Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2018, Vol. 12 Issue (1) : 14    https://doi.org/10.1007/s11783-018-1011-5
RESEARCH ARTICLE
Hydrologic and water quality performance of a laboratory scale bioretention unit
Jun Xia1,2, Hongping Wang3(), Richard L. Stanford4, Guoyan Pan1, Shaw L. Yu5
1. State Key Laboratory of Water Resources & Hydropower Engineering Sciences, Wuhan University, Wuhan 430072, China
2. Key Laboratory of Water Cycle & Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
3. Department of Environmental Engineering, School of Resources and Environmental Science, Wuhan University, Wuhan 430079, China
4. ATR Associates, Inc., Strasburg, VA 22657, USA
5. Department of Civil and Environmental Engineering, University of Virginia, Charlottesville, VA 22903, USA
 Download: PDF(403 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

Peak of surface runoff was lagged and clipped by BRU with turf grass and B. Sinica.

Lag of peak and extent of clipping was influenced flow regime of inflow and plants grown.

TN, TP and COD were removed by filtration of the media and bio-degradation of reservoir layer.

Infiltration rate and storage depth could be transferred key parameters for engineering design.

A bioretention unit (BRU) or cell is a green infrastructure practice that is widely used as a low impact development (LID) technique for urban stormwater management. Bioretention is considered a good fit for use in China’s sponge city construction projects. However, studies on bioretention design, which incorporates site-specific environmental and social-economic conditions in China are still very much needed. In this study, an experimental BRU, consisted of two cells planted with Turf grass and Buxus sinica,was tested with eighteen synthesized storm events. Three levels (high, median, low) of flows and concentrations of pollutants (TN, TP and COD) were fed to the BRU and the performance of which was examined. The results showed that the BRU not only delayed and lowered the peak flows but also removed TN, TP and COD in various ways and to different extents. Under the high, medium and low inflow rate conditions, the outflow peaks were delayed for at least 13 minutes and lowered at least 52%. The two cells stored a maximum of 231 mm and 265 mm for turf grass and Buxus sinica, respectively. For both cells the total depth available for storage was 1,220 mm, including a maximum 110 mm deep ponding area. The largest infiltrate rate was 206 mm/h for both cells with different plants. For the eighteen events, TP and COD were removed at least 60% and 42% by mean concentration, and 65% and 49% by total load, respectively. In the reservoir layer, the efficiency ratio of removal of TN, TP and COD were 52%, 8% and 38%, respectively, within 5 days after runoff events stopped. Furthermore, the engineering implication of the hydrological and water quality performances in sponge city construction projects is discussed.

Keywords Bioretention unit      Sponge city      Stormwater runoff      Peak reduction      Pollutant removal     
Corresponding Author(s): Hongping Wang   
Issue Date: 05 January 2018
 Cite this article:   
Jun Xia,Hongping Wang,RichardL. Stanford, et al. Hydrologic and water quality performance of a laboratory scale bioretention unit[J]. Front. Environ. Sci. Eng., 2018, 12(1): 14.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-018-1011-5
https://academic.hep.com.cn/fese/EN/Y2018/V12/I1/14
Fig.1  Photo of the experimentalapparatus
Fig.2  BRU Longitudinal profile
Flow regime Time Target water quality
C (mg/L)
Start time(h:m) 0:00 1:00 2:00 2:30 3:00 4:00 5:00
End time(h:m) 1:00 2:00 2:30 3:00 4:00 5:00 6:00 TN TP COD
Flow rate (mm/h) High 14 29 58 544 94 41 28 High 15 1.3 350
Med 8 17 35 326 56 24 17 Med 10 1.0 250
Low 6 13 26 245 42 18 13 Low 5 0.7 150
Tab.1  Flow regime andtarget water quality of synthetic surface runoff
Flow regime Fsurf,max Lsurf Tlag,peak Pr,peak Smax Dpond,max
(mm/min) (Mm) (min) (%) (mm) (mm)
Turf grass
High 9.06 482 13 67 231 96
Medium 5.44 304 57 81 187 80
Low 4.08 228 29 67 138 15
Buxus sinica
High 9.06 506 18 62 265 111
Medium 5.44 301 19 78 181 82
Low 4.08 227 32 52 137 21
Tab.2  Hydrological performanceof the BRU
Fig.3  Graph of depth of dischargeinflow, outflow and depth of storage process. (a) Turf grass-high inflow, (b) Turfgrass-medium inflow, (c) Turf grass-low inflow, (d) Buxus sinica -highinflow, (e) Buxus sinica -mediuminflow, (f) Buxus sinica -low inflow
Fig.4  Graph of concentration andload of TP and COD versus time for an event (Turf grass-medium flow). (a) Concentration and load ofTN, (b) concentration and load of TP, (c) concentration and load ofCOD, (d) accumulative load of TN, (e) accumulative load of TP, (f)accumulative load of COD
Plant Turf grass Buxus sinica
calculation basis of ER Concentration Load Concentration Load
TN 25.15±27.58% 31.26±32.23% 14.13±31.64% 25.15±27.58%
TP 72.83±9.57% 76.32±8.34% 68.20±8.60% 72.28±7.49%
COD 58.89±16.71% 64.17±14.56% 58.80±14.65% 64.08±12.77%
Tab.3  Efficiency Ratioof TN, TP and COD removal
Fig.5  Graph of efficiency ratioof TP and COD removal versus time
1 Jia H F, Yao  H R, Yu  S L. Advances in LID BMPs research and practices for urban runoff control in China. Frontiers of Environmental Science & Engineering, 2013, 7(5): 709–720
2 Liu D S. China’s sponge cities to soak up rainwater. Nature, 2016, 537(7620): 307–307
3 Liu Y, Zhang  Z, Jiang A Q,  Wang Z D,  Song Y.Approaches and Prospects for the Construction of Green Sponge City. DEStech Transactions on Computer Science and Engineering, 2016: 363–366
4 Li H. Based on the Technology of Sponge City in Urban Design Study. In: 2016 International Conference on Smart City and Systems Engineering, Zhangjiajie, China. IEEE, 2016: 27–29
5 Xing M L, Han  Y M, Jiang  M M, Li  H X. The Review of Sponge City. Advances in Engineering Research, 2016, 63: 23–26
6 Geiger W F. Sponge city and LID Technology-Vision and Tradition. Landscape Architecture Frontiers, 2015, 3(5): 10–20
7 Wei H Q. The Research on Greenway Helps to Build a Balanced Sponge City. In: Proceeding of the 4th International Conference on Energy and Environmental Protection 2015, Shenzhen, China. Pennsylvania: Destech Publication Inc., 2015: 4652–4656
8 Jia H F, Wang  X W, Ti  C P, Zhai  Y Y, Field  R, Tafuri A N,  Cai H H,  Yu S L. Field monitoring of an LID-BMP treatment train system in China. Environmental Monitoring and Assessment, 2015, 187(6): 373–390
9 Li H, Davis  A P. Water quality improvement through reductions of pollutant loads using bioretention. Journal of Environmental Engineering, 2009, 135(8): 567–576
10 Davis A P. Field performance of bioretention: Hydrology impacts. Journal of Environmental Engineering, 2008, 13(2): 90–95
11 Yang X H, Mei  Y, He J,  Jiang R,  Li Y. Comprehensive assessment for removing multiple pollutants by plants in bioretention systems. Chinese Science Bulletin, 2014, 59(13): 1446–1453
12 Rycewicz-Borecki M,  McLean J E,  Dupont R R. Nitrogen and phosphorus mass balance, retention and uptake in six plant species grown in stormwater bioretention microcosms. Ecological Engineering, 2017, 99: 409–416
13 Turk R P, Kraus  H T, Hunt  W F, Carmen  N B, Bilderback  T E. Nutrient sequestration by vegetation in bioretention cells receiving high nutrient loads. Journal of Environmental Engineering, 2017, 143(2): 1–6
14 Mei Y, Jiang  R, Li Y,  He J, Jiang  R, Li Y Q,  Li J Q. A new assessment model for pollutant removal using mulch in bioretention processes. Fresenius Environmental Bulletin, 2013, 22(5a): 1507–1515
15 Yu S L. Green Infrastructure Research: Bioretention Cell Experiment. Final report to U.S. Environmental Protection Agency.  New Jersey: University of Verginia, 2013
16 Li Y Q, Wang  K W, Zhang  K L, Zhou  Z W, Yang  X H. Spatial and temporal distribution of moisture migration in bio-retention systems. Thermal Science, 2014, 18(5): 1557–1562
17 Burgess S, Adams  M A, Turner  N C, Ong  C K. The redistribution of soil water by tree root systems. Oecologia, 1998, 115(3): 306–311
18 Ela S D, Gupta  S C, Rawls  W J. Macropore and surface seal interactions affecting water infiltration into soil. Soil Science Society of America Journal, 1992, 56(3): 714–721
19 Yu X N, Huang  Y M, Li  E G, Li  X, Guo W. Effects of vegetation types on soil water dynamics during vegetation restoration in the Mu Us Sandy Land, northwestern China. Journal of Arid Land, 2017, 9(2): 188–199
20 Borja R I, Koliji  A. On the effective stress in unsaturated porous continua with double porosity. Journal of the Mechanics and Physics of Solids, 2009, 57(8): 1182–1193
21 Imhoff P T, Jaffé  P R. Effect of liquid distribution on gas-water phase mass transfer in an unsaturated sand during infiltration. Journal of Contaminant Hydrology, 1994, 16(4): 359–380
22 Hatt B E, Fletcher  T D, Deletic  A. Hydrologic and pollutant removal performance of stormwater biofiltration systems at the field scale. Journal of Hydrology (Amsterdam), 2009, 365(3): 310–321
23 Misiti T M, Hajaya  M G, Pavlostathis  S G. Nitrate reduction in a simulated free-water surface wetland system. Water Research, 2011, 45(17): 5587
24 Wang X, Li  H B, Sun  T H, Pan  J. Pilot Study on the Performance and Microbial Structure of a Subsurface Wastewater Infiltration System. In: 4th International Conference on Bioinformatics and Biomedical Engineering. Chengdu, China. IEEE, 2010: 1–9
25 Jenssen P D, Hlum  T M, Roseth  R, Braskerud B,  Syversen N. The potential of natural ecosystem self-purifying measures for controlling nutrient inputs. Marine Pollution Bulletin, 1994, 29(6–12): 420–425
26 Shao W W, Zhang  H X, Liu  J H, Yang  G Y, Chen  X D, Yang  Z Y, Huang  H. Data integration and its application in the sponge city construction of China. Procedia Engineering, 2016, 154: 779–786
[1] Dawei Yu, Jianxing Wang, Libin Zheng, Qianwen Sui, Hui Zhong, Meixue Cheng, Yuansong Wei. Effects of hydraulic retention time on net present value and performance in a membrane bioreactor treating antibiotic production wastewater[J]. Front. Environ. Sci. Eng., 2020, 14(6): 101-.
[2] Cheng Chen, Wenshan Guo, Huu Hao Ngo. Pesticides in stormwater runoff−A mini review[J]. Front. Environ. Sci. Eng., 2019, 13(5): 72-.
[3] Qian Wang, Qionghua Zhang, Mawuli Dzakpasu, Nini Chang, Xiaochang Wang. Transferral of HMs pollution from road-deposited sediments to stormwater runoff during transport processes[J]. Front. Environ. Sci. Eng., 2019, 13(1): 13-.
[4] Haifeng Jia, Zheng Wang, Xiaoyue Zhen, Mike Clar, Shaw L. Yu. China’s Sponge City construction: A discussion on technical approaches[J]. Front. Environ. Sci. Eng., 2017, 11(4): 18-.
[5] Xinwei LI,Hanchang SHI,Kuixiao LI,Liang ZHANG. Combined process of biofiltration and ozone oxidation as an advanced treatment process for wastewater reuse[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1076-1083.
[6] Jianghua YU, Yeonseok KIM, Youngchul KIM. Removal of non-point pollutants from bridge runoff by a hydrocyclone using natural water head[J]. Front Envir Sci Eng, 2013, 7(6): 886-895.
[7] Marla C. MANIQUIZ, Lee-Hyung KIM, Soyoung LEE, Jiyeon CHOI. Flow and mass balance analysis of eco-bio infiltration system[J]. Front Envir Sci Eng, 2012, 6(5): 612-619.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed