Please wait a minute...
Frontiers of Environmental Science & Engineering

ISSN 2095-2201

ISSN 2095-221X(Online)

CN 10-1013/X

Postal Subscription Code 80-973

2018 Impact Factor: 3.883

Front. Environ. Sci. Eng.    2019, Vol. 13 Issue (4) : 62    https://doi.org/10.1007/s11783-019-1144-1
RESEARCH ARTICLE
A comprehensive simulation approach for pollutant bio-transformation in the gravity sewer
Nan Zhao1, Huu Hao Ngo2, Yuyou Li3, Xiaochang Wang1, Lei Yang1, Pengkang Jin1(), Guangxi Sun4
1. School of Environmental and Municipal Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology, Sydney, NSW 2007, Australia
3. Department of Civil and Environmental Engineering, Tohoku University, Sendai, Miyagi 980-8579, Japan
4. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
 Download: PDF(1334 KB)   HTML
 Export: BibTeX | EndNote | Reference Manager | ProCite | RefWorks
Abstract

A comprehensive pollutant transformation model for sewer systems is established.

The model comprises fermentation, sulfate reduction and ammonification processes.

Biochemical reactions related to distinct carbon sources are depicted in the model.

Pollutant transformation is attributed to different biochemical reaction processes.

Presently, several activated sludge models (ASMs) have been developed to describe a few biochemical processes. However, the commonly used ASM neither clearly describe the migratory transformation characteristics of fermentation nor depict the relationship between the carbon source and biochemical reactions. In addition, these models also do not describe both ammonification and the integrated metabolic processes in sewage transportation. In view of these limitations, we developed a new and comprehensive model that introduces anaerobic fermentation into the ASM and simulates the process of sulfate reduction, ammonification, hydrolysis, acidogenesis and methanogenesis in a gravity sewer. The model correctly predicts the transformation of organics including proteins, lipids, polysaccharides, etc. The simulation results show that the degradation of organics easily generates acetic acid in the sewer system and the high yield of acetic acid is closely linked to methanogenic metabolism. Moreover, propionic acid is the crucial substrate for sulfate reduction and ammonification tends to be affected by the concentration of amino acids. Our model provides a promising tool for simulating and predicting outcomes in response to variations in wastewater quality in sewers.

Keywords Gravity sewer      Modeling      Pollutant transformation      Biochemical reaction process     
Corresponding Author(s): Pengkang Jin   
Issue Date: 10 July 2019
 Cite this article:   
Nan Zhao,Huu Hao Ngo,Yuyou Li, et al. A comprehensive simulation approach for pollutant bio-transformation in the gravity sewer[J]. Front. Environ. Sci. Eng., 2019, 13(4): 62.
 URL:  
https://academic.hep.com.cn/fese/EN/10.1007/s11783-019-1144-1
https://academic.hep.com.cn/fese/EN/Y2019/V13/I4/62
Fig.1  Schematic structure of the SWTM: hydrolysis (blue arrows); acidogenesis (red arrows); homoacetogenesis (black arrows); methanogenesis (purple arrows); sulfate reduction (green arrows) and ammonification (orange lines).
Fig.2  Simulation flow chart.
Fig.3  Simulation results for the main bacteria species along the sewer (lines represent the simulation result and points represent the measurement data).
Fig.4  The simulation results for: (a) organic matter transformation; (b) generation of gases.
Fig.5  The validation results for: (a) ammonification process, and (b) sulfate reduction process.
Fig.6  Functional analysis of the HAc biochemical reaction process in sewer: (a) methanogenesis; (b) sulfate reduction. The measurement data are derived from Song and Zhang (2011).
Reaction times (min) 0 10 20 30 40 50 60
Acetic acid measurement (mg/L) 34.60 38.20 38.70 40.00 42.30 45.00 45.90
Acetic acid Simulation (mg/L) 34.60 37.15 39.66 42.60 45.42 47.56 48.45
Butyric acid measurement (mg/L) 11.03 9.00 7.80 7.65 7.54 6.03 8.34
Butyric acid simulation (mg/L) 11.03 9.45 8.14 7.10 6.32 5.79 5.53
Methane measurement (mg/m3) 0.34 1.20 3.41 5.12 5.74 7.03 8.61
Methane simulation (mg/m3) 0.34 1.58 2.90 4.17 5.40 6.57 7.69
Sulfate measurement (mg/L) 83.23 79.01 73.41 69.98 65.70 62.03 61.83
Sulfate simulation (mg/L) 83.23 75.88 70.41 65.86 63.21 61.31 60.20
Tab.1  Model validation with fermentation data from Guisasola et al. (2009)
Parameters Meanings Unit
af The specific biofilm area m2/m3
HH2S Henry’s constant for H2S Pa·L/mg
fsubstrate Yield of substrate on sugar. kg COD-substrate/kg COD-sugar
fproducts,substrate Yield of products on substrates kg COD-products·kg/COD-substrates
Ji The flux into the biofilm g/(m2·d)
kH2S,i Specific maximum uptake rate for carbon i in sulfate reduction kg COD-substrate/(kg COD-carbon source·d)
km,substrate Specific maximum uptake rate of substrate kg COD-substrate/(kg COD-biomass·d)
km, homo Specific maximum uptake rate in homoacetogenesis kg COD-substrate/(kg COD-biomass·d)
ksubstrate Half-saturation coefficient of substrate kmol/m3
ks,homo Half saturation coefficient in homoacetogenisis kg COD/m3
kSO4,i Half saturation coefficient of carbon i in sulfate reduction kmol/m3
Lf Biofilm thickness m
rif Concentration generation (consumption) rate for substrate mg/(L·min)
PH2S The hydrogen sulfide pressure Pa
S Concentration mg/L
SCH4,substrate Methane generated from substrate mg/m3
Ssubstrate Concentration of substrate kg COD/m3
Si Carbon content of component i kg COD/m3
Sin The influent concentration of the substrate mg/L
Sout The effluent concentration of the substrate mg/L
Xalcohol Ethanol consuming microorganism copies/mL
Xhomo Homoacetogenic bacteria copies/mL
XSRB SRB copies/mL
Ysubstrate Biomass yield on substrate kg COD-biomass/kg COD-substrate
Yhomo Biomass yield on homoacetogenesis process kg COD-biomass/kg COD-substrate
hf,i The effectiveness factor
  
1 S Abdul-Talib, T Hvitved-Jacobsen, J Vollertsen, Z Ujang (2002). Half saturation constants for nitrate and nitrite by in-sewer anoxic transformations of wastewater organic matter. Water Science and Technology, 46(9): 185–192
https://doi.org/10.2166/wst.2002.0236 pmid: 12448468
2 E L Barrera, H Spanjers, K Solon, Y Amerlinck, I Nopens, J Dewulf (2015). Modeling the anaerobic digestion of cane-molasses vinasse: Extension of the Anaerobic Digestion Model No. 1 (ADM1) with sulfate reduction for a very high strength and sulfate rich wastewater. Water Research, 71: 42–54
https://doi.org/10.1016/j.watres.2014.12.026 pmid: 25589435
3 P M Bentler, D G Bonett (1980). Significance tests and goodness of fit in the analysis of covariance structure. Psychological Bulletin, 88(3): 588–606
https://doi.org/10.1037/0033-2909.88.3.588
4 C Cravo-Laureau, C Labat, C Joulian, R Matheron, A Hirschler-Réa (2007). Desulfatiferula olefinivorans gen. nov., sp. nov., a long-chain n-alkene-degrading, sulfate-reducing bacterium. International Journal of Systematic and Evolutionary Microbiology, 57(11): 2699–2702
https://doi.org/10.1099/ijs.0.65240-0 pmid: 17978243
5 V Fedorovich, P Lens, S Kalyuzhnyi (2003). Extension of Anaerobic Digestion Model No. 1 with processes of sulfate reduction. Applied Biochemistry and Biotechnology, 109(1-3): 33–46
https://doi.org/10.1385/ABAB:109:1-3:33 pmid: 12794282
6 G Fu, C Makropoulos, D Butler (2010). Simulation of urban wastewater systems using artificial neural networks: Embedding urban areas in integrated catchment modelling. Journal of Hydroinformatics, 12(2): 140–149
https://doi.org/10.2166/hydro.2009.151
7 H Garsdal, O Mark, J Dorge, S Jepsen (1995). Mousetrap: Modelling of water quality processes and the interaction of sediments and pollutants in sewers. Water Science and Technology, 31(7): 33–41
https://doi.org/10.2166/wst.1995.0194
8 A Guisasola, K R Sharma, J Keller, Z Yuan (2009). Development of a model for assessing methane formation in rising main sewers. Water Research, 43(11): 2874–2884
https://doi.org/10.1016/j.watres.2009.03.040 pmid: 19423146
9 Y Higashioka, H Kojima, T Nakagawa, S Sato, M Fukui (2009). A novel n-alkane-degrading bacterium as a minor member of p-xylene-degrading sulfate-reducing consortium. Biodegradation, 20(3): 383–390
https://doi.org/10.1007/s10532-008-9229-8 pmid: 18987782
10 J L Huisman, W Gujer (2002). Modelling wastewater transformation in sewers based on ASM3. Water Science and Technology, 45(6): 51–60
https://doi.org/10.2166/wst.2002.0093 pmid: 11989878
11 T Hvitved-Jacobsen, J Vollertsen, P Nielsen H (1998). A process and model concept for microbial wastewater transformations in gravity sewers. Water Science and Technology, 37(1): 233–241
https://doi.org/10.2166/wst.1998.0056
12 F Jiang, D H Leung, S Li, G H Chen, S Okabe, M C van Loosdrecht (2009). A biofilm model for prediction of pollutant transformation in sewers. Water Research, 43(13): 3187–3198
https://doi.org/10.1016/j.watres.2009.04.043 pmid: 19487008
13 F Jiang, H W Leung, S Y Li, G S Lin, G H Chen (2007). A new method for determination of parameters in sewer pollutant transformation process model. Environmental Technology, 28(11): 1217–1225
https://doi.org/10.1080/09593332808618888 pmid: 18290531
14 W Jie, Y Peng, N Ren, B Li (2014). Volatile fatty acids (VFAs) accumulation and microbial community structure of excess sludge (ES) at different pHs. Bioresource Technology, 152: 124–129
https://doi.org/10.1016/j.biortech.2013.11.011 pmid: 24291313
15 P Jin, X Shi, G Sun, L Yang, Y Cai, X C Wang (2018). Co-variation between distribution of microbial communities and biological metabolization of organics in urban sewer systems. Environmental Science & Technology, 52(3): 1270–1279
https://doi.org/10.1021/acs.est.7b05121 pmid: 29300470
16 P Jin, B Wang, D Jiao, G Sun, B Wang, X C Wang (2015). Characterization of microflora and transformation of organic matters in urban sewer system. Water Research, 84: 112–119
https://doi.org/10.1016/j.watres.2015.07.008 pmid: 26218464
17 Z Jing, Y Hu, Q Niu, Y Liu, Y Y Li, X C Wang (2013). UASB performance and electron competition between methane-producing archaea and sulfate-reducing bacteria in treating sulfate-rich wastewater containing ethanol and acetate. Bioresource Technology, 137: 349–357
https://doi.org/10.1016/j.biortech.2013.03.137 pmid: 23597763
18 R A Kreisberg, A M Siegal, W C Owen (1971). Glucose-lactate interrelationships: Effect of ethanol. Journal of clinical investigation, 50(1): 175–185
https://doi.org/10.1172/JCI106471 pmid: 5101294
19 H Li, Y Song, Q Li, J He, Y Song (2014). Effective microbial calcite precipitation by a new mutant and precipitating regulation of extracellular urease. Bioresource Technology, 167: 269–275
https://doi.org/10.1016/j.biortech.2014.06.011 pmid: 24994684
20 Y F Li, S Wei, Z Yu (2013). Feedstocks affect the diversity and distribution of propionate CoA-transferase genes (pct) in anaerobic digesters. Microbial Ecology, 66(2): 351–362
https://doi.org/10.1007/s00248-013-0234-z pmid: 23640276
21 H Liu, T Yu, Y Liu (2015). Sulfate reducing bacteria and their activities in oil sands process-affected water biofilm. The Science of the total environment, 536: 116–122
https://doi.org/10.1016/j.scitotenv.2015.06.135 pmid: 26204047
22 Y Liu, D R Boone (1991). Effects of salinity on methanogenic decomposition. Bioresource Technology, 35(3): 271–273
https://doi.org/10.1016/0960-8524(91)90124-3
23 H R Mackey, Rey G Morito, T Hao, G H Chen (2016). Pursuit of urine nitrifying granular sludge for decentralised nitrite production and sewer gas control. Chemical Engineering Journal, 289: 17–27
https://doi.org/10.1016/j.cej.2015.12.071
24 Y Q Nie, H Liu, G C Du, J Chen (2007). Enhancement of acetate production by a novel coupled syntrophic acetogenesis with homoacetogenesis process. Process Biochemistry, 42(4): 599–605
https://doi.org/10.1016/j.procbio.2006.11.007
25 A A Onifade, N A Al-Sane, A A Al-Musallam, S Al-Zarban (1998). A review: Potentials for biotechnological applications of keratin-degrading microorganisms and their enzymes for nutritional improvement of feathers and other keratins as livestock feed resources. Bioresource Technology, 66(1): 1–11
https://doi.org/10.1016/S0960-8524(98)00033-9
26 S K Pandey, K H Kim, E E Kwon, Y H Kim (2016). Hazardous and odorous pollutants released from sewer manholes and stormwater catch basins in urban areas. Environmental Research, 146: 235–244
https://doi.org/10.1016/j.envres.2015.12.033 pmid: 26775004
27 L P Pereyra, S R Hiibel, M V Prieto Riquelme, K F Reardon, A Pruden (2010). Detection and quantification of functional genes of cellulose- degrading, fermentative, and sulfate-reducing bacteria and methanogenic archaea. Applied and Environmental Microbiology, 76(7): 2192–2202
https://doi.org/10.1128/AEM.01285-09 pmid: 20139321
28 A Rahman, M Kumashiro, T Ishihara (2011). Direct synthesis of formic acid by partial oxidation of methane on H-ZSM-5 solid acid catalyst. Catalysis Communications, 12(13): 1198–1200
https://doi.org/10.1016/j.catcom.2011.04.001
29 R Rajagopal, D I Massé, G Singh (2013). A critical review on inhibition of anaerobic digestion process by excess ammonia. Bioresource Technology, 143: 632–641
https://doi.org/10.1016/j.biortech.2013.06.030 pmid: 23835276
30 N B Ramsing, M Kühl, B B Jørgensen (1993). Distribution of sulfate-reducing bacteria, O2, and H2S in photosynthetic biofilms determined by oligonucleotide probes and microelectrodes. Applied and Environmental Microbiology, 59(11): 3840–3849
pmid: 7506896
31 H Rawsthorne, C N Dock, L A Jaykus (2009). PCR-based method using propidium monoazide to distinguish viable from nonviable Bacillus subtilis spores. Applied and Environmental Microbiology, 75(9): 2936–2939
https://doi.org/10.1128/AEM.02524-08 pmid: 19270144
32 N Ren, B Wang, J C Huang (1997). Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnology and Bioengineering, 54(5): 428–433
https://doi.org/10.1002/(SICI)1097-0290(19970605)54:5<428::AID-BIT3>3.0.CO;2-G pmid: 18634135
33 N Ren, Q Wang, Q Wang, H Huang, X Wang (2017). Upgrading to urban water system 3.0 through sponge city construction. Frontiers of Environmental Science & Engineering, 11(4): 9
https://doi.org/10.1007/s11783-017-0960-4
34 T Ross (1996). Indices for performance evaluation of predictive models in food microbiology. The Journal of applied bacteriology, 81(5): 501–508
pmid: 8939028
35 E Rudelle, J Vollertsen, T Hvitved-Jacobsen, A H Nielsen (2011). Anaerobic transformations of organic matter in collection systems. Water Environment Research A: Research Publication of the Water Environment Federation, 83(6): 532–540
36 F Schmitt, C F Seyfried (1992). Sulfate reduction in sewer sediments. Water Science and Technology, 25(8): 83–90
https://doi.org/10.2166/wst.1992.0182
37 A B J Sepers (1981). Diversity of ammonifying bacteria. Hydrobiologia, 83(2): 343–350
https://doi.org/10.1007/BF00008285
38 K Sharma, N Derlon, S Hu, Z Yuan (2014). Modeling the pH effect on sulfidogenesis in anaerobic sewer biofilm. Water Research, 49: 175–185
https://doi.org/10.1016/j.watres.2013.11.019 pmid: 24326022
39 K Sharma, R Ganigue, Z Yuan (2013). pH dynamics in sewers and its modeling. Water Research, 47(16): 6086–6096
https://doi.org/10.1016/j.watres.2013.07.027 pmid: 23962970
40 X Song, Z Zhang (2011). Notice of Retraction Sulfate Reducing Rate of SRB with Acetic, Propionic, n-Butyric Acids as Carbon Sources. In: The 5th International Conference on Bioinformatics and Biomedical Engineering, Wuhan. New York: Curran Associates, 1–4
41 L M Steinberg, J M Regan (2009). mcrA-targeted real-time quantitative PCR method to examine methanogen communities. Applied and Environmental Microbiology, 75(13): 4435–4442
https://doi.org/10.1128/AEM.02858-08 pmid: 19447957
42 Y Sun, J Zhao, L Chen, Y Liu, J Zuo (2018). Methanogenic community structure in simultaneous methanogenesis and denitrification granular sludge. Frontiers of Environmental Science & Engineering, 12(4): 10
https://doi.org/10.1007/s11783-018-1067-2
43 K A Taconi, M E Zappi, W Todd French, L R Brown (2008). Methanogenesis under acidic pH conditions in a semi-continuous reactor system. Bioresource Technology, 99(17): 8075–8081
https://doi.org/10.1016/j.biortech.2008.03.068 pmid: 18467091
44 E Uggetti, B Sialve, E Latrille, J P Steyer (2014). Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresource Technology, 152(152): 437–443
https://doi.org/10.1016/j.biortech.2013.11.036 pmid: 24316486
45 V A Vavilin (2002).The IWA Anaerobic Digestion Model No. 1. London: IWA Publishing
46 F Widdel, N Pfennig (1977). A new anaerobic, sporing, acetate-oxidizing, sulfate-reducing bacterium, Desulfotomaculum (emend.) acetoxidans. Archives of Microbiology, 112(1): 119–122
https://doi.org/10.1007/BF00446665 pmid: 843166
47 D Yuan, K Rao, P Relue, S Varanasi (2011). Fermentation of biomass sugars to ethanol using native industrial yeast strains. Bioresource Technology, 102(3): 3246–3253
https://doi.org/10.1016/j.biortech.2010.11.034 pmid: 21129954
[1] FSE-19052-OF-ZN_suppl_1 Download
[1] Chao Pan, Daniel Giammar. Interplay of transport processes and interfacial chemistry affecting chromium reduction and reoxidation with iron and manganese[J]. Front. Environ. Sci. Eng., 2020, 14(5): 81-.
[2] Wei Fan, Qi Li, Mingxin Huo, Xiaoyu Wang, Shanshan Lin. Transport of bacterial cell (E. coli) from different recharge water resources in porous media during simulated artificial groundwater recharge[J]. Front. Environ. Sci. Eng., 2020, 14(4): 63-.
[3] Fatih Ilhan, Kubra Ulucan-Altuntas, Yasar Avsar, Ugur Kurt, Arslan Saral. Electrocoagulation process for the treatment of metal-plating wastewater: Kinetic modeling and energy consumption[J]. Front. Environ. Sci. Eng., 2019, 13(5): 73-.
[4] Mengqian Lu, Bin-Le Lin, Kazuya Inoue, Zhongfang Lei, Zhenya Zhang, Kiyotaka Tsunemi. PM2.5-related health impacts of utilizing ammonia-hydrogen energy in Kanto Region, Japan[J]. Front. Environ. Sci. Eng., 2018, 12(2): 13-.
[5] Ruifen Liu, Elizabeth Fassman-Beck. Hydrologic experiments and modeling of two laboratory bioretention systems under different boundary conditions[J]. Front. Environ. Sci. Eng., 2017, 11(4): 10-.
[6] Yang Liu, Martina G. Vijver, Bo Pan, Willie J. G. M. Peijnenburg. Toxicity models of metal mixtures established on the basis of “additivity” and “interactions”[J]. Front. Environ. Sci. Eng., 2017, 11(2): 10-.
[7] Cesunica E. Ivey, Heather A. Holmes, Yongtao Hu, James A. Mulholland, Armistead G. Russell. A method for quantifying bias in modeled concentrations and source impacts for secondary particulate matter[J]. Front. Environ. Sci. Eng., 2016, 10(5): 14-.
[8] Yue HUANG,Xin DONG,Siyu ZENG,Jining CHEN. An integrated model for structure optimization and technology screening of urban wastewater systems[J]. Front. Environ. Sci. Eng., 2015, 9(6): 1036-1048.
[9] Hongguang CHENG,Xiao PU,Yiting CHEN,Fanghua HAO,Liming DONG. Characterization of phosphorus species and modeling for its organic forms in eutrophic shallow lake sediments, North China[J]. Front. Environ. Sci. Eng., 2014, 8(6): 905-921.
[10] Zhiyi LI,Pengfei DU,Haiwei HUANG,Yong Ge,Xu LI. Modeling agricultural non-point source pollution in a high-precipitation coastal area of China[J]. Front. Environ. Sci. Eng., 2014, 8(6): 922-928.
[11] S. LIU,R.E. BRAZIER,A. L. HEATHWAITE,W. LIU. Fully integrated approach: an alternative solution of coupling a GIS and diffuse pollution models[J]. Front.Environ.Sci.Eng., 2014, 8(4): 616-623.
[12] Pengfei DU, Zhiyi LI, Jinliang HUANG. A modeling system for drinking water sources and its application to Jiangdong Reservoir in Xiamen city[J]. Front Envir Sci Eng, 2013, 7(5): 735-745.
[13] Yu GUO, Haifeng JIA. An approach to calculating allowable watershed pollutant loads[J]. Front Envir Sci Eng, 2012, 6(5): 658-671.
[14] Gaoxiang YING, John SANSALONE, Srikanth PATHAPATI, Giuseppina GAROFALO, Marco MAGLIONICO, Andrea BOLOGNESI, Alessandro ARTINA. Stormwater treatment: examples of computational fluid dynamics modeling[J]. Front Envir Sci Eng, 2012, 6(5): 638-648.
[15] Can WANG, Jinying XI, Hongying HU, Insun KANG. Effects of design parameters on performance and cost analysis of combined ultraviolet-biofilter systems treating gaseous chlorobenzene based on mathematical modeling[J]. Front Envir Sci Eng, 2012, 6(4): 588-594.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed