) and damage (b) categories of MRS and URS (2nd lifespan is 3 years)
1 Zeng X L, Gong R Y, Chen W Q, Li J H. Uncovering the recycling potential of “New” WEEE in China. Environmental Science & Technology, 2016, 50(3): 1347–1358
https://doi.org/10.1021/acs.est.5b05446
2 Yu L, He W, Li G, Huang J, Zhu H. The development of WEEE management and effects of the fund policy for subsidizing WEEE treating in China. Waste Management (New York, N.Y.), 2014, 34(9): 1705–1714
https://doi.org/10.1016/j.wasman.2014.05.012
3 Li J, Zeng X, Chen M, Ogunseitan O A, Stevels A. “Control-Alt-Delete”: Rebooting solutions for the e-waste problem. Environmental Science & Technology, 2015, 49(12): 7095–7108
https://doi.org/10.1021/acs.est.5b00449
4 Yang J, Lu B, Xu C. WEEE flow and mitigating measures in China. Waste Management (New York, N.Y.), 2008, 28(9): 1589–1597
https://doi.org/10.1016/j.wasman.2007.08.019
5 Chi X, Streicher-Porte M, Wang M Y L, Reuter M A. Informal electronic waste recycling: A sector review with special focus on China. Waste Management (New York, N.Y.), 2011, 31(4): 731–742
https://doi.org/10.1016/j.wasman.2010.11.006
6 Schmidt J H, Holm P, Merrild A, Christensen P. Life cycle assessment of the waste hierarchy —A Danish case study on waste paper. Waste Management (New York, N.Y.), 2007, 27(11): 1519–1530
https://doi.org/10.1016/j.wasman.2006.09.004
7 King A M, Burgess S C, Ijomah W, McMahon C A. Reducing waste: Repair, recondition, remanufacture or recycle? Sustainable Development, 2006, 14(4): 257–267
https://doi.org/10.1002/sd.271
8 Parajuly K, Wenzel H. Potential for circular economy in household WEEE management. Journal of Cleaner Production, 2017, 151: 272–285
https://doi.org/10.1016/j.jclepro.2017.03.045
9 Bovea M D, Ibáñez-Forés V, Pérez-Belis V, Quemades-Beltrán P. Potential reuse of small household waste electrical and electronic equipment: Methodology and case study. Waste Management (New York, N.Y.), 2016, 53: 204–217
https://doi.org/10.1016/j.wasman.2016.03.038
10 Lindahl M, Sundin E, Östlin J. Environmental issues within remanufacturing industry. In: Proceedings of the 13th CIRP International conference on Life Cycle Engineering 2006, Leuven, Belguim. Leuven: ACCO, 2006, 447–452
11 Catherine M R, Stevels A. Metrics for end-of-life strategies (ELSEIM). In: Proceedings of the IEEE International Symposium on Electronics and the Environment 2001, Denver, USA. New York: IEEE, 2001, 101–105
12 Jofre S, Morioka T. Waste management of electric and electronic equipment: Comparative analysis of end-of-life strategies. Journal of Material Cycles and Waste Management, 2005, 7(1): 24–32
https://doi.org/10.1007/s10163-004-0122-1
13 Rose C M. Design for environment: A method for formulating product End-of-Life strategies. Dessertation for the Doctoral Degree. Stanford: Stanford University, 2000
14 Zink T, Maker F, Geyer R, Amirtharajah R, Akella V. Comparative life cycle assessment of smartphone reuse: Repurposing vs. refurbishment. International Journal of Life Cycle Assessment, 2014, 19(5): 1099–1109
https://doi.org/10.1007/s11367-014-0720-7
15 Schischke K, Kohlmeyer R, Griese H, Reichl H. Life cycle energy analysis of PCs – Environmental consequences of lifetime extension through reuse. In: Lausanne, Switzerland: Proceedings of the 11th SETAC LCA Case Studies Symposium. 2003, 1–4
16 Devoldere T, Willems B, Duflou J R, Dewulf W. The eco-efficiency of reuse centres critically explored—The washing machine case. International Journal of Sustainable Manufacturing, 2009, 1(3): 265–285
https://doi.org/10.1504/IJSM.2009.023974
17 Tomohiro T, Masaharu M, So S. Longer term use/reuse or replacement? An application of “Prescriptive” LCA to decision-making on electrical home appliances. In: Proceedings of the conference Electronics Goes Green 2008, Berlin, Germany. Berlin: Fraunhofer, 2008, 777–782
18 Goedkoop M, Spriensma R.The Eco-indicator 99: A damage oriented method for Life Cycle Impact Assessment. Amersfoort, Netherland: PRé Consultants, 2001.
19 Williams E, Kahhat R, Allenby B, Kavazanjian E, Kim J, Xu M. Environmental, social, and economic implications of global reuse and recycling of personal computers. Environmental Science & Technology, 2008, 42(17): 6446–6454
https://doi.org/10.1021/es702255z
20 Seebach P. Standards and specs: The ATX case and power supply. 2010. Available online at  (accessed  April 26, 2015)
21 Yang J, Lu B. Rethinking of recycling and reuse options of obsolete personal computers in China. In: IEEE International Symposium on Electronics and the Environment 2008, San Francisco, USA. New York: IEEE, 2008, 1–5
22 Mike D. Beginners Guides: Most Common Ways to Kill a PC 2014. Available online at  (accessed  May 28, 2014)
23 Finnveden G, Johansson J, Lind P, Moberg A. Life cycle assessment of energy from solid waste–Part 1: General methodology and results. Journal of Cleaner Production, 2005, 13(3): 213–229
https://doi.org/10.1016/j.jclepro.2004.02.023
24 Hellweg S, Milà i Canals L. Emerging approaches, challenges and opportunities in life cycle assessment. Science, 2014, 344(6188): 1109–1113
https://doi.org/10.1126/science.1248361
25 Günther A, Langowski H C. Life cycle assessment study on resilient floor coverings. International Journal of Life Cycle Assessment, 1997, 2(2): 73–80
https://doi.org/10.1007/BF02978763
26 Barba-Gutierrez Y, Adenso-Diaz B, Hopp M. An analysis of some environmental consequences of European electrical and electronic waste regulation. Resources, Conservation and Recycling, 2008, 52(3): 481–495
https://doi.org/10.1016/j.resconrec.2007.06.002
27 Cooper T. Slower consumption: Reflections on product life spans and the “Throwaway Society”. Journal of Industrial Ecology, 2005, 9(1–2): 51–67
28 Liu X, Tanaka M, Matsui Y. Generation amount prediction and material flow analysis of electronic waste: A case study in Beijing, China. Waste Management & Research, 2006, 24(5): 434–445
https://doi.org/10.1177/0734242X06067449
29 Jin Z, Liang W, Sui R.Discussion on Electronic Waste Output Estimation and Management Counter measures in Shenyang City. Environmental Sanitation engineering, 2006, 14(1): 21–24(in Chinese).
30 Li J, Tian B, Liu T, Liu H, Wen X, Honda S. Status quo of e-waste management in the mainland of China. Journal of Material Cycles and Waste Management, 2006, 8(1): 13–20 doi:10.1007/s10163-005-0144-3
31 Xu X. China Energy Statistical Yearbook 2014.Beijing: China Statistics Press, 2015
32 Stefan S, Felicitas S, Gudrun O. The ecological relevance of transport in waste disposal systems in Western Europe. Waste Management (New York, N.Y.), 2007, 27(11): 1519–1530
33 Tian H, He Y. Evaluation on recycling technologies of waste home applances in China and abroad. Home Appliances, 2009(7): 37–42 (in Chinese)
34 González X M, Rodríguez M, Pena-Boquete Y. The social benefits of WEEE re-use schemes. A cost benefit analysis for PCs in Spain. Waste Management (New York, N.Y.), 2017, 64: 202–213
https://doi.org/10.1016/j.wasman.2017.03.009
[1] FSE-17093-OF-LB_suppl_1 Download
[1] Hyunhee Kim, Yong-Chul Jang, Yeonjung Hwang, Youngjae Ko, Hyunmyeong Yun. End-of-life batteries management and material flow analysis in South Korea[J]. Front. Environ. Sci. Eng., 2018, 12(3): 3-.
[2] Jian Li, Zhen Wang, Bao Jiang. Managing economic and social profit of cooperative models in three-echelon reverse supply chain for waste electrical and electronic equipment[J]. Front. Environ. Sci. Eng., 2017, 11(5): 12-.
[3] Marika Benedetti, Lorenzo Cafiero, Doina De Angelis, Alessandro Dell’Era, Mauro Pasquali, Stefano Stendardo, Riccardo Tuffi, Stefano Vecchio Ciprioti. Pyrolysis of WEEE plastics using catalysts produced from fly ash of coal gasification[J]. Front. Environ. Sci. Eng., 2017, 11(5): 11-.
[4] Xiaolong Song, Jingwei Wang, Jianxin Yang, Bin Lu. An updated review and conceptual model for optimizing WEEE management in China from a life cycle perspective[J]. Front. Environ. Sci. Eng., 2017, 11(5): 3-.
[5] William Finnegan, Jamie Goggins, Aksana Chyzheuskaya, Xinmin Zhan. Global warming potential associated with Irish milk powder production[J]. Front. Environ. Sci. Eng., 2017, 11(3): 12-.
[6] Hyunju Jeong, Osvaldo A. Broesicke, Bob Drew, Duo Li, John C. Crittenden. Life cycle assessment of low impact development technologies combined with conventional centralized water systems for the City of Atlanta, Georgia[J]. Front. Environ. Sci. Eng., 2016, 10(6): 1-.
[7] Margarida OLIVEIRA,Elizabeth DUARTE. Integrated approach to winery waste: waste generation and data consolidation[J]. Front. Environ. Sci. Eng., 2016, 10(1): 168-176.
[8] Yin ZHANG,Xuejing ZHENG,Huan ZHANG,Gaofeng CHEN,Xia WANG. Carbon emission analysis of a residential building in China through life cycle assessment[J]. Front. Environ. Sci. Eng., 2016, 10(1): 150-158.
[9] Xue JIN,Jiangyong HU. Role of water chemistry on estrone removal by nanofiltration with the presence of hydrophobic acids[J]. Front. Environ. Sci. Eng., 2015, 9(1): 164-170.
[10] Xiaolong SONG,Jianxin YANG,Bin LU,Bo LI,Guangyuan ZENG. Identification and assessment of environmental burdens of Chinese copper production from a life cycle perspective[J]. Front.Environ.Sci.Eng., 2014, 8(4): 580-588.
[11] WU Yuehui,WANG Guoliang,WANG Zhen,LIU Yi,GU Ping,SUN Dezhi. Comparative study on the efficiency and environmental impact of two methods of utilizing polyvinyl chloride waste based on life cycle assessments[J]. Front.Environ.Sci.Eng., 2014, 8(3): 451-462.
[12] Haifeng ZHANG, Lu SU, Xiangyu LI, Jiane ZUO, Guangli LIU, Yujue WANG. Evaluation of soil microbial toxicity of waste foundry sand for soil-related reuse[J]. Front Envir Sci Eng, 2014, 8(1): 89-98.
[13] Chao HE, Zhaolin GU, Shucheng YANG, Jidong LIANG, Weina DAI, Yanling HE. Technical measures to achieve a cleaner production mode for recycled paper mills[J]. Front Envir Sci Eng Chin, 2010, 4(4): 466-474.
[14] Peter A. WILDERER. Climate change and its consequences for water and wastewater management[J]. Front Envir Sci Eng Chin, 2009, 3(1): 1-1.
[15] RULKENS Wim. Increasing significance of advanced physical/chemical processes in the development and application of sustainable wastewater treatment systems[J]. Front.Environ.Sci.Eng., 2008, 2(4): 385-396.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed